
One-Round Protocols for Two-Party
Authenticated Key Exchange

Ik Rae Jeong1�, Jonathan Katz2��, and Dong Hoon Lee1�

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea. jir@cist.korea.ac.kr, donghlee@korea.ac.kr
2 Dept. of Computer Science, University of Maryland, College Park, MD, USA.

jkatz@cs.umd.edu

Abstract. Cryptographic protocol design in a two-party setting has of-
ten ignored the possibility of simultaneous message transmission by each
of the two parties (i.e., using a duplex channel). In particular, most
protocols for two-party key exchange have been designed assuming that
parties alternate sending their messages (i.e., assuming a bidirectional
half-duplex channel). However, by taking advantage of the communica-
tion characteristics of the network it may be possible to design protocols
with improved latency. This is the focus of the present work.
We present a number of provably-secure protocols for two-party authen-
ticated key exchange (AKE) which require only a single round. Our first
protocol provides key independence only, and is analyzed in the random
oracle model. This scheme matches the most efficient AKE protocols
among those found in the literature. Our second scheme additionally
provides forward secrecy, and is also analyzed in the random oracle
model. Our final protocol provides the same strong security guarantees,
but is proven secure in the standard model. This scheme is only slightly
less efficient (from a computational perspective) than the previous ones.
These last two schemes are the first provably-secure one-round protocols
for authenticated 2-party key exchange which provide forward secrecy.

Keywords: Authenticated key exchange, Forward secrecy, Round com-
plexity, Diffie-Hellman key exchange.

1 Introduction

Key-exchange protocols are among the most basic and widely used cryptographic
protocols. Such protocols are used to derive a common session key between two
(or more) parties; this session key may then be used to communicate securely
over an insecure public network. Thus, secure key-exchange protocols serve as
basic building blocks for constructing secure, complex, higher-level protocols.
For this reason, the computational efficiency, communication requirements, and
� Work supported by the Ministry of Information & Communications, Korea, under

the Information Technology Research Center (ITRC) Support Program.
�� Work supported by NSF Trusted Computing Grant #ANI-0310751.

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 220–232, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

One-Round Protocols for Two-Party Authenticated Key Exchange 221

round complexity of key-exchange protocols are very important and have re-
ceived much attention, both in the two-party [16,22,5,17,4,3,6,7,14] and multi-
party (i.e., group) [18,13,26,20,2,12,10,9,21] settings.

This paper concerns protocols for authenticated key exchange (AKE); achiev-
ing such authentication is only possible if some out-of-band initialization phase
is assumed prior to execution of the protocol. One common assumption is that
each communicating party has an associated public-/private-key pair, with the
public key known to all other parties in the network (of course, this includes the
adversary). We assume this model here.

Most protocols for two-party key exchange have been designed and analyzed
assuming that parties alternate sending messages (equivalently, that the parties
communicate over a bidirectional half-duplex channel). However, in many com-
mon applications parties can actually transmit messages simultaneously (i.e.,
they have access to a bidirectional duplex channel). Of course, any protocol de-
signed and proven secure in the former model may be used in the latter; however,
it may be possible to design protocols with improved round complexity by fully
exploiting the communication characteristics of the underlying network, and in
particular the possibility of simultaneous message transmission.

As a simple example, consider the traditional Diffie-Hellman key-exchange
protocol [16] (which does not provide any authentication). Traditionally, this
is presented as a two-round protocol in which Alice first sends ga and Bob
then replies with gb. However, in this particular case Alice and Bob can send
their messages simultaneously, thereby “collapsing” this protocol to a single
round. However, the situation is more complex when authentication is required.
For instance, authenticated Diffie-Hellman typically involves one party signing
messages sent by the other party; this may be viewed as a type of “challenge-
response” mechanism. (For example, the work of Bellare, et al. [3] suggests im-
plementing “authenticated channels” in exactly this way.) When this is done, it
is no longer possible to collapse the protocol to a single round.

Motivated by the above discussion, we explore the possibility of designing
protocols for authenticated key exchange which can be implemented in only
a single round (assuming simultaneous message transmission). Of course, we
will also ensure that our protocols are efficient with respect to other measures,
including communication complexity and computational efficiency.

1.1 Our Work in Relation to Prior Work

Before relating our work to prior works, we briefly recall various notions of se-
curity for key exchange protocols (formal definitions are given below). At the
most basic level, an authenticated key-exchange scheme must provide secrecy of
a generated session key. Yet to completely define a notion of security, we must
define the class of adversarial behaviors tolerated by the protocol. A protocol
achieving implicit authentication simply ensures secrecy of session keys for an
adversary who passively eavesdrops on protocol executions and may also send
messages of its choice to the various parties. A stronger notion of security (and
the one that is perhaps most often considered in the cryptographic literature) is

222 I.R. Jeong, J. Katz, and D.H. Lee

key independence, which means that session keys are computationally indepen-
dent from each other. A bit more formally, key independence protects against
“Denning-Sacco” attacks [15] involving compromise of multiple session keys (for
sessions other than the one whose secrecy must be guaranteed). Lastly, protocols
achieving forward secrecy maintain secrecy of session keys even when an adver-
sary is able to obtain long-term secret keys of principals who have previously
generated a common session key (in an honest execution of the protocol, without
any interference by the adversary).

The original two-party key-exchange scheme of Diffie and Hellman [16] is
secure against passive eavesdroppers, but not against active attacks; indeed,
that protocol provides no authentication at all. Several variations of the scheme
have been suggested to provide security against active attacks [22,23,24,7], but
these schemes have either been found to be flawed or have not yet been proven
secure. There are only a few provably secure schemes in the literature which
provide both key independence and forward secrecy. Most such schemes seem to
be “overloaded” so as to provide explicit authentication along with key indepen-
dence and forward secrecy. (For example, the schemes of [1,6,3] use signatures
and/or message authentication codes to authenticate messages in a way that
achieves explicit authentication.) However, in some cases explicit authentication
may be unnecessary, or may be provided anyway by subsequent communication.
Thus, one may wonder whether more efficient protocols (say, with reduced round
complexity) are possible if explicit authentication is not a requirement.

We first propose and analyze a very simple one-round scheme, T S1, which
provides key independence but not forward secrecy (security is based on the com-
putational Diffie-Hellman assumption in the random oracle model). In Table 1
we compare our scheme to a scheme of Boyd and Nieto [9] which achieves the
same level of security in the same number of rounds. (Boyd and Nieto actually
propose a protocol for group AKE, but their protocol can of course be instan-
tiated for the case of two parties.) Our scheme is (slightly) more efficient than
the scheme of Boyd and Nieto and has other advantages as well: our protocol is
simpler and is also symmetric with respect to the two parties.

Table 1. Comparison of the Boyd-Nieto scheme [9] to T S1. Efficiency of the Boyd-
Nieto scheme depends on the instantiation of its generic components; the above are
rough estimates assuming the random oracle model and “discrete-log-based” compo-
nents using an order-q subgroup of Z

∗
p.

Boyd-Nieto∗ T S1
Modular exponentiations 2 1

(per party)
Communication 2|p|+ |q| 2|q|

(total)
Security KI KI

Assumptions (varies) CDH in random oracle model

One-Round Protocols for Two-Party Authenticated Key Exchange 223

Table 2. Comparison of key-exchange protocols achieving key independence and for-
ward secrecy. Efficiency of some schemes depends on instantiation details; the above
represent rough estimates assuming “discrete-log-based” instantiations using an order-q
subgroup of Z

∗
p.

[1,6] Auth. DH T S2 T S3
(cf. [3]) (cf. [21])

Modular exponentiations 3 4 4 3 3
(par party)

Rounds 3 3 2 1 1
Communication (total) 2|p|+ 2|q| 4|p| 4|p|+ 2|q| 2|p| 2|p|+ 2|q|

Model R.O. standard standard R.O. standard

We next propose a modification of this scheme, T S2, which provides both
key independence and forward secrecy, yet still requires only a single round of
communication (security is again proved based on the CDH assumption in the
random oracle model). We are not aware of any previous one-round protocol
achieving this level of security. T S2 requires only 3 modular exponentiations
per party and uses neither key confirmation nor digital signatures, and hence
the protocol is more efficient than previous schemes in terms of computation
and communication as well. A drawback of T S2 is that its security is analyzed
only in the random oracle model. For this reason, we propose a third protocol,
T S3, which provides the same level of security in the same number of rounds
but whose security can be analyzed in the standard model based on the stronger,
but still standard, decisional Diffie-Hellman assumption. This protocol is only
slightly less efficient than T S2 (it uses message authentication codes, whose
efficiency is negligible compared to modular exponentiations). We compare both
of these protocols to previous work in Table 2.

1.2 Outline

In Section 2 we define our security model for authenticated key exchange. We
present our two-party authenticated key-exchange protocols in Section 3. Proofs
of security for each of our protocols are deferred to the full version of this paper.

2 Security Model for Authenticated Key Exchange

We use the standard notion of security as defined in [4] and used extensively since
then. We assume that there are N parties, and each party’s identity is denoted
as Pi. Each party Pi holds a pair of private and public keys. We consider a
key-exchange protocol in which two parties want to exchange a session key using
their public keys. Πk

i represents the k-th instance of player Pi. If a key-exchange
protocol terminates, then Πk

i generates a session key skΠk
i
. A session identifier

of an instance, denoted sidΠk
i
, is a string different from those of all other sessions

224 I.R. Jeong, J. Katz, and D.H. Lee

in the system (with high probability). We assume that sidΠk
i

is a concatenation
of all transmitted messages of a session in Πk

i , where the sequence of messages is
determined by the (lexicographic, say) ordering of the owners. Note that ordering
messages by their appearance cannot be used in our setting, because two parties
may send their messages simultaneously.

We denote the identity set of the communicating parties in a session sidΠk
i

by CΠk
i
, where |CΠk

i
| = 2 in our case, and the index set of identities of the

communicating parties in a session sidΠk
i

is denoted by IΠk
i

= {i|Pi ∈ CΠk
i
}.

We say that Πk
i and Π l

j are matching if i and j(�= i) are in IΠk
i

, and sidΠk
i

and
sidΠl

j
are equal. Any protocol should satisfy the following correctness condition:

if two instances are matching, then the session keys computed by those instances
are equal.

To define a notion of security, we define the capabilities of an adversary.
We allow the adversary to potentially control all communication in the network
via access to a set of oracles as defined below. We consider an experiment in
which the adversary asks queries to oracles, and the oracles answer back to the
adversary. Oracle queries model attacks which an adversary may use in the real
system. We consider the following types of queries in this paper.

– A query Initiate(C) models an invocation of a key-exchange protocol in the
real system in which each Pi ∈ C initiates a key exchange protocol with
other entities in C and sends the first message of the protocol.

– A query Send(Πk
i , M) is used to send a message M to instance Πk

i . When Πk
i

receives M , it responds according to the key-exchange protocol. An adversary
may use this query to perform active attacks by modifying and inserting the
messages of the key-exchange protocol. Impersonation attacks and man-in-
the-middle attacks are also possible using this query.

– A query Execute(C) represents passive eavesdropping of the adversary on an
execution of the protocol by the parties in C. Namely, the parties specified in
C execute the protocol without any interference from the adversary, and the
adversary is given the resulting transcript of the execution. (Although the
output of an Execute query can be simulated via repeated Initiate and Send
oracle queries, this particular query is needed to define forward secrecy.)

– A query Reveal(Πk
i) models known key attacks (or Denning-Sacco attacks)

in the real system. The adversary is given the session key for the specified
instance.

– A query Corrupt(Pi) models exposure of the long-term key held by player
Pi. The adversary is assumed to be able to obtain long-term keys of players,
but cannot control the behavior of these players directly (of course, once the
adversary has asked a query Corrupt(Pi), the adversary may impersonate Pi

in subsequent Send queries.)
– A query Test(Πk

i) is used to define the advantage of an adversary. When
an adversary A asks a test query to an instance Πk

i , a coin b is flipped. If
b is 1, then the session key skΠk

i
is returned. Otherwise, a random string is

One-Round Protocols for Two-Party Authenticated Key Exchange 225

returned. The adversary is allowed to make a single Test query, at any time
during the experiment.

At the end of the experiment, the adversary A outputs a bit b′. The advantage
of A, denoted AdvA(·), is defined as |2 · Pr[b′ = b]− 1|.

To define a meaningful notion of security, we must first define freshness.

Definition 1. An instance Πk
i is fresh if both the following conditions are true

at the conclusion of the experiment described above:

(a) For all Pj ∈ CΠk
i
, the adversary has not queried Corrupt(Pj).

(b) The adversary has not queried Reveal(Πk
i), nor has it queried Reveal(Π�

j)
where Π�

j and Πk
i are matching.

In all cases described below, the adversary is only allowed to ask its Test query
to a fresh instance. Generically speaking, a protocol is called “secure” if the
advantage of any ppt adversary is negligible. The following notions of security
may then be considered, depending on the types of queries the adversary is
allowed to ask:

(1) IA (Implicit Authentication): An adversary A can ask neither Reveal nor
Corrupt queries.

(2) KI (Key Independence): An adversary A can ask Reveal queries, but can not
ask Corrupt queries.

(3) FS (Forward Secrecy): An adversary A can ask corrupt queries, but can not
ask reveal queries. The freshness condition (a) in this case is changed as
follows: either the adversary did not query Corrupt(Pj) for any Pj ∈ CΠk

i
, or

the adversary did not query Send(Pj , �) for any Pj ∈ CΠk
i

(and thus must
have instead queried Execute(CΠk

i
)).

Of course, the strongest notion of security requires both key independence and
forward secrecy.

If a key exchange scheme satisfies (1), it is called a IA-secure key exchange
scheme. If a key exchange scheme satisfies (2), it is called a KI-secure key ex-
change scheme. If a key exchange scheme satisfies (3), it is called a FS-secure
key exchange scheme. If a key exchange scheme satisfies both (2) and (3), it is
called a KI&FS-secure key exchange scheme.

For an adversary A attacking a scheme in the sense of XX (where XX is
one of IA, KI, FS, or KI&FS), we denote the advantage of this adversary (as
a function of k) by AdvXX

A (k). For a particular protocol P , we may define its
security via:

AdvXX
P (k, t) = max

A
{AdvXX

A (k)},

where the maximum is taken over all adversaries running in time t. A scheme P
is said to be XX-secure if AdvXX

P (k, t) is negligible (in k) for any t = poly(k).

226 I.R. Jeong, J. Katz, and D.H. Lee

C = {P1, P2}; I = {1, 2}
P1(x1) P2(x2)

Round 1 r1 r2

sid = r1||r2

sk = H(sid||gx1x2)

Fig. 1. An example of an execution of T S1

3 One-Round Protocols for Authenticated Key Exchange

We assume that parties can be ordered by their names (e.g., lexicographically)
and write Pi < Pj to denote this ordering. Let k be a security parameter, and
let G be a group of prime order q (where |q| = k) with generator g. Let H be
a hash function such that H : {0, 1}∗ → Zq. We assume that each party Pi has
a public-/private-key pair (yi = gxi , xi) which is known to all other parties in
the network (alternately, these keys may be certified by a central CA). Recall
that the standard definition of security (discussed above) does not include the
possibility of “malicious insiders”; thus, in particular, we assume that all public-
/secret-keys are honestly generated.

We now present our first protocol T S1:

T S1

Setup: Assume Pi wants to establish a session key with Pj �= Pi, and
Pi < Pj . Let (yi, xi) (respectively, (yj , xj)) denote the public-/private-
keys of player Pi (respectively, Pj).

Round 1: Pi selects a random number ri ∈R {0, 1}k and transmits it
(and Pj acts analogously).

Computation of session key: Pi forms a session identifier by concate-
nating the messages according to the ordering of Pi, Pj . That is, sidΠi =
sidΠj

= ri||rj . Party Pi computes the session key skΠi
= H(sidΠi

||yxi
j)

(and Pj acts analogously).

An example of an execution of T S1 is shown in Fig. 1. In the example we
assume that P1 < P2. The following theorem states the security achieved by this
protocol.

Theorem 1. Under the CDH assumption, T S1 is a KI-secure key-exchange
protocol when H is modeled as a random oracle. Concretely,

AdvKI
T S1(k, t, qre, qH) � 2 · qH ·N2 · AdvCDH(k, t) +

4q2
s

2k
,

One-Round Protocols for Two-Party Authenticated Key Exchange 227

where t is the maximum total experiment time including the adversary’s exe-
cution time, and the adversary makes qre Reveal queries and qH hash queries.
Here, N is an upper bound on the number of parties, and qs is an upper bound
on the number of the sessions an adversary initiates.

The proof of this theorem appears in the full version of this paper [19].
It is easy to see that T S1 does not provide forward secrecy. To provide

forward secrecy, we add an ephemeral Diffie-Hellman exchange to T S1. The
resulting protocol, T S2, is given below:

T S2

Setup : Same as in T S1.

Round 1 : Pi selects a random number αi ∈R Zq and sends Bi = gαi to
the other party. (Party Pj acts analogously.)

Computation of session key : Pi forms a session identifier by concate-
nating the messages according to the ordering of Pi, Pj . That is, sidΠi

=
sidΠj

= Bi||Bj . Pi computes the session key skΠi
= H(sidΠi

||Bαi
j ||y

xi
j).

(Party Pj acts analogously.)

An example of an execution of T S2 is shown in Fig. 2. In the example we assume
that P1 < P2.

C = {P1, P2}; I = {1, 2}
P1(x1) P2(x2)

Round 1 gα1 gα2

sid = gα1 ||gα2

sk = H(sid||gα1α2 ||gx1x2)

Fig. 2. An example of an execution of T S2

The following characterizes the security of T S2.

Theorem 2. Under the CDH assumption, T S2 is a KI&FS-secure key-exchange
protocol when H is modeled as a random oracle. Concretely,

AdvKI&FS
T S2 (k, t, qre, qco, qH) � 2 · qH · (N2 + qs) · AdvCDH(k, t) +

4q2
s

q
,

where t is the maximum total experiment time including an adversary’s execution
time, and an adversary makes qre Reveal queries, qco Corrupt queries, and qH hash
queries. N is an upper bound of the number of parties, and qs is the upper bound
on the number of the sessions an adversary initiates.

228 I.R. Jeong, J. Katz, and D.H. Lee

The proof of this theorem appears in the full version of this paper [19].
The security of T S2 (and T S1, for that matter) is proven in the random

oracle model. Next, we present protocol T S3 which may be proven secure in the
standard model (under the stronger DDH assumption):

T S3

Setup: Same as in T S1.

Round 1: Pi computes ki,j = kj,i = yxi
j which it will use as a key for

a secure message authentication code. (Of course, ki,j may need to be
hashed before being used; we ignore this technicality here.) Next, Pi

chooses a random number αi ∈R Zq, computes τi ← MACki,j
(Pi||Pj ||gαi),

and sends Bi = gαi ||τi to the other party. (Party Pj acts analogously.)

Computation of session key: Pi verifies the MAC of the received mes-
sage. If verification fails, no session key is computed. Otherwise, Pi com-
putes a session key skΠi = (gαj)αi . The session identifier, computed by
concatenating the messages, is sidΠi

= Bi||Bj . (Party Pj acts analo-
gously.)

An example of an execution of T S3 is shown in Fig. 3. In the example we assume
that P1 < P2.

C = {P1, P2}; I = {1, 2}
P1(x1) P2(x2)

Round 1 gα1 ||τ1 gα2 ||τ2

k1,2 ← gx1x2

τ1 ← MACk1,2(P1||P2||gα1); τ2 ← MACk1,2(P2||P1||gα2)
sid = gα1 ||τ1||gα2 ||τ2

sk = gα1α2

Fig. 3. An example of an execution of T S3

The following characterizes the security of T S3.

Theorem 3. Let M be an unforgeable MAC scheme. Then T S3 is a KI&FS-
secure key exchange scheme under the DDH assumption. Concretely,

AdvKI&FS
T S3 (k, t, qre, qco) � (qs + 2 ·N2 + 2 · q2

s) · AdvDDH(k, t)

+ N2 · AdvSUF
M (k, t, 2 · qs) +

4q2
s

q
,

One-Round Protocols for Two-Party Authenticated Key Exchange 229

where t is the maximum total experiment time including an adversary’s execution
time, and an adversary makes qre Reveal queries and qco Corrupt queries. N is an
upper bound on the number of parties, and qs is an upper bound of the number
of the sessions an adversary initiates.

The proof of this theorem appears in the full version of this paper [19]. We
note that the concrete security bound given here can be improved using random
self-reducibility of the DDH problem.

A variant. In the above description of T S3, each party computes a key ki,j

which it then uses to authenticate its message using a message authentication
code. It is also possible to have each party Pi sign its messages using, for example,
its public key yi as part of a Schnorr signature scheme. In this case, the party
should sign (Pi, Pj , g

αi) (in particular, it should sign the recipient’s identity as
well) to ensure that the signed message will be accepted only by the intended
partner. The proof of security for this modified version is completely analogous
to (and, in fact, slightly easier than) the proof of T S3.

References

1. R. Ankney, D. Johnson, and M. Matyas. The Unified Model. Contribution to
ANSI X9F1, October 1995.

2. G. Ateniese, M. Steiner, and G. Tsudik. New Multi-Party Authentication Services
and Key Agreement Protocols. IEEE Journal of Selected Areas in Communica-
tions, volume 18, No. 4, pages 628–639, 2000.

3. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. Proc. 30th Annual
Symposium on the Theory of Computing, pages 419–428, ACM, 1998.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Ad-
vances in Cryptology-CRYPTO 1993, volume 773 of Lecture Notes in Computer
Science, pages 232–249, Springer Verlag, 1993.

5. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic Design of Two-Party Authentication Protocols. IEEE Journal on Se-
lected Areas in Communications 11(5): 679–693 (1993).

6. S. Blake-Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and
their Security Analysis. Sixth IMA International Conference on Cryptography
and Coding, volume 1335, pages 30–45, ACM, 1997.

7. S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman Key Agreement
Protocols. Selected Areas in Cryptography, volume 1556 of Lecture Notes in Com-
puter Science, pages 339–361, Springer Verlag, 1998.

8. C. Boyd. On Key Agreement and Conference Key Agreement. ACISP 1997, vol-
ume 1270 of Lecture Notes in Computer Science, page 294–302, Springer Verlag,
1997.

9. C. Boyd and J.M.G. Nieto. Round-Optimal Contributory Conference Key Agree-
ment. Public Key Cryptography, volume 2567 of Lecture Notes in Computer Sci-
ence, pages 161–174, Springer Verlag, 2003.

10. E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange — The Dynamic Case. Advances in Cryptology-
ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
290–309, Springer Verlag, 2001.

230 I.R. Jeong, J. Katz, and D.H. Lee

11. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-
Hellman Key Exchange under Standard Assumptions. Advances in Cryptology-
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
321–336, Springer Verlag, 2002.

12. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Au-
thenticated Group Diffie-Hellman Key Exchange. ACM Conference on Computer
and Communications Security, pages 255–264, 2001.

13. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribu-
tion System. Advances in Cryptology-EUROCRYPT 1994, volume 950 of Lecture
Notes in Computer Science, pages 275–286, Springer Verlag, 1994.

14. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. Advances in Cryptology-Eurocrypt 2002, volume 2332 of
Lecture Notes in Computer Science, pages 337–351, Springer Verlag, 2002.

15. D. Denning and G. M. Sacco. Timestamps in Key Distribution Protocols. Comm.
ACM 24(8): 533–536, 1981.

16. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, volume 22, Issue 6, pages 644–654, 1976.

17. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated
Key Exchanges. Designs, Codes, and Cryptography 2(2): 107–125 (1992).

18. I. Ingemarasson, D.T. Tang, and C.K. Wong. A Conference Key Distribution
System. IEEE Transactions on Information Theory, volume 28, Issue. 5, pages
714–720 , 1982.

19. I.R. Jeong, J. Katz, and D.H. Lee. Full version of this paper. Available at
http://cist.korea.ac.kr/e cist/e index.htm.

20. M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement. ASI-
ACRYPT 1996, volume 1163 of Lecture Notes in Computer Science, page 36–49,
Springer Verlag, 1996.

21. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
Advances in Cryptology — CRYPTO 2003.

22. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An Efficient Protocol
for Authenticated Key Agreement. Technical report CORR 98-05, University of
Waterloo, 1988.

23. T. Matsumoto, Y. Takashima, and H. Imai. On Seeking Smart Public-Key Dis-
tribution Systems. The Transactions of the IECE of Japan, E69, pages 99–106,
1986.

24. National Security Agency. SKIPJACK and KEA algorithm specification. Version
2.0, May 29, 1998.

25. V. Shoup. On Formal Models for Secure Key Exchange. Available at
http://eprint.iacr.org.

26. M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman Key Distribution Ex-
tended to Group Communication. ACM Conference on Computer and Commu-
nications Security, page 31–37, 1996.

27. W.-G. Tzeng. A Practical and Secure-Fault-Tolerant Conference-Key Agreement
Protocol. Public Key Cryptography 2000, volume 1751 of Lecture Notes in Com-
puter Science, page 1–13, Springer Verlag, 2000.

One-Round Protocols for Two-Party Authenticated Key Exchange 231

A Primitives

A.1 Computational Diffie-Hellman Problem

Let GG be a group generator which generates a group G whose prime order is
q and a generator g. Let k ∈ N be a security parameter. Consider the following
experiment:

ExpCDH
ACDH

(k)
(G, q, g)← GG(k)
u1, u2 ∈R [1, q − 1]
U1 ← gu1 ; U2 ← gu2

W ← ACDH(U1, U2)
if W = gu1u2 return 1
else return 0

The advantage of an adversary ACDH(k) is defined as follows:

AdvCDH
ACDH

(k) = Pr[ExpCDH
ACDH

(k) = 1]

The advantage function is defined as follows:

AdvCDH(k, t) = max
A {AdvCDH

ACDH
(k)},

where ACDH is any adversary with time complexity t. The CDH assumption is
that the advantage of any adversary ACDH with time complexity polynomial in
k is negligible.

For simplicity we consider a subgroup G, whose prime order is q and a gen-
erator is g, of a cyclic group Z∗

p where p is a prime.

A.2 Decisional Diffie-Hellman Problem

Let GG be a group generator which generates a group G whose prime order is
q and a generator g. Let k ∈ N be a security parameter. Consider the following
experiment:

ExpDDH
ADDH

(k)
(G, q, g)← GG(k)
u1, u2, w ∈R [1, q]
U1 ← gu1 ; U2 ← gu2

d
R← {0, 1}

if d = 1 then W ← gu1u2

else W ← gw

d′ ← ADDH(U1, U2, W)

The advantage of an adversary ADDH(k) is defined as follows:

AdvDDH
ADDH

(k) = 2 · Pr[d = d′]− 1.

232 I.R. Jeong, J. Katz, and D.H. Lee

The advantage function is defined as follows:

AdvDDH(k, t) = max
A {AdvDDH

ADDH
(k)},

where ADDH is any adversary with time complexity t. We assume that the advan-
tage of any adversary ADDH with time complexity polynomial in k is negligible.

For simplicity we consider a subgroup G, whose prime order is q and a gen-
erator is g, of a cyclic group Z∗

p where p is a prime.

A.3 Strong Unforgeability (SUF) of MAC

A MAC scheme consists of M = (M.key,MAC, Vrfy). M.key generates a MAC
key for the users. MAC computes a MAC for the message using the MAC key.
Vrfy verifies the message-MAC pair with the MAC key and returns 1 if valid or
0 otherwise.

Let k ∈ N be a security parameter. Let M be a MAC scheme. Consider the
following experiment:

ExpSUF
M,A(k)

sk ←M.key(1k)
(M, τ)← AMACsk(·)(1k)
if Vrfysk(M, τ) = 1 and oracle MACsk(·)

never returned τ on input M then return 1
else return 0

The advantage of an adversary ASUF(k) is defined as follows:

AdvSUF
M,A(k) = Pr[ExpSUF

M,ASUF
(k) = 1]

The advantage function of the scheme is defined as follows:

AdvSUF
M (k, t, qg) = max

A {AdvSUF
M,A(k)},

where ASUF is any adversary with time complexity t and making at most qg

MAC queries. The scheme M is SUF secure if the advantage of any adversary
ASUF with time complexity polynomial in k is negligible.

	Introduction
	Our Work in Relation to Prior Work
	Outline

	Security Model for Authenticated Key Exchange
	One-Round Protocols for Authenticated Key Exchange
	Primitives
	Computational Diffie-Hellman Problem
	Decisional Diffie-Hellman Problem
	Strong Unforgeability (SUF) of MAC

