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Abstract. This paper investigates the feasibility of designing password-
authenticated key exchange protocols using quadratic residues. To date,
most of the published protocols for password-authenticated key exchange
were based on the Diffie-Hellman key exchange. It appears inappropri-
ate to design password-authenticated key exchange protocols using other
public-key cryptographic techniques. In this paper, we show that proto-
cols for password-authenticated key exchange can be constructed using
quadratic residues and we present the first protocol of this type. Under
the factoring assumption and the random oracle model, we show that
our protocol is provably secure against off-line dictionary attacks. We
also discuss the use of cache technique to improve the efficiency of our
protocol.

1 Introduction

Password-authenticated key exchange protocols allow two entities who only share
a human-memorable password to authenticate each other and agree on a large
session key between them. Such protocols are attractive for their simplicity and
convenience and have received much interest in the research community. A ma-
jor challenge in designing password-authenticated key exchange protocols is to
deal with the so-called exhaustive guessing or off-line dictionary attacks [22], as
passwords are generally drawn from a small space enumerable, off-line, by an ad-
versary. In 1992, Bellovin and Merritt [2] presented a family of protocols, known
as Encrypted Key exchange (EKE), which was shown to be secure against off-
line dictionary attacks. Using a combination of symmetric and asymmetric (i.e.
public-key) cryptographic techniques, EKE provides insufficient information for
an adversary to verify a guessed password and thus defeats off-line dictionary at-
tacks. Following EKE, a number of protocols for password-based authentication
and key exchange have been proposed, e.g., [3-5,8-9,12,14-18,21]. A comprehen-
sive list of such protocols can be found in Jablon’s research link [13].

Unlike other public-key based key exchange protocols such as SSL, the EKE-
like protocols do not rely on the existence of a public key infrastructure (PKI).
This is appealing in many environments where the deployment of a public key
infrastructure is either not possible or would be overly complex. Over the last
decade, many researchers have investigated the feasibility of implementing EKE
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using different types of public-key cryptosystems, e.g., RSA, ElGamel, and Diffie-
Hellman key exchange. Nonetheless, most of the well-known and secure variants
of EKE are based on Diffie-Hellman key exchange. It seems that EKE works
well with Diffie-Hellman key exchange, but presents subtleties one way or the
other when implemented with RSA and other public-key cryptographic systems.
In their original paper [2], Bellovin and Merritt pointed out that the RSA-based
EKE variant is subject to a special type of dictionary attack, called e-residue
attack. In 1997, Lucks [17] proposed an RSA-based password-authenticated key
exchange protocol (called OKE) which was claimed to be secure against the
e-residue attack. Later, Mackenzie et al [18] found that the OKE protocol is
still subject to the e-residue attack. In [18], Mackenzie et al proposed an RSA-
based EKE variant (called SNAPI) and provided a formal security proof in the
random oracle model. Although the SNAPI protocol only allows using a public
exponent e which is larger than the RSA modulus n, it is interesting to see that
secure password-authenticated key exchange protocols can be constructed based
on a diverse of public-key cryptosystems.

In this paper, we investigate the feasibility of designing password authen-
ticated key exchange protocols using quadratic residues. A nice feature of this
type of protocols is that the overhead for the protocol setup is minimal, since
entities only need to share a password in advance; they do not need to estab-
lish other common parameters such as a prime number p and a generator g
of the cyclic group modulo p. Based on number-theoretic techniques, we show
that password-authenticated key exchange protocols can be constructed using
quadratic residues and we present the first protocol of this type. Our proto-
col, called QR-EKE, involves two entities (say, Alice and Bob) who share a
short password and one of the entity (say, Alice) also possess a Blum integer
n = pq, where p and q are distinct prime numbers each congruent to 3 modulo
4. Using quadratic residues of n, both entities perform authentication and key
establishment without leaking useful information about the password. We show
that our protocol QR-EKE is secure against the residue attacks as described in
[2]. We also provide a formal security analysis of QR-EKE under the factoring
assumption and the random oracle model.

To reduce the computational load on communication entities (i.e., Alice and
Bob), we present a variant of QR-EKE, called QRc-EKE. In the protocol QRc-
EKE, one of the entity, say Bob, caches a hashed value of the public parameter
n used by Alice in previous sessions. In a new session, Bob checks if the same
parameter n is used by Alice. If yes, Bob only needs to compute two quadratic
residues in the current run of the protocol QRc-EKE. If else, Bob executes
exactly as in the protocol QR-EKE and at the end of a successful protocol run,
Bob updates the cache using the new public parameter. When Alice uses the
same parameter n in multiple sessions, the computational load on Bob will be
greatly reduced.

The rest of the paper is organized as follows. In Section 2, we review basic
concepts of number theory used throughout this paper. We provide an overview
of the security model for password-authenticated key exchange in Section 3. We
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present the protocol QR-EKE In Section 4 and investigate its security against
residue attacks. In Section 5, we improve the efficiency of QR-EKE using cache
technique. In Section 6, we prove the security of QR-EKE under the factoring
assumption and the random oracle model.

2 Preliminaries

Let {0, 1}n denote the set of binary strings of length n and {0, 1}∗ denote the
set of binary strings of finite length. Without confusion, we sometimes use s1, s2
to denote the concatenation of two strings s1 and s2. A real-valued function ε(k)
of non-negative integers is called negligible (in k) if for every c > 0, there exists
k0 > 0 such that ε(k) ≤ 1/kc for all k > k0.

For every positive integer n, n > 1, it is well know that n can be expressed
as a product of nontrivial powers of distinct primes, i.e., n = pa1

1 pa2
2 . . . par

r ,
where p1, p2, . . . , pr are primes and a1, a2, . . . , ar are positive integers. Up to a
rearrangement of the prime powers, this prime-power factorization is unique.
Let Zn denote the set of non-negative integers less than n and let Z

∗
n denote the

set consisting of integers in Zn that are relatively prime to n. The number of
integers in Z

∗
n is equal to the Euler phi-function φ(n).

Let a, b, and n be integers such that n > 0 and gcd(a, n) = c. If c � b, the
congruence ax ≡ b (mod n) has no solutions. If c | b, then ax ≡ b (mod n) has
exactly c incongruent solutions modulo n. Let x0 denote one of the solutions,
then the c incongruent solutions are given by

x = x0 + j(n/c), j = 0, 1, . . . , c− 1. (1)

Let g and n be positive integers relatively prime to each other. The least
positive integer i such that gi ≡ 1 (mod n) is called the order of g modulo n.
If the order of g is equal to φ(n), then g is called a primitive root of n. It is
known (see [1,20]) that a positive integer n, n > 1, possesses a primitive root
if and only if n = 2, 4, pt or 2pt, where p is an odd prime and t is a positive
integer. When the positive integer n has a primitive root g, then the integers
g0, g1, g2, . . . , gφ(n)−1 form a cyclic group under the modulo n multiplication.
Due to this fact, we see that if a is a positive integer relatively prime to n, then
there exists a unique integer i, 0 ≤ i ≤ φ(n) − 1, such that a = gi mod n. The
integer i is called the index of a to the base g modulo n, and is denoted by indga.
With this notation, we have a = gindga mod n.

If n and e are positive integers and a is an integer relatively prime to n, then
we say that a is a e-th power residue of n if the congruence xe ≡ a (mod n) has
a solution. If a is a second power residue of n, it is also called a quadratic residue
of n. If a is not a quadratic residue of n, it is called a quadratic non-residue
of n. We use Qn to denote the set of all quadratic residues of n. The set of all
quadratic non-residue of n is denoted by Q̄n. Let p be an odd prime and a be an
integer not divisible by p. The Legendre symbol

(
a
p

)
is defined to be 1 if a ∈ Qp;

and -1 if a ∈ Q̄p.
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3 Security Model

We consider two-party protocols for authenticated key-exchange using human-
memorable passwords. In its simplest form, such a protocol involves two entities,
say Alice and Bob (denoted by A and B), both possessing a secret password
drawn from a small password space D. Based on the password, Alice and Bob
can authenticate each other and upon a successful authentication, establish a
session key which is known to nobody but the two of them. There is present
an active adversary, denoted by A, who intends to defeat the goal for the pro-
tocol. The adversary has full control of the communications between Alice and
Bob. She can deliver messages out of order and to unintended recipients, con-
coct messages of her own choosing, and create multiple instances of entities and
communicate with these instances in parallel sessions. She can also enumerate,
off-line, all the passwords in the password space D. She can even acquire session
keys of accepted entity instances. Our formal model of security for password-
authenticated key exchange protocols is based on that of [5]. In the following,
we review the operations of the adversary and formulate the definition of secu-
rity. For details as well as motivations behind the model, please refer to [5].

Initialization. Let I denote the identities of the protocol participants. Ele-
ments of I will often be denoted A or B (Alice and Bob). We emphasis that
A and B are variables ranging over I and not fixed members of I. Each pair
of entities, A, B ∈ I, are assigned a password w which is randomly selected
from the password space D. The initialization process may also specify a set of
cryptographic function (e.g., hash functions) and sets a number of cryptographic
parameters.

Running the Protocol. Mathematically, a protocol Π is a probabilistic
polynomial-time algorithms which determines how entities behave in response
to received input. For each entity, there may be multiple instances running the
protocol in parallel. We denote the i-th instance of entity A as Πi

A. The adver-
sary A can make queries to any instance; she has an endless supply of Πi

A oracles
(A ∈ I and i ∈ N). In response to each query, an instance updates its internal
state and gives its output to the adversary. At any point in time, the instance
may accept and possesses a session key sk, a session id sid, and a partner id pid.
The query types, as defined in [5], include:

- Send(A, i, M): This sends message M to instance Πi
A. The instance executes

as specified by the protocol and sends back its response to the adversary.
Should the instance accept, this fact, as well as the session id and partner
id will be made visible to the adversary.

- Execute(A, i, B, j): This call carries out an honest execution between two
instances Πi

A and Πj
B , where A, B ∈ I, A �= B and instances Πi

A and Πj
B

were not used before. At the end of the execution, a transcript is given to the
adversary, which logs everything an adversary could see during the execution
(for details, see [5]).

- Reveal(A, i): The session key ski
A of Πi

A is given to the adversary.
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- Test(A, i): The instance Πi
A generates a random bit b and outputs its session

key ski
A to the adversary if b = 1, or else a random session key if b = 0. This

query is allowed only once, at any time during the adversary’s execution.
- Oracle(M): This gives the adversary oracle access to a function h, which is

selected at random from some probability space Ω . The choice of Ω deter-
mines whether we are working in the standard model, or in the random-oracle
model (see [5] for further explanations).

In additional to the above query types, we introduce another query type:

- Impersonate(A, i, π, paras): This replaces the password and the parameters
of the instance Πi

A by π and paras, respectively, where Πi
A was not used

before. After this query, the internal state of Πi
A is visible to the adversary.

Each query of this type is also called an impersonation attempt.

We use the Impersonate type to model an impersonation attack, which allows
the adversary to test a guessed password on-line. In an impersonation attack,
the adversary picks a password π as her guess and then impersonates as an
instance Πi

A to start the protocol towards another instance Πj
B . By observing the

decision of Πj
B (i.e., accepts or rejects), the adversary can test the correctness of

the guessed password π. Furthermore, by analyzing, off-line, the transcript of the
execution, the adversary may be able to test passwords other than π. For a secure
protocol, we expect that the adversary can only test a single password in each
impersonation attempt. Certainly, the impersonation attack can be implemented
by solely using the Send query type. The number of Send queries called by the
adversary, however, may vary with different protocols. Using the Impersonate
type, we can explicitly defines the number of impersonation attempts performed
by the adversary. We assume that the adversary always use an impersonated
instance to launch an impersonation attack.

Definition. Let Πi
A and Πi

B , A �= B, be a pair of instances. We say that Πi
A

and Πi
B are partnered if both instances have accepted and hold the same session

id sid and the same session key sk. Here, we define the sid of Πi
A (or Πi

B) as
the concatenation of all the messages sent and received by Πi

A (or Πi
B). We

say that Πi
A is fresh if: i) it has accepted; ii) it is not impersonated; and iii)

a Reveal query has not been called either on Πi
A or on its partner. With these

definitions, we now define the advantage of the adversary A in attacking the
protocol. Let Succ denote the event that A asks a single Test query on a fresh
instance, outputs a bit b′, and b′ = b, where b is the bit selected during the Test
query. The advantage of the adversary A is defined as Advake

A = 2Pr(Succ)− 1.

Definition 1. A protocol Π is called a secure password-authenticated key ex-
change protocol if for every polynomial-time Adversary A that makes at most v
impersonation attempts, the following two conditions are satisfied:

1) Except with negligible probability, each oracle call Execute(A, i, B, j) produces
a pair of partnered instances Πi

A and Πj
B.

2) Advake
A ≤ v/|D|+ ε, where |D| denotes the size of the password space and ε

is a negligible function.
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4 The Protocol

In this section, we present a new password-authenticated key exchange protocol
called QR-EKE. In the protocol QR-EKE, there are two entities, Alice and
Bob, who share a password w drawn at random from the password space D and
Alice also possess a Blum integer n = pq, where p and q are primes of (about)
the same size and p ≡ q ≡ 3 (mod 4). Let A and B denote the identities of Alice
and Bob, respectively. Before describing the protocol, let’s review some of the
facts about quadratic residues of Blum integers.

Let n be the product of two distinct primes p and q, p ≡ q ≡ 3 (mod 4).
Then for every quadratic residue a of n, i.e., a ∈ Qn, the congruence x2 ≡ a
(mod n) has four solutions x1, x2, x3, x4 in Z

∗
n. For any integer γ ∈ Z

∗
n, there is

a unique square root xi, 1 ≤ i ≤ 4, such that xiγ is also a quadratic residue of n,
that is, (xi

p ) = (γ
p ) and (xi

q ) = (γ
q ). Moreover, the function f : Qn → Qn defined

by f(x) = x2 mod n is a permutation. The inverse function of f is:

f−1(y) = y((p−1)(q−1)+4)/8 mod n. (2)

It is clear that for every positive integer t, the function ft : Qn → Qn defined by

ft(x) = x2t

mod n (3)

is also a permutation. For z ∈ Qn, we can certainly compute the inverse f−1
t (z)

by applying f−1 to z for t times. In fact, there is a more efficient algorithm (see
[19]) for f−1

t (z).
Define hash functions H1, H2, H3 : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → Zn,

where k is a security parameter, e.g., k = 160. Note that H can be implemented
using a standard hash function h : {0, 1}∗ → {0, 1}l, where l is the length of n,
i.e., l = �log2 n�. On input x, H(x) = h(x), if h(x) < n, and H(x) = h(x)−�n/2�
if else. Assume that h is a random function, then for any integer z ∈ Zn, it can
be proved that |Pr(H(x) = z)− 1

n | < 2−l; the bias is negligible. We will assume
that H1, H2, H3 and H are independent random functions.

The protocol QR-EKE is described in Fig. 1. Alice starts the protocol by
sending her public parameter n and a random number rA ∈R {0, 1}k to Bob. Bob
then verifies if n is an odd integer. If n is not odd, Bob rejects; otherwise, Bob
computers an integer t = �log2 n	 and selects a random number rB ∈R {0, 1}k.
Bob also selects a quadratic residue α at random from Qn. To do this, Bob
may select a random number from Z

∗
n and raise it to the power of 2. Bob then

computes γ = H(w, rA, rB , A, B, n) and checks if gcd(γ, n) = 1. If yes, Bob
assigns γ to the variable λ; otherwise, Bob assigns a random number of Z

∗
n

to λ. Next, Bob computes z = (λα2)2
t

mod n and sends z and rB to Alice.
Subsequently, Alice computes γ using her password w and checks if γ and n
are relatively prime. If gcd(γ, n) �= 1, Alice assigns a random number of Zn to
the variable β. If gcd(γ, n) = 1 and z is a quadratic residue, Alice sets β =
(σγ−1)((p−1)(q−1)+4)/8 mod n, where σ is a square root of f−1

t−1(z) such that σγ
is a quadratic residue of n. Next, Alice and Bob authenticate each other using
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α and β and generate the session key sk upon a successful authentication. In
the protocol QR-EKE, both Alice and Bob intend to reject when they detect
that gcd(γ, n) �= 1. To avoid leaking any information about this event, Alice and
Bob use random numbers to compute their responses µ, z, and η. When p and
q are large primes of about the same size, the probability of such an event is
negligible.

Alice (A) Bob (B)
password: w password: w

n = pq, p ≡ q ≡ 3 (mod 4)

rA ∈R {0, 1}k
rA, n, A �

Reject if n is even
t = �log2 n�

α ∈R Qn, rB ∈R {0, 1}k

γ = H(w, rA, rB , A, B, n)
If gcd(γ, n) = 1, λ = γ

else λ ∈R Z
∗
n

z = (λα2)2
t

mod nrB , z�
γ = H(w, rA, rB , A, B, n)
If gcd(γ, n) > 1, β ∈R Zn

Else
σ = (f−1

t−1(z))
1
2 , σγ ∈ Qn

c = ((p − 1)(q − 1) + 4)/8
β = (σγ−1)c mod n

µ = H1(β, rA, rB , A, B, n)
µ �

µ
?= H1(α, rA, rB , A, B, n)

Reject if not, else
η = H2(α, rA, rB , A, B, n)

sk = H3(α, rA, rB , A, B, n)
η�

η
?= H2(β, rA, rB , A, B, n)

Reject if not, else
sk = H3(β, rA, rB , A, B, n)

Fig. 1. The Protocol QR-EKE

Theorem 1. Let n be the product of two distinct primes p and q, p ≡ q ≡ 3
(mod 4). Then for any integers z ∈ Qn, γ ∈ Z

∗
n, and t > 1, the congruence

(γx2)2
t ≡ z (mod n) has a unique solution in Qn, which is given by

β = (σγ−1)((p−1)(q−1)+4)/8 mod n,

where σ is a square root of f−1
t−1(z) such that σγ ∈ Qn.
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Proof. Let z be a quadratic residue of n and t be a positive integer greater than
1. Since the function ft−1 : Qn → Qn as defined by ft−1(x) = (x)2

t−1
mod n is a

permutation, there is a unique integer v ∈ Qn such that z = (v)2
t−1

mod n, i.e.,
v = f−1

t−1(z). For any integer γ ∈ Z
∗
n, there is a unique square root of v, denoted

σ, such that σγ is a quadratic residues of n, or equivalently σγ−1 = σγ ·γ−2 is a
quadratic residue of n. By (2), σγ−1 has a unique square root in Qn. Thus, the
congruence (γx2)2

t ≡ z (mod n) has a unique solution in Qn, which is given by
β. �

Theorem 1 implies that when γ = H(w, rA, rB , A, B, n) is relatively prime to
n, Alice and Bob agree on a secret number β = α and can thus use the secret
number to authenticate each other and establish a shared session key. Note that
in the protocol QR-EKE, Bob only verifies that the integer n received from
Alice is an odd number; he does not verify that n is the product of two distinct
primes p and q and p ≡ q ≡ 3 (mod 4). This may foster the so-called residue
attack as described in [2]. In such an attack, an adversary, say, Eva, selects a
password π0 at random from D and an odd integer n which may not necessarily
be a Blum integer. Then Eva impersonates as Alice and starts the protocol by
sending rE , n, A to Bob. After receiving rB and z from Bob, Eva Computes µ
and sends it back to Bob. If Bob accepts, then Eva has a successful guess of
Alice’s password. If Bob rejects, on the other hand, Eva excludes her guess (i.e.,
π0) from the password space D. Furthermore, Eva may exclude more passwords
by repeating, off-line, the following three steps:

1) Eva selects a password π from D.
2) Eva computes γ = H(π, rE , rB , A, B, n).
3) Eva tests if gcd(γ, n) = 1. If not, Eva returns to step 1; otherwise, Bob

verifies if the congruence (γx2)2
t ≡ z (mod n) has a solution in Qn. If the

congruence has a solution, Eva returns to step 1. If the congruence has no
solution in Qn, then Eva is ensured that π is not the password of Alice. Next
Eva excludes π from D and returns to step 1.

We say that Eva succeeds if she can exclude more than one password in each
residue attack as described above. In the following, we show that our protocol
QR-EKE is secure against residue attacks.

Theorem 2. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2
2 . . . par

r and let t = �log2 n	. If z is a 2t-th power residue modulo n,
then for any γ ∈ Z

∗
n, the congruence (γx2)2

t ≡ z (mod n) has a solution in Qn.

Proof. To prove that (γx2)2
t ≡ z (mod n) has a solution in Qn, we only need

to prove that, for each prime power pai
i of the factorization of n, the following

congruence
(γx2)2

t ≡ z (mod pai
i ) (4)

has a solution in Qp
ai
i

.
Let ni = pai

i , 1 ≤ i ≤ r. Then φ(ni) = pai−1
i (pi − 1). Since n is odd, pi is an

odd prime. Hence, the integer ni possesses a primitive root. Let g be a primitive
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root of ni, then gφ(ni) ≡ 1 (mod ni). Let gcd(2t, φ(ni)) = 2m, 1 ≤ m ≤ t. We
consider the following two cases:

(1) If m = 1, then d = φ(ni)/2 must be an odd integer. For any integer
a ∈ Z

∗
ni

, a2d ≡ 1 (mod ni), which implies that ad ≡ 1 or −1 (mod ni). We claim
that ad ≡ −1 (mod ni) if and only if a is a quadratic non-residue of ni. If ad ≡ −1
(mod ni), it is obvious that a ∈ Q̄ni . On the other hand, if a ∈ Q̄ni , then there
exists an odd integer s such that a = gs mod ni since g is the primitive root of
ni. As the order of g is 2d, not d, we have ad = (gd)s = −1 mod ni. Similarly, we
can also prove that, if a ∈ Qni , then the congruence x2 ≡ a (mod ni) has two
solutions, with one solution in Qni

and another in Q̄ni
. Hence, for any γ ∈ Z

∗
n,

there exists a solution xj , 0 ≤ j ≤ 1, such that xjγ ∈ Qni
, that is, (xjγ)q = −1

(mod ni). Following the proof of Theorem 1, it is clear that the congruence (4)
has a solution in Qni .

(2) Next, we consider the case that 2 ≤ m ≤ t. Since z is a 2t-th power
residue modulo n, the congruence x2t ≡ z (mod n) has solutions in Z

∗
n. By the

Chinese Remainder Theorem, the following congruence

y2t ≡ z (mod ni) (5)

has solutions in Z
∗
ni

. Let indgz denote the index of z to the base g modulo ni

and let y ∈ Z
∗
ni

be a solution of (5). Then, g2tindgy−indgz ≡ 1 (mod ni). Since
the order of g modulo ni is φ(ni), it follows that

2tindgy ≡ indgz (mod φ(ni)) (6)

Also since gcd(2t, φ(ni)) = 2m, equation (6) has exactly 2m incongruent solutions
modulo φ(ni) when taking indgy as variable. This indicates that equation (5)
has exactly 2m incongruent solutions modulo ni. Let y0 be one of the solutions
of equation (5), by (1), the 2m incongruent solutions of (6) are given by

indgy = indgy0 + jφ(ni)/2m mod φ(ni), 0 ≤ j ≤ 2m − 1.

For any γ ∈ Z
∗
n, we have

indgy − indgγ = indgy0 − indgγ + jφ(ni)/2m mod φ(ni), 0 ≤ j ≤ 2m − 1.

Without loss of generality, let’s assume that indgy0 − indgγ ≥ 0; otherwise we
consider indgγ−indgy. Since t = �log2 n	 and φ(ni) < n, it is clear that φ(ni)/2m

is an odd integer. Hence, there exist an integer j, 0 ≤ j ≤ 3 ≤ 2m − 1, such that

indgy0 − indgγ + jφ(ni)/2m ≡ 0 (mod 4),

which implies that there exists an integer y ∈ Z
∗
ni

such that y2t ≡ z (mod ni)
and yγ−1 is a 4-th power residue of ni. Therefore, the congruence (4) has a
solution in Qni , which proves the theorem. �

Theorem 2 demonstrates that, by repeating the three steps, Eva could not
exclude any password from the space D. Hence, in each residue attack , Eva
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could not exclude more than one password when Bob rejects. So, our protocol
QR-EKE is secure against the residue attack as described in [2]. In Section 6, we
will provide a formal analysis of QR-EKE within the security model described
in Section 3. In each run of QR-EKE, Bob performs one gcd operation and t+1
squaring operations. As t = �log2 n	, the computation time for the t+1 squaring
operations is O((log2 n)3). It is easy to show that the computation time for Alice
is about the same. When n is large, e.g., n ≈ 21024, the computational load is
high both on Alice and on Bob. In the next section, we describe an effective way
to reduce the computational load on Alice and Bob.

5 Efficiency Improvement Using Cache

In practice, Alice (who may act as a server) would most likely use the same
public parameter n in many sessions, although for perfect forward secrecy, Alice
would need to select a new parameter in each session. Based on this observation,
we let Bob cache a hashed value of Alice’s public parameter n used in previous
runs of QR-EKE, that is, V = h(n, A). The initial value of V is set to be empty.
Based on the cache, we describe a computationally-efficient variant of QR-EKE,
which is called QRc-EKE and is described in Fig. 2.

In QRc-EKE, Bob computes the hashed value h(n, A) of the public param-
eter n received from Alice and compares it with the number in the cache. If they
are equal, Bob is ensured that Alice’s public parameter n has not changed. In
this case, Bob sets t = 1 and computes the number z using only two squaring
operations. If the hashed value h(n, A) is not equal to the number in the cached,
then Bob sets t = �log2 n	 and the protocol run is identical to that of QR-
EKE. At the end of a successful run, Bob updates the cache using the hashed
value h(n, A). In QRc-EKE, Bob also sends the number t explicitly to Alice.
Alice performs the right computation for f−1

t−1(z) based on the received number
t. To show that the protocol QRc-EKE works correctly, we have the following
proposition. Its proof follows directly from that of Theorem 1 and is omitted.

Proposition 1. Let n be the product of two distinct primes p and q, p ≡ q ≡ 3
(mod 4). If z is a quadratic residue of n, then for any integer γ ∈ Z

∗
n, the

congruence (γx2)2 ≡ z (mod n) has a unique solution in Qn, which is given by

β = (σγ−1)((p−1)(q−1)+4)/8 mod n,

where σ is a square root of z such that σγ ∈ Qn.

We need to point out that the use of cache in QRc-EKE is different than the
use of public password (also called hand-held certificate) in the Halevi-Krawczyk
protocol [10]. A public password, which is the hashed value of an public key,
must be computed beforehand and will not be changed during its life time. The
owner of the public password needs to either remember its value or carry it using
a memory device. In the protocol QRc-EKE, however, the cache does not need
to be set beforehand; its initial value is empty. Moreover, Bob does not need to
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remember the number in the cache, either; Bob can provision the cache using
the protocol itself. When Alice does not change the public parameter n, Bob
only needs to compute two squaring operations in each protocol run. In this
case, the computation time for Bob is O((log2 n)2), which is greatly reduced in
comparison with that in QR-EKE.

Alice (A) Bob (B)
password: w password: w

n = pq, p ≡ q ≡ 3 (mod 4) cache: V

rA ∈R {0, 1}k
rA, n, A �

Reject if n is even
If h(n, A) = V , t = 1

else t = �log2 n�
α ∈R Qn, rB ∈R {0, 1}k

γ = H(w, rA, rB , A, B, n, t)
If gcd(γ, n) = 1, λ = γ

else λ ∈R Z
∗
n

z = (λα2)2
t

mod nrB , z, t�
γ = H(w, rA, rB , A, B, n, t)
If gcd(γ, n) > 1, β ∈R Zn

else
σ = (f−1

t−1(z))
1
2 , σγ ∈ Qn

c = ((p − 1)(q − 1) + 4)/8
β = (σγ−1)c mod n

µ = H1(β, rA, rB , A, B, n)
µ �

µ
?= H1(α, rA, rB , A, B, n)

Reject if not, else
η = H2(α, rA, rB , A, B, n)

sk = H3(α, rA, rB , A, B, n)
V = h(n, A) if t > 1η�

η
?= H2(β, rA, rB , A, B, n)

Reject if not, else
sk = H3(β, rA, rB , A, B, n)

Fig. 2. The Protocol QRc-EKE with a Cache

6 Formal Security Analysis

In this section, we analyze the security of QR-EKE within the formal model of
security given in Section 3. Our analysis is based on the random-oracle model
[6,7]. In this model, a hash function is modeled as an oracle which outputs a
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random number for each new query. If the same query is asked twice, iden-
tical answers are returned by the oracle. In our analysis, we also assume the
intractability of integer factorization.

Factoring Assumption: Let MG be a probabilistic polynomial-time algorithm
that on input 1� returns a product of two distinct primes of length �/2. For any
probabilistic polynomial-time algorithm C, the following probability

Pr(C(n) = (p, q), pq = n|n← MG(1�))

is negligible (in �).

Theorem 3. Let A be a polynomial-time adversary who makes v imperson-
ation attempts in attacking the protocol QR-EKE. Let π1, π2, . . . , πv denote her
guesses of the password (shared between A and B) in the v impersonation at-
tempts and let Ev denote the event that one of her guesses, say πi, is a correct
guess. Under the condition that Ev is false, the adversary’s success probability in
attacking the protocol is equal to Pr(Succ|¬Ev

) = 1/2 + ζ, where ζ is negligible.

Proof. Assume that the adversary A makes a Test query on a fresh instance,
which is either Πi

A or Πj
B , and succeeds with probability Pr(Succ). With-

out loss of generality, we assume that random numbers generated by instances
Πi

A and Πj
B and by random oracles H, H1, H2, H3 never repeat. To prove that

Pr(Succ|¬Ev
)− 1/2 is negligible, we consider the following two cases:

Case 1: Test query is called on Πi
A. First, we show that, except with negligible

probability, rB , z and η could not be sent by an instance which is impersonated
by A. If rB , z and η were sent by an instance Πