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Abstract. The use of class libraries increases programmer productivity
by allowing programmers to focus on the functionality unique to their
application. However, library classes are generally designed with some
typical usage pattern in mind, and performance may be suboptimal if
the actual usage differs. We present an approach for rewriting applica-
tions to use customized versions of library classes that are generated
using a combination of static analysis and profile information. Type con-
straints are used to determine where customized classes may be used, and
profile information is used to determine where customization is likely to
be profitable. We applied this approach to a number of Java applications
by customizing various standard container classes and the omnipresent
StringBuffer class, and measured speedups up to 78% and memory foot-
print reductions up to 46%. The increase in application size due to the
added custom classes is limited to 12% for all but the smallest programs.

1 Introduction

The availability of a large library of standardized classes is an important rea-
son for Java’s popularity as a programming language. The use of class libraries
improves programmer productivity by allowing programmers to focus on the
aspects that are unique to their application without being burdened with the
unexciting task of building (and debugging!) standard infrastructure. However,
library classes are often designed and implemented with some typical usage pat-
tern in mind. If the actual use of a library class by an application differs sub-
stantially from this typical usage pattern, performance may be suboptimal.

Consider, for example, the implementation of the container classes such as
Vector and Hashtable in package java.util. In designing the implementation
of these containers, a large number of accesses to objects stored therein was
(implicitly) assumed. Therefore, the allocation of auxiliary data structures en-
capsulated by the container (e.g., a Vector’s underlying array, or a Hashtable’s
embedded array of hash-buckets) is performed eagerly upon construction of the
container itself. This approach has the advantage that the container’s access
methods can assume that these auxiliary data structures have been allocated.



However, as we shall see in Section 6, it is not uncommon for programs to create
large numbers of containers that remain empty or that contain only small num-
bers of objects. In such cases, lazy allocation is preferable, despite the fact that
the access methods become slower because they have to check if the auxiliary
data structures have been allocated and create them if this is not the case.

Library classes may also induce unnecessary overhead if an application does
not use all of the provided functionality. For example, most iterators provided
by containers such as Hashtable are designed to be fail-fast (i.e., an exception is
thrown when an attempt is made to use an iterator and a concurrent modification
of its underlying container is detected). Fail-fast iterators are implemented by
keeping track of the “version” of the container that an iterator is associated with,
and incrementing a container’s version number upon each modification. This
“bookkeeping code” is executed, and space for its data is reserved, regardless of
the fact whether or not iterators are used. For clients that do not use iterators,
a customized container without iteration support can improve performance.

A third common case of unnecessary overhead occurs when single-threaded
applications use library classes that are designed with multi-threaded clients
in mind. For example, many Java programs frequently concatenate strings via
calls to the synchronized method java.lang.StringBuffer.append()3. This
means that a lock must be acquired for each call to this method, which is unnec-
essary for single-threaded applications. Performance can improved in such cases
by rewriting the application to use custom, unsynchronized StringBuffers.

We present a fully automated approach for generating and using customized
versions of Java library classes. This approach consists of 5 steps.

1. First, type constraints are used to determine where library classes can be
replaced with custom versions without affecting type correctness or program
behavior. The result is a set of allocation site candidates that may allocate
custom type objects instead of standard library type objects.

2. Static analysis is then used to determine those candidates for which unused
library functionality and synchronization can be removed safely from the
allocated types.

3. In addition, profile information is collected about the usage characteristics
of the customization candidates to determine where the allocation of custom
library classes is likely to be profitable. In our whole approach, selecting the
training inputs and executing the instrumented program is the only manual
step.

4. Based on the static analysis results and the profiling information, custom
library classes are automatically generated from a template.

5. Finally, the bytecode of the client application is rewritten to use the gen-
erated custom classes. This bytecode rewriting is completely transparent to
the programmer.

We applied this approach to a set of benchmark Java applications, and cus-
tomized various container classes in java.util, as well as class StringBuffer.
3 Java compilers translate uses of the +-operator on String objects into calls to
StringBuffer.append().



We measured speedups ranging from -5 to 78% (19-24% on average, depending
on the VM) and memory footprint reductions ranging from -1 to 46% (averaging
12%). Moreover, the addition of custom classes to the benchmarks resulted in
only a modest increase in application size: less than 12% for all but the smallest
programs.

The remainder of this paper is structured as follows. Section 2 presents a
motivating example. Sections 3 and 4 present type constraints and their use for
determining where custom classes may be used, respectively. Section 5 discusses
the steps involved in profiling and generating custom classes. In Section 6, an
evaluation of our techniques on a set of benchmarks is presented. Sections 7
and 8 present related work, and conclusions and future work, respectively.

2 Motivating Example

We will use an example program that creates several Hashtable objects to illus-
trate the issues that arise when replacing references to standard library classes
with references to custom classes. Class Hashtable is well-suited to serve as a
motivating example because: (i) it is part of a complex class hierarchy in which it
has both supertypes (e.g., Map and Dictionary) and subtypes (Properties), (ii)
several orthogonal optimizations can be applied when creating custom hashta-
bles4, and (iii) Hashtables are heavily used by many (legacy) Java applications.

In order to create a customized version of, say, a Hashtable, one could sim-
ply create a class CustomHashtable that extends Hashtable and overrides some
of its methods. Unfortunately, this approach has significant limitations. In par-
ticular, fully lazy allocation is impossible because Hashtable’s constructors al-
ways allocate certain auxiliary datastructures (e.g., an array of hash-buckets)5,
and each constructor of CustomHashtable must invoke one of Hashtable’s con-
structors. Moreover, each CustomHashtable object contains all of Hashtable’s
instance fields, which introduces unneccessary overhead if these fields are un-
used (as was the case in the example discussed above of redundant iterator-
related bookkeeping code). Therefore, customized classes will be introduced in
a separate branch of the class hierarchy, as is indicated in Figure 1. The figure
shows the standard library types Hashtable, Map, Dictionary, and Properties,
and the inheritance relationships between them. Also shown are custom con-
tainer classes CachingHashtable and LazyAllocHashtable, and an abstract
class AbstractCustomHashtable that serves as a common superclass of cus-
tomized versions of Hashtable.

4 One particular optimization that can be applied to custom versions of class
Hashtable is the removal of synchronization in cases where the client application
is single-threaded. To avoid overhead in such cases, modern Java applications tend
to use the similar class HashMap, in which the methods are not synchronized.

5 While it is possible to specify the initial size of this array of hash-buckets upon
construction of a Hashtable-object, the construction of this array-object cannot be
avoided altogether if CustomHashtable is a subclass of Hashtable.



We will use the example program shown in Figure 2 to illustrate the issues
that arise when introducing custom classes such as those shown in Figure 1.
This program creates a number of container objects, and performs some method
calls on these objects. Observe that the program contains three allocation sites
of type Hashtable and one of type String that we will refer as H1, H2, H3, and
S1, as is indicated in Figure 2 using comments. We will now examine a number
of issues that arise when updating allocation sites to refer to custom types.

Calls to methods in external classes. Allocation site H1 cannot be
updated to refer to a custom type because the object allocated at H1 is
passed to a constructor of javax.swing.JTree that expects an argument
of type java.util.Hashtable. Since the code in class JTree is not under
our control, the type of the parameter of JTree’s constructor must remain
java.util.Hashtable, which implies that the types of h1 and H1 must re-
main java.util.Hashtable as well. Similar issues arise for calls to library
methods whose return type is a concrete6 standard container, such as the
call to System.getProperties() on line 11, which returns an object of type
java.util.Properties, a subtype of java.util.Hashtable.

Preserving type-correctness. Allocation sites H2 and H3 may be up-
dated to refer to, for example, type CachingHashtable. However, if we make
this change, we must also update h2 and h3 to refer to a superclass of
CachingHashtable (i.e., CachingHashtable, AbstractCustomHashtable, Map,
Dictionary, or Object) because the assignments on lines 5 and 6 would
otherwise not be type-correct. The method calls h2.put("FOO", "BAR") and
h2.putAll(c) impose the additional requirement that the put() and putAll()
methods must be visible in the type of h2, and hence that h2’s type must
be CachingHashtable, AbstractCustomHashtable, or Map. Furthermore, the
assignment h2 = h3 is only type-correct if the type of h2 is the same as
or a supertype of the type of h3, and the assignments Properties p1 =
System.getProperties() and h2 = p1 require that the type of h2 must be
a supertype of java.util.Properties. Combining all of these requirements,
we infer that allocation sites H2 and H3 can only be updated to allocate
CachingHashtable objects if both h2 and h3 are declared to be of type Map.

Preserving the behavior of casts. The cast expression on line 16 (in-
dicated as C1) presents another interesting case. Observe that only objects
allocated at sites H3 and S1 may be bound to parameter o. In the trans-
formed program, the cast expression must succeed and fail in exactly the same
cases as before. In this case, if the type of the object allocated at site H3 is
changed to CachingHashtable, changing the type of the cast to, for example,
AbstractCustomHashtable will preserve the behavior of the cast (it will still
succeed when parameter o points to an object allocated at site H3 and it will

6 The use of concrete container types such as Hashtable (as opposed to abstract con-
tainer types such as Map) in the signature of public library methods is often an
indication of poor design, because it unnecessarily exposes implementation details.
Nonetheless, this practice is pervasive. We counted 165 public methods in the JDK
1.3.1 standard libraries whose signature refers to Hashtable, Vector, or Properties.



still fail when o points to an object allocated at site S1). Furthermore, the as-
signment Hashtable h4 = (Hashtable)o is only type-correct if the type of h4
is a supertype of the type referenced in the cast expression, and the method
call h4.contains(· · ·) implies that h4’s type must define the contains(· · ·)
method (in other words, h4 must have type AbstractCustomHashtable or
a subtype thereof). We conclude from the above discussion that having the
cast refer to type AbstractCustomHashtable and declaring h4 to be of type
AbstractCustomHashtable is a valid solution7.

The lessons learned from the above example can be summarized as follows:
The customized program must satisfy interface-compatibility constraints that are
due to the exchange of standard container objects with third-party libraries and
type-correctness constraints implied by program constructs such as assignments
that constrain the types of their subexpressions. Moreover, run-time behavior
must be preserved for casts and instanceof operations.

Lines 5b, 15b, and 16b in Figure 2 indicate how allocation sites, declara-
tions, and cast expressions in the original example program have been replaced
with references to custom classes in accordance with the requirements that we
discussed informally in this section. We will now turn our attention to a more
precise treatment of these requirements.

3 Type Constraints

To determine where the types of allocation sites and declarations can be updated
to refer to custom types in a way that preserves the program’s type-correctness
and behavior, we will use an existing framework of type constraints [18, 25].
For each program construct, one or more type constraints express the subtype-
relationships that must exist between the declared types of the construct’s con-
stituent expressions, in order for that program construct to be type-correct. By
definition, a program is type-correct if the type constraints for all constructs in
that program are satisfied.

Unlike previous work on refactoring and replacing types in a program [25],
our rewriting involves more than moving declared types up or down in an existing
or extended class hierarchy. Instead we will move type declarations more or less
horizontally: standard types in some position of the standard library hierarchy
are replaced by custom types in a corresponding position in a newly added
branch of the hierarchy. Sometimes vertical motion of declared types will still
be useful however, because fields or variables can only hold references to both
standard types and customized types if they are declared a supertype of both
the standard classes and the custom classes.

In this section, we will therefore first introduce the existing constraint frame-
work that was used in, e.g., [25]. This framework is then extended in Section 4
to accommodate the horizontal type replacements.

7 Several other solutions exist. For example, variable h4 and cast C1 can both receive
type CachingHashtable.



Map
+put()
+putAll()

Dictionary
+put()

Hashtable
+contains()

Properties
+getProperty()

  AbstractCustomHashtable  
+contains()

 LazyAllocHashtable  CachingHashtable 

Fig. 1. A fragment of the standard container hierarchy in package java.util.*, aug-
mented with several customized containers. The figure shows, for a number of relevant
methods, the most general type in which they are declared.

1 public class Example {
2 public static void foo(Map m) {
3 Hashtable h1 = new Hashtable(); /* H1 */
4 JTree tree = new JTree(h1);
5 Hashtable h2 = new Hashtable(); /* H2 */
5b Map h2 = new CachingHashtable();
6 Hashtable h3 = new Hashtable(); /* H3 */
6b Map h3 = new CachingHashtable();
7 bar(h3);
8 h2 = h3;
9 h2.put("FOO", "BAR");
10 h2.putAll(m);
11 Properties p1 = System.getProperties();
12 String s = p1.getProperty("java.class.path");
13 h2 = p1;
14 }
15 public static void bar(Object o) {
16 Hashtable h4 = (Hashtable)o; /* C1 */
16b AbstractCustomHashtable h4 = (AbstractCustomHashtable)o;
17 if (h4.contains("FOO")){ ... }
18 }
19 public static void bad(){
20 String s = new String("bad"); /* S1 */
21 bar(s);
22 }
23 }

Fig. 2. This figure shows an example program P1, which consists of lines 1–23 excluding
lines 5b, 6b, and 16b. A customized version of this program that uses the custom class
hierarchy of Figure 1 can be obtained from P1 by replacing lines 5, 6, and 16, with
lines 5b, 6b, and 16b, respectively.



In the remainder of this paper, we assume that the original program is type-
correct. Moreover, we assume that the original program does not contain any
up-casts (i.e., casts (C)E in which the type of expression E is a subclass of C).
This latter assumption is not a restriction, as there is no need for up-casts in
Java byte code8.

3.1 Notation and Terminology

Following [25], we use the term declaration element to refer to declarations of
local variables, parameters in static, instance, and constructor methods, fields,
and method return types, and to type references in cast expressions. In what
follows, v, v′ denote variables, M, M ′ denote methods, F, F ′ denote fields, C, C ′

denote classes, I, I ′ denote interfaces, and T, T ′ denote types9. It is important
to note that the symbol M denotes a method together with all its signature and
return type information and the reference to its declaring type. Similarly, F and
C denote a field and a type, respectively, together with its name, type in which
it is declared and, in the case of fields, its declared type.

Moreover, the notation E, E ′ will be used to denote an expression or declara-
tion element at a specific point in the program, corresponding to a specific node
in the program’s abstract syntax tree. We will assume that type information
about expressions and declaration elements is available from the compiler.

A method M is virtual if M is not a constructor, M is not private and M is
not static. Definition 1 defines the concept of overriding10 for virtual methods.

Definition 1 (overriding). A virtual method M in type C overrides a virtual
method M ′ in type B if M and M ′ have identical signatures and C is equal to
B or C is a subtype of B.11 In this case, we also say that M ′ is overridden by
M .

Definition 2 defines, for a given method M , the set RootDefs(M) of methods
M ′ that are overridden by M that do not override any methods except for
themselves. Since we assume the original program to be type-correct, this set is
guaranteed to be non-empty. For example, in the standard collection hierarchy,
we have that RootDefs(Hashtable.put()) = {Map.put(),Dictionary.put()}
because Map and Dictionary are the most general types that declare put()
methods that are overridden by Hashtable.put().

Definition 2 (RootDefs). Let M be a method. Define:

RootDefs(M) = { M ′|M overrides M ′, and there exists no M ′′ (M ′′ != M ′)
such that M ′ overrides M ′′ }

8 In Java source code, up-casts are sometimes needed for explicit resolution of over-
loaded methods.

9 In this paper, the term type will denote a class or an interface.
10 Note that, according to Definition 1, a virtual method overrides itself.
11 This definition of overriding does not take into account issues related to access

rights and throws-clauses. A precise definition of overriding that takes these issues
into account is a topic for future work.



Figure 3 shows the notation used to express type constraints. A constraint
variable α is one of the following: T (a type constant), [E] (representing the type
of an expression or declaration element E), Decl(M) (representing the type in
which method M is declared), or Decl(F ) (representing the type in which field F
is declared). A type constraint is a relationship between two or more constraint
variables that must hold in order for a program to be type-correct. In this paper,
a type constraint has one of the following forms: (i) α1!α2, indicating that α1

is defined to be the same as α2 (ii) α1≤α2, indicating that α1 must be equal
to or be a subtype of α2, (iii) α1=α2, indicating that α1≤α2 and α2≤α1, (iv)
α1<α2, indicating that α1≤α2 but not α2≤α1, (v) αL

1 ≤αR
1 or · · · or αL

k≤αR
k ,

indicating that αL
j ≤αR

j must hold for at least one j, 1 ≤ j ≤ k, (vi) α1 !≤α2,
indicating that α1 must not be equal to or be a subtype of α2

In discussions about types and subtype-relationships that occur in a specific
program P , we will use the notation of Figure 3 with subscript P . For example,
[E]P denotes the type of expression E in program P , and T ′≤P T denotes a
subtype-relationship that occurs in program P . In cases where the program
under consideration is unambiguous, we will frequently omit these P -subscripts.

3.2 Inferring Type Constraints

We will now present the rules that will be used for inferring type constraints
from various Java constructs and analysis facts.

Type-Correctness Constraints Rules (1)–(17) in Figure 4 shows the type
constraints that are implied by a number of common Java program constructs.
For example, constraint (1) states that an assignment E1 = E2 is type correct
if the type of E2 is the same as or a subtype of the type of E1. For a virtual
method call E.m(E1, · · · , En) that statically resolves to a method M , we define
the type of the call-expression to be the same as M ’s return type (rule (2)),
and we require that the type of each actual parameter Ei must be the same as
or a subtype of the type of the corresponding formal parameter Param(M, i)
(rule (3)). Moreover, a declaration of a method with the same signature as M
must occur in a supertype of the type of E. This latter fact is expressed in
rule (4) using Definition 2 by way of an or-constraint. For cast expressions of
the form (C)E, rule (21) defines the type of the cast to be C. Moreover, rule (12)
states the requirement that the type of E must be a supertype of C12.

Rules (18)–(22) define the types of variables, parameters, fields, method re-
turn types, casts, and allocation sites in the original program.

Behavior-Preserving Constraints The type constraints discussed thus far
are only concerned with type-correctness. In general, additional constraints must
12 In [25], this constraint for cast-expressions reads [E]≤[(C)E]or[(C)E]≤E. We can

use a simplified version here because we make the assumption that the original
program does not contain up-casts.



[E] the type of expression or declaration element E
[M ] the declared return type of method M
[F ] the declared type of field F
Decl(M) the type that contains method M
Decl(F ) the type that contains field F
Param(M, i) the i-th formal parameter of method M
T ′≤T T ′ is equal to T , or T ′ is a subtype of T
T ′<T T ′ is a proper subtype of T (i.e., T ′≤T and not T≤T ′)

Fig. 3. Type constraint notation.

program construct(s)/analysis fact(s) implied type constraint(s)

assignment E1 = E2 [E2]≤[E1] (1)

method call
E.m(E1, · · · , En)

to a virtual method M

[E.m(E1, · · · , En)]![M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)
where RootDefs(M) = { M1, · · · , Mk }

(2)
(3)

(4)

access E.f to field F [E.f ]![F ]
[E]≤Decl(F )

(5)
(6)

return E in method M [E]≤[M ] (7)
constructor call new C(E1, · · · , En)

to constructor M
[Ei]≤[Param(M, i)] (8)

direct call
E.m(E1, · · · , En)

to method M

[E.m(E1, · · · , En)]![M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(9)
(10)
(11)

cast
(C)E

[(C)E]≤[E]
if [E] is a class

(12)

for every type T
T≤java.lang.Object

[null]≤T
(13)
(14)

implicit declaration of this in method M [this]!Decl(M) (15)

declaration of method M (declared in type T ) Decl(M)!T (16)

declaration of field F (declared in type T ) Decl(F )!T (17)

explicit declaration
of variable or method parameter T v [v]!T (18)

declaration of method M with return type T [M ]!T (19)

declaration of field F with type T [F ]!T (20)

cast (T )E [(T )E]!T (21)
expression new C(E1, · · · , En) [ new C(E1, · · · , En)]!C (22)

M ′ overrides M ,
M ′ #= M

[Param(M ′, i)] = [Param(M, i)]
[M ′] = [M ]

(23)
(24)

for each cast expression (C)E, and each
allocation expression E′ ∈ PointsTo(P, E)
such that [E′]P ≤[(C)E]P

[E′]≤[(C)E] (25)

for each cast expression (C)E, and each
allocation expression E′ ∈ PointsTo(P, E)
such that [E′]P #≤[(C)E]P

[E′]#≤[(C)E] (26)

expression E that occurs in the libraries
such that [E]P = T

[E] = T (27)

Fig. 4. Type constraints for a set of core Java language features. Rules (1)–(17) define
the types of expressions and impose constraints between the types of expressions and
declaration elements. Rules (18)–(22) define the types of declaration elements and
allocation expressions in the original program. Rules (23)–(26) show additional type
constraints that are needed for the preservation of program semantics. Rule (27) shows
an additional type constraint needed to preserve interface-compatibility.



PointsTo(P1, h1) = { H1 }
PointsTo(P1, h2) = { H2, H3, P1 }
PointsTo(P1, h3) = { H3 }
PointsTo(P1, h4) = { H3 }

PointsTo(P1, o) = { H3, S1 }
PointsTo(P1, p) = { P1 }
PointsTo(P1, s) = { S1 }

Fig. 5. Points-to information for program P1 of Figure 2, as computed using a varia-
tion on the flow-insensitive, context-insensitive 0-CFA algorithm [17] that propagates
allocation sites rather than types. Here, P1 represents the allocation site(s) at which
the Properties objects returned by System.getProperties() are allocated.

be imposed to ensure that program behavior is preserved. Rules (23) and (24)
state that overriding relationships that occur in the original program P must
also occur in the rewritten program P ′.

Rules (25) and (26) state that the execution behavior of a cast (C)E must
be preserved. Here, the notation PointsTo(P, E) refers to be the set of objects
(identified by their allocation sites) that an expression E in program P may
point to. Any of several existing algorithms [20, 13, 21] can be used to compute
this information. Figure 5 shows the points-to information that will be used in
the examples below. Rule (25) ensures that for each E ′ in the points-to set of E
for which the cast succeeds, the cast will still succeed in P ′. Likewise, Rule (26)
enforces that for each E ′ in the points-to set of E for which the cast fails, the
cast will still fail in P ′.

Interface-Compatibility Constraints Finally, we need to ensure that the
customized program preserves interface-compatibility. To this end, we impose
the additional constraint of rule (27) in Figure 4. This rules states that the types
of declarations and expressions that occur in external class libraries cannot be
changed.

4 Introducing Custom Classes

The introduction of custom classes proceeds using the following steps. First, the
class hierarchy is extended with custom classes and auxiliary types. Then, type
constraints are computed for the program with respect to this extended class
hierarchy. This is followed by a step in which all constraints are transformed
into simple equality or subtype constraints. Finally, the constraint system is
solved in order to determine where custom classes can be used.

4.1 Extension of the Class Hierarchy

Before computing type constraints, we extend the class hierarchy with the cus-
tom classes that we would like to introduce. Adding these types prior to the
construction of the constraints will allow us to determine where custom con-
tainer classes may be introduced. In addition to the custom classes themselves,
some auxiliary types will be added to the hierarchy. In what follows, we use the
term customizable class to refer to a class for which we would like to introduce
a custom version. Specifically, we extend the original class hierarchy as follows:



– For each customizable class C with superclass B, a class CustomC is created
that contains methods and fields that are identical to those in C. If B is not
customizable, then CustomC’s superclass is B, otherwise it is CustomB.

– For each customizable class C, a type C% is introduced, and both C and
CustomC are made a subtype of C%. Type C% contains declarations of all
methods in C that are not declared in any superclass of C.

– For each customizable container C, a type C⊥ is introduced, and C⊥ is made
a subclass of both C and CustomC. Type C⊥ contains no methods.

Multiple inheritance is used because it allows us to express that the type of an
allocation site E should be either C or CustomC by way of subtype-constraints
[E]≤C% and C⊥≤[E]. It is important to note that these multiple inheritance
relations are only used during the solving of the type constraints and that the
customized program does not refer to any type C% or C⊥.

Figure 6 shows the parts of the class hierarchy relevant for the customization
of the example program of Figure 2 after adding the classes CustomHashtable
and CustomProperties, and the additional types Hashtable%, Hashtable⊥,
Properties% and Properties⊥. Section 4.4 describes how the CustomC classes
can be further transformed, and turned into a separate class hierarchy such as
the one shown earlier in Figure 1.

Map
+put()
+putAll()

Dictionary
+put()

 CustomHashtable  CustomProperties 

Hashtable      

Hashtable      
+contains()

Hashtable    

Properties

Properties      
+getProperty()

Properties      

Fig. 6. Fragment of the collection hierarchy in java.util.* after extending it with
custom classes and interfaces. For each class/interface, one or more of the methods
defined/declared in that class/interface are shown.

The original program always allocates an object of type C at an allocation site
new C(E1, · · · , En), as was reflected by rule (22) in Figure 4. In the transformed
program, we want to allow solutions where the allocated object is either of type C
or of type CustomC. To this end, we replace rule (22) with rules (22)(a)–(22)(c)
shown in Figure 7.

Figure 8 shows all non-trivial type constraints for the example program of
Figure 2. For convenience, we have annotated each constraint in Figure 8 with
the line number(s) in the source code from which it was derived, and with the
number of the rule(s) in Figure 4 responsible for the constraint’s creation.



program construct(s)/analysis facts implied type constraint(s)

expression new C(E1, · · · , En)
C is a customizable class

[new C(E1, · · · , En)]≤C"

C⊥≤[new C(E1, · · · , En)]
(22)(a)
(22)(b)

expression new C(E1, · · · , En)
C is a non-customizable class

[new C(E1, · · · , En)]!C (22)(c)

Fig. 7. Revised type constraint rules for allocation sites and casts.

line original constraint rule after simplification

3 [ H1 ] ≤ [ h1 ] (1)
3 [ H1 ] ≤ Hashtable" (22)(a)
3 Hashtable⊥ ≤ [ H1 ] (22)(b)
4 [ h1 ] ≤ [ Param(JTree.JTree(),1) ] (8)
4 [ Param(JTree.JTree(),1) ] = Hashtable (27)
5 [ H2 ] ≤ [ h2 ] (1)
5 [ H2 ] ≤ Hashtable" (22)(a)
5 Hashtable⊥ ≤ [ H2 ] (22)(b)
6 [ H3 ] ≤ [ h3 ] (1)
6 [ H3 ] ≤ Hashtable" (22)(a)
6 Hashtable⊥ ≤ [ H3 ] (22)(b)

7/15 [ h3 ] ≤ [ o ] (10)
8 [ h3 ] ≤ [ h2 ] (1)
9 [ h2 ] ≤ Map or [ h2 ] ≤ Dictionary (4) (removed)

10 [ h2 ] ≤ Map (4)
11 [ System.getProperties() ] ≤ [ p1 ] (1)
11 [ System.getProperties() ] = Properties (27)
12 [ p1 ] ≤ Properties (4)
13 [ p1 ] ≤ [ h2 ] (1)
16 [ C1 ] ≤ [ o ] (12)
16 [ H3 ] ≤ [ C1 ] (25)
16 [ S1 ] "≤ [ C1 ] (26) [ C1 ] ≤ Hashtable"

16 [ C1 ] ≤ [ h4 ] (1)
17 [ h4 ] ≤ Hashtable" (4)
20 S1 ≤ [ s ] (1)
20 [ S1 ] = String (27)

21/15 [ s ] ≤ [ o ] (10)

Fig. 8. Type constraints for the example program of Figure 2(a) as derived according
to Figure 4. The rows in the table show, from left to right, the line in the source code
from which the constraint was derived, the constraint itself, the rule that triggered the
creation of the constraint, and the constraint after simplification (where applicable).



4.2 Constraint Simplification

Constraints of the form [E]≤C1or · · ·or[E]≤Ck (generated using rule (4)) give
rise to bifurcations when traversing the solution space, and constraints of the
form [E′]!≤[(C)E] (generated using rule (26)) make it impossible to define a
monotone iteration step. Therefore, in order to simplify the process of constraint
solving, we first perform a step in which all constraints are reduced to the simple
forms [x]≤[y], [x] = [y], and [x]![y].

Simplification of Disjunctions A virtual method call E.m(E1, · · · , En) to a
method M gives rise to a disjunction [E]≤C1or · · ·or[E]≤Ck if [E] has multiple
supertypes C1, · · · , Ck in which method m(· · ·) is declared such that there is not
a single method M that is overridden by all Ci.m(· · ·), for all i, 1 ≤ i ≤ k. Our
approach will be to replace the entire disjunction by one of its branches [E]≤Cj ,
for some j, 1 ≤ j ≤ k. Note that by imposing a stronger constraint on [E],
we are potentially reducing the number of solutions of the constraint system.
Nevertheless, at least one solution is guaranteed to exist: The original program
fulfills each of the components of the original disjunction13, so it will meet the
simplified constraint as well.

Still, choosing the branch to replace the disjunction requires some consid-
eration. Consider the constraint: [ h2 ] ≤ Map or [ h2 ] ≤ Dictionary that
was generated due to the call h2.put("FOO", "BAR") in the example program
of Figure 2. If we simplify this constraint to: [ h2 ] ≤ Dictionary, we ob-
tain a constraint system in which variable h2 must be a subtype of both Map
and Dictionary, as well as a supertype of java.util.Properties. This implies
that h2’s type must be a subtype java.util.Hashtable, which, in turn, requires
that allocation sites H2 and H3 must remain of type java.util.Hashtable, pre-
venting us from customizing these allocation sites. On the other hand, replacing
the original disjunction with: [ h2 ] ≤ Map allows us to infer the solution shown
earlier in Figure 2(b), in which allocation sites H2 and H3 have been customized.
Clearly, some choices for simplifying disjunctions are better than others.

We use the following approach for the simplification of disjunctions. First,
any constraint [x]≤C1or · · ·or[x]≤Cn for which there already exists another
constraint [x]≤Cj can simply be removed by subsumption, as the latter con-
straint implies the former. Second, we use the heuristic that any constraint
[x]≤C1or · · ·or[x]≤Cn, for which there exists another constraint [y]≤Cj , for
some unique j (1 ≤ j ≤ n) such that PointsTo(P, x) ∩ PointsTo(P, y) != ∅.
is simplified to [x]≤Cj . If no constraint [y]≤Cj exists, the disjunction is sim-
plified by making an arbitrary choice. The results of this approach have been
satisfactory so far. If the loss of precision becomes a problem, one could com-
pute the results obtained for all possible choices for each disjunction, and select
a maximal solution.

13 Note that the introduction of types C" and C⊥ does not affect this property, as
they do not give rise to additional disjunctions.



Simplification of !≤-Constraints Constraints of the form [E ′]!≤[(C)E] are
introduced by rule (25) in order to preserve the behavior of casts that may
fail. For example, in the program of Figure 2 the cast on line 14 fails when
method bar() is called from method bad(), because in this case o will point to
a String-object that was allocated at allocation site S1.

Our approach will be to introduce additional constraints that are sufficient to
imply the !≤-constraint. Specifically, for each cast (C)E for which the points-to
set PointsTo(P, E) contains an expression E ′ such that [E′]P !≤C, we introduce
a constraint [(C)E]≤ C%. This additional constraint prevents the generalization
of the target type of a cast in situations where that would change a failing cast
into a succeeding cast.

It is easy to see that the addition of this constraint ensures that the be-
havior of failing casts is preserved in the customized program P ′. Suppose that
(C)E is a cast that may fail in the original program P . Then, there exists an
E′ ∈ PointsTo(P, E) for which [E ′]P !≤C. Since P does not instantiate any cus-
tom classes, we also know that [E ′]P !≤CustomC , and therefore that [E ′]P !≤C%.
Hence, requiring that [(C)E]≤C% ensures that the constraint [E ′]!≤[(C)E] is
satisfied in P ′.

Example. Figure 8 shows the simplified type constraints for the program of
Figure 2. For the disjunction [ h2 ] ≤ Map or [ h2 ] ≤ Dictionary in Fig-
ure 8, there already exists another, stronger constraint [ h2 ] ≤ Map, so it can
simply be removed. Furthermore, the !≤-constraint [ S1 ] !≤ [ C1 ] is replaced
with a constraint [ C1 ] ≤ Hashtable%.

4.3 Solving the Constraints

Now that all constraints are of the forms E≤E ′, E = E′, and E!E′ solving
the constraint system is straightforward. First, we create a set of equivalence
classes of declaration elements and expressions that must have exactly the same
type, and we extend the ≤ relationship to equivalence classes in the obvious
manner. Then, we compute the set of possible types for each equivalence class
using an optimistic algorithm. This algorithm associates a set SE of types with
each equivalence class E, which is initialized as follows:

– For each equivalence class E that contains an allocation expression E ≡
new C, SE is initialized to contain the types C and CustomC.

– For each equivalence class E that does not contain any allocation expressions,
SE is initialized to contain all types except C% and C⊥, for all C.

Then, in the iterative phase of the algorithm, the following steps are performed
repeatedly until a fixpoint is reached:

– For each pair of equivalence classes D, E such that there exists a type con-
straint D≤E, we remove from SD any type that is not a subtype of a type
that occurs in SE .

– For each pair of equivalence classes D, E such that there exists a type con-
straint D≤E, we remove from SE any type that is not a supertype of a type
that occurs in SD.



Termination of this algorithm is ensured because each iteration decreases the
number of elements in at least one set, and there is a finite number of sets.
Moreover, each equivalence class will contain at least the type that is associated
with its elements in the original program.

equivalence class possible types

{ p1, Properties } { Properties }
{ h1 } { Hashtable }
{ H1 } { Hashtable }
{ h2 } { Map, Hashtable, CustomHashtable }
{ H2 } { Hashtable, CustomHashtable }
{ h3 } { Map, Hashtable, CustomHashtable }
{ H3 } { Hashtable, CustomHashtable }
{ h4 } { Hashtable, CustomHashtable }
{ C1 } { Hashtable, CustomHashtable }
{ o } { Object }
{ s } { String }

Fig. 9. Possible types computed for each equivalence class.

Figure 9 shows the sets of types computed for each of the equivalence classes
in our example. The interpretation of these sets of types requires some remarks:

– Figure 9 depicts many possible solutions. In each solution, a single type in
SE is chosen for each equivalence class E.

– If type T occurs in SE , then at least one solution to the constraint system
exists in which the elements in E have type T .

– Selecting types for different equivalence classes can in general not be done
independently. For any given pair of equivalence classes D and E, choosing
an arbitrary element in SD for equivalence class D, and an arbitrary element
in SE for equivalence class E may result in a type-incorrect program.

– The previous observation particularly applies to two equivalence classes asso-
ciated with allocation sites A1 and A2. Selecting type C for (the equivalence
class containing) A1 may prevent us from selecting type CustomC for (the
equivalence class containing) A2. For example, if a call bar(h2) is added to
method Example.main(), we have the choice of: (i) customizing both H2 and
H3 or (ii) not customizing both H2 and H3. However, customizing H2 but not
H3 (or vice versa) will not preserve the behavior of cast C1.

– However, we conjecture that a solution exists in which type CustomC is
selected for all equivalence classes E such that CustomC ∈ SE .

A more precise treatment of these properties is currently in progress.

4.4 Pragmatic Issues and Further Customization

There are several issues that require straightforward extensions to our basic
approach. These include the treatment of subtypes of standard library classes



(e.g., an application declaring a class MyHashtable that extends Hashtable),
and limiting the introduction of custom classes in the presence of serialization.
Space limitations prevent us from providing more details.

Thus far, we have presented how variables and allocation sites of type C
can be updated to refer to type CustomC. At this point it has become easy to
replace CustomC with a small hierarchy of custom classes such as the one shown
in Figure 1 by applying refactorings [10, 25] as follows:

– Split class CustomC into an abstract superclass AbstractCustomC (that only
contains abstract methods) and a concrete subclass CustomC. Declarations
and casts (but not allocation sites) that refer to type CustomC are made to
refer to AbstractCustomC instead.

– At this point, clones CustomC 1, · · · ,CustomCn of class CustomC can be
introduced as a subclass of AbstractCustomC. Any allocation site of type
CustomC may be updated to refer to any CustomC i.

The next section will discuss a number of optimizations that can be (indepen-
dently) applied to each CustomC i.

5 Implementation

We use the Gnosis framework for interprocedural context-sensitive analysis de-
veloped at IBM Research to compute all static analysis information that is
needed for customization. Two nonstandard components of our analysis are:

– For customizable classes, each allocation site in user code is analyzed sepa-
rately, but a single logical site represents all allocations in system code.

– Analysis is done in two passes: a conventional points-to analysis [20, 13, 21]
is followed by a step in which additional data flow facts are introduced that
model the type constraints due to method overriding, similar in spirit to [12].

Like many static whole-program analysis and transformation tools (e.g., [26]),
Gnosis relies on the user to specify the behaviors of native library methods as
well as any uses of reflection in order to compute a safe analysis result. (Note that
specifying reflection entails specifying classes dynamically loaded via reflection.)

In order to gather profile information, the customization framework itself
is used to replace the standard library classes created by an application with
custom versions that gather profile information. This is subject to the usual
limitations. In other words, we cannot gather profile information for container
objects in cases where interface-compatibility constraints prevent us from apply-
ing customization. Usage statistics are gathered per allocation site and include:

1. A distribution of the construction-time sizes.
2. A distribution of the high-watermarks of the sizes of the container objects

allocated at the site (i.e., the largest size of containers during their life-time).
3. Distributions of the container’s size at method invocations (per method).
4. The hit-rates of search operations.



5. The hit-rates of several caching schemes for optimizing search operations.

Distributions (1) and (2) are used as a basis for deciding on an initial allocation
size and on lazy vs. eager allocation. Combined with (3), they are also used
to determine whether providing special treatment for singleton containers is
beneficial. Distribution (3) is also used to determine whether or not we want to
optimize certain methods for specific sizes, such as empty or singleton containers.
Distribution (4) is used to decide on whether or not search methods are to be
optimized for succeeding or failing searches. Finally, (5) is used to decide on
caching schemes.

Together with the static analysis results, the gathered statistics are used by
an automated decision process to determine which optimizations, compared to
the standard implementation, will be implemented in the custom versions. All
decisions based on static analyses are binary decisions: either an optimization is
safe or is not safe. Furthermore, all customization decisions that are based on
profiles use thresholds, such as hit-rates for search operations, cache schemes,
fractions of containers that remain empty or singletons, etc. As such, most of the
profile-based decisions in our current implementation are simple binary decisions
as well. The single exception is the decision on the initial size of underlying data
structures of the containers. This takes the distribution of the high-watermarks
of all allocated containers into consideration. We should note that all thresholds
used are very high. For example, we use lazy allocation if 75% of the allocated
containers remain empty or contain only one item. Similarly, caching schemes
are used only if their hit-rates are 90% or higher.

The optimizations that are incorporated into custom classes include:

1. Caching the last retrieved items in a container using different caching schemes.
2. Lazy allocation of encapsulated data structures such as a Hashtable’s array

of hash-buckets,
3. Selecting a non-default initial size and growth-strategy for a container’s un-

derlying data structures, depending on the success-rate of retrieval opera-
tions, the distribution of the high-watermarks of the container sizes, etc.

4. Efficiently implementing frequently occurring corner cases such as container
classes that often contain zero or one elements. For example, it is often
possible to use a single, shared EmptyIterator whose hasNext() method
always returns false.

5. Transforming instance fields into class fields if their values are identical for all
objects allocated at some allocation site, or if the differences are non-critical.

6. Specialization of container classes for the type of objects stored in them, if
static analysis can determine these types. Examples of such optimizations are
Integer keys in Hashtables, for which we can store the int values instead,
or Strings for which can exploit the fact that their hashcodes are cached.

7. Finalizing classes that have no subtypes in our program.
8. Removal of unnecessary synchronization. Currently, we only remove syn-

chronization if an application is single-threaded. This is the case if the



Thread.start() method is not reachable in the call-graph starting at the
program entry point14.

These optimizations were chosen after carefully studying the existing imple-
mentations and conducting many experiments with special treatment for corner
cases or access patterns. The inspiration for the optimizations originated from
our own programming experience, from studying programs that heavily use con-
tainer classes, and from searching the World Wide Web for manually crafted
custom implementions.

In addition, static analysis information is used to detect situations where
certain methods are never invoked on a container object that originates from a
given allocation site A. This information is used to remove methods and fields
from the custom class used at A. The bookkeeping fields used for implementing
fail-fast iterators are an example of a situation where this is useful.

Java bytecode [16] is generated for each custom class by preprocessing a
template implementation of a library class, and compiling the resulting source
file to Java .class files. In the current implementation, this is done using the
standard C-preprocessor. JikesBT15, a byte-code instrumentation tool developed
at IBM Research, is used for the rewriting of the application’s class files so that
they refer to the generated custom classes.

6 Experimental evaluation

To evaluate our techniques, we measured the execution times and memory foot-
print of a number of Java applications on a workstation (hyperthreaded Pentium
4 at 2.8 GHz, 1GB RAM) running Linux 2.4.21 and two Java virtual machines:
IBM’s “j9” VM that is being distributed with IBM’s WebSphere Studio Device
Developer product and Sun’s Hotspot Server 1.3.1 JVM. All measurements were
performed using a maximum heap of 400 MB.

As our optimization technique aims at eliminating the overhead of using
standard library implementations when such implementations are not optimal,
we selected 7 benchmark programs that use the standard library classes in an
atypical manner. Three programs are taken from the SPECjvm98 suite: 202 jess
is an expert shell system, 209 db is a memory resident database, and 218 jack
is a parser generator. The other benchmarks we include are HyperJ (an aspect-
oriented development tool), Jax [26], PmD (a open-source tool available from
SourceForge for detecting programming errors) and a chess program developed
at IBM. All execution times were measured using a harness: each program is
executed 10 times within one invocation of the VM, and we report the fastest
time of the 10 runs. With the exception of HyperJ, for which we had only one
input data set available, all measurements were performed using larger data sets
than the training sets used to collect profile information.
14 Here, “Program entry point” refers to the entry point of the actual benchmark

program, and not of the harness used for measuring execution time.
15 See www.alphaworks.ibm.com/tech/jikesbt
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Fig. 10. Execution times and speedups obtained through customization. The execu-
tion times presented are of the original programs (orig), the programs with customized
container classes, but without synchronization elimination(cust1), the programs with
customized containers classes of which we eliminated the synchronization where possi-
ble (cust2), and the programs with customized and desynchronized containers classes
and desynchronized StringBuffers (cust3).

orig cust3 orig cust3_202_jess 173KB 175KB (1.01) 1.74MB 1.77MB (0.99)_209_db 6KB 21KB (3.68) 9.57MB 9.57MB (1.00)_218_jack 70KB 95KB (1.35) 15.78MB 8.54MB (0.54)Jax 582KB 615KB (1.06) 44.23MB 40.98MB (0.93)HyperJ 1,767KB 1,821KB (1.03) 44.42MB 41.38MB (0.93)Chess 135KB 151KB (1.12) 9.33MB 9.29MB (1.00)Pmd 498KB 525KB (1.05) 142.51MB 123.72MB (0.87)GEOMEAN (1.30) (0.88) 

zipped archive heap size

Fig. 11. Archive size increase and memory footprint reduction resulting from cus-
tomization.

In Figure 10 we report execution times of four versions of the benchmarks,
that were customized in the exact same way for both VMs.16 The consequences
of the customizations on memory consumption are depicted in Figure 11. An
analysis of the obtained results and applied customizations reveals that:

– In 202 jess, the keys used in hashtables are either Strings or Integers, and
on 2 of the hashtables all search operations fail. Depending on the VM
used, customizing the Hashtable class for this usage pattern resulted in a
5% speedup or in a 5% slowdown. Eliminating synchronization, including the
synchronization on very frequently used Vector objects, results in speedups
between 15% and 37%.

– In 209 db, 99% of all consecutive retrieval operations on Vectors retrieve the
same element (during what is essentially a column-major-order operation on

16 In order to evaluate the customizations correctly, the original programs need to
be executed with the original library classes before customization. Since all our
customized classes are customized versions of IBM’s jclMax implementation (which
is distributed with IBM’s WebSphere Studio Device Developer product), we enforced
the use of the original jclMax classes on both VMs by prepending them to the boot
classpath of the VMs.



a row-major-order stored array of Vectors), and the application of a caching
scheme results in a 23% speedup on the Sun VM. Additionally removing the
synchronization on these Vectors results in a 77% speedup on the Sun VM,
and a speedup of 39% on IBM’s j9.

– In 228 jack, 99% of all search operations are on empty hashtables (of which
a lot are allocated), or hashtables containing one element only. Using lazy
allocation and eliminating the bookkeeping data for fail-safe iteration, we
can reduce the heap memory consumption with 46%. On Sun’s VM, the
resulting overhead in the retrieval operations can be compensated by opti-
mizing the retrieval for the corner case of hashtables containing one element
only. On IBM’s j9, the overhead is almost compensated. Finally, removing
synchronization results in speedups between 34 and 44%.

– In HyperJ, the same situation occurs, and lazy allocation and the elimina-
tion of unnecessary bookkeeping data for the hot allocation sites results in
speedups around 2-4% if no synchronization is eliminated, and 17-20% if syn-
chronization is eliminated. Memory consumption drops with 7%. Especially
for this benchmark, we should note that our customization results are ob-
tained on top of the already applied manual fine-tuning by the programmers
via construction time parameterization.

– In Jax, most containers remain very small, and adapting the initial container
size to reflect that results in speedups ranging between 1 and 3%. Memory
consumption as a result drops with 7%.

– In PmD, the vast majority of a huge number of allocated HashMaps re-
mains empty or contains only one element. Lazy allocation, the elimination
of bookkeeping data for fail-safe iteration and the optimization of access
methods result in speedups of 2 to 16%, and a reduction of the allocated
memory with 13%. Since PmD contains a multi-threaded GUI front-end, no
synchronization was removed.

– In the chess program, enumerations (over piece positions) stored in hashta-
bles occur very frequently. Optimizing the number of hash-buckets for the
number of positions (which seemed limited to the number of pieces on a
board) resulted in speedups between 2 and 16%, depending on the VM. Like
Pmd, the chess program contains a multi-threaded front-end. As a result, we
did not yet try to eliminate any synchronization.

On average, the customizations excluding the elimination of synchronization
result in speedups of 5% on both VMs. By additionally eliminating synchroniza-
tion on container classes and StringBuffers in the single-threaded programs, an
average speedup of 19-24% can be obtained. The elimination of synchronization
is therefore clearly the dominant optimization, in particular the elimination of
synchronization on container classes. There are exceptions to this trend how-
ever: for Jax the speedup following synchronization removal is insignificant on
j9, and for 218 jack the removal of synchronization on StringBuffers is much
more significant (10% additional speedup) than for the other programs.

The raw execution times shown in Figure 10 indicate that the two VMs have
somewhat different performance characteristics. It is therefore no surprise that



the obtained speedups are different for each VM as well. This indicates that the
decision logic used for the customization should be made parameterizable for
specific VMs.

Finally, we should note that program archive size increases only by a small
amount because of the customization: as indicated in Figure 11 at most 54KB is
added to the archives, for HyperJ. For all but the smallest programs the zipped
archives grow by 12% or less.

7 Related Work

Yellin [28] and Högstedt et al. [14] discuss techniques for automatically selecting
optimal component implementations. In [28], selection takes place at run-time,
and based on on-line profiling only, while in [14] off-line profiling is used as well.
In both cases, the component developer is required to provide all component
versions up front, making them less viable when many orthogonal implementa-
tion decisions exist, as is the case in the present paper. Unlike our work, the
approaches of [28, 14] do not require static analysis because programs are cor-
rect by construction. In our setting, static analysis is needed to guarantee type-
correctness in cases where objects are exchanged with the standard libraries (or
other components). However, as the approaches of [28, 14] do not rely on static
analysis, they are incapable of eliminating functionality from classes.

Schonberg et al. [22] discuss techniques for automatically selecting concrete
data structures to implement the abstract data types set and map in SETL
programs. Depending on whether or not iterators and set-theoretic operations
such as union and intersection are applied to abstract data types, their opti-
mizing compiler selects an implementation from a predetermined collection of
implementations in which sets are represented as linked lists, hashtables, or bit-
vectors.

Instead of composing complex data structures from simpler ones, as is done
with C++ templates or Ada generics, Sirkin et al. [24] describe how custom,
optimized data structures can be generated automatically from a relatively sim-
ple specification that consists of a composition of iterators and access methods
defined in a very generic container interface. To some extent this data structure
compilation resembles our approach to eliminate unnecessary fields. But whereas
we remove unnecessary fields when static analysis detects that access methods
in the standard interfaces are not used in a program, they add fields to a data
structure to allow an efficient implementation of those access methods occurring
in the specification provided by the programmer.

Transformational programming [2] is a programming methodology based on
top-down stepwise program refinement. Here, the programmer specifies a pro-
gram in terms of very high-level constructs without worrying about efficiency.
This program is made more efficient by automatically applying a sequence of
finite difference transformations or by applying incremental refinement [9, 19].

There is a large body of work on automatic optimization of data structures in
specific domains (e.g., linear algebra kernels). For example, the Berkeley Bench-



marking and Optimization Group (see http://bebop.cs.berkeley.edu) stud-
ies issues related to optimization and data structure selection for sparse matrix
multiplication problems. In the same domain, Yotov et al. [29] compare empirical
and model-driven approaches for selecting customized data structures.

Our customization approach may be seen as a type of generative program-
ming [8], in which the program analysis and rewriting tools needed for our ap-
proach, the instrumented classes to collect profiling information, the templates
to generate custom classes and the decision logic can be seen as an active li-
brary [27]. Active libraries are highly parameterizable libraries that require im-
plementation techniques beyond what is provided by traditional compilers.

There is also work on optimizations that can be applied to specific containers
such as hashtables. Beckmann and Wang [1] discuss the optimization of hashta-
bles by prefetching the objects that are most likely to be searched for, and Fried-
man et al. [11] discuss the optimization of the maximal access time of hashtables
to improve real-time behavior by, e.g., incrementalizing rehash operations.

The elimination of synchronization has been a very popular research subject
(see for example [5]). To the best of our knowledge, all currently known solutions
are either based on manual rewriting of a program to remove the synchronization
or on bytecode annotations that can only be read by adapted VMs. Our approach
of automatically replacing the allocation of standard types with the allocation of
customized types allows to automate the existing techniques for synchronization
elimination without requiring special VM support.

Based on partial evaluation and the use of aspects [15], Schultz et al. [23] spe-
cialize methods for (partially known) input data, resulting in average speed-ups
by a factor of 3. While such specialization can only exploit knowledge of (prop-
erties of) parts of the input data, our customization approach is able to exploit
known access patterns of otherwise unknown input data as well. Furthermore,
whereas we were able to apply our approach in large real-life applications, we
have not seen any indication of the scalability of program specialization through
partial evaluation. The bytecode size of the largest benchmark program used by
Schultz et al. [23], e.g., is only 4914 bytes. With respect to the use of aspects, we
should note that some of our customizations, such as adding a cache to speed-up
hashtable accesses, could be implemented with aspects as well. But other cus-
tomizations, such as the removal of unused bookkeeping fields from container
types, can obviously not.

A limited form of program specialization is customization, as introduced by
Chambers and Ungar [4]. They used the term customization to denote dynamic
method cloning in SELF compilers, in which a separate clone is generated and
optimized for each of the receiver types of a method. Other cloning techniques
have been applied on more traditional programming languages such as Fortran
as well [7], albeit not to optimize procedures for receiver types but rather to
allow other optimizations such as loop unrolling.

Besides specializing methods or procedures for statically known (properties
of) input data, value profiling [3, 6] has been used to produce code that is opti-
mized for likely occurring situations. This is somewhat comparable to our profil-



ing based optimizations. But whereas value profiling aims at lower level compiler
optimization, e.g., by propagating constant values, our approach aims for algo-
rithmic optimizations (such as caching).

During Java’s short lifetime, the standard Java Library classes have been ex-
tended on several occasions. For example, the original synchronized Hashtable
type present in JDK1.0 was complemented with the unsynchronized type HashMap
in JDK1.2 Similarly, the type StringBuilder is added in JDK1.5 as an unsyn-
chronized sibling of the synchronized type StringBuffer. Unlike the approach
we presented in this paper, such extensions of the standard library classes can
only accommodate a limited number of different implementations for each ab-
stract data type. Moreover, such extensions do not remove the burden from the
programmer to choose an actual implementation for his program. One of the
main benefits of our approach is its transparency for the programmer.

Type constraints were introduced [18] as a means to check whether a program
conforms to a language’s type system. If a program satisfies all type constraints,
no type violations will occur at run-time (e.g., no method m(· · ·) is invoked on
an object whose class does not define or inherit m(· · ·)). Type constraints were
recently used to check the preconditions and determine the allowable source-code
modifications associated with generalization-related refactorings [25]. The prob-
lem of determining where custom versions of library classes may be introduced is
very similar to the problem of determining declarations that can be updated by
the Extract Interface refactoring. However, in [25] the type of a declaration
is only replaced with one of its supertypes, whereas our work is unique in the
sense that custom classes appear in a different branch of the class hierarchy.

8 Conclusions and Future Work

We have presented an automated approach for customizing Java container classes
that relies on static analysis for determining where custom container classes may
be introduced in an application, and on profile information for determining what
optimizations are likely to be profitable. The approach was evaluated on a set of
benchmark applications, and we measured speedups of up to 78%, averaging at
19-24%. The memory footprint reductions we measured range from -1 to 46%,
averaging at 12%. The cost of the applied customizations in terms of code size
is limited to 12% for all of the smallest programs we evaluated.

We plan to develop a more precise formal treatment of the properties of
our algorithm for determining where custom allocation sites may be introduced.
Other topics for future work include more advanced program transformations
(e.g, replacing a Hashtable with an extra field in each key object that stores
a reference to its corresponding value), applications to other library classes and
the use of escape analysis to determine where unnecessary synchronizations can
be removed from multi-threaded programs.
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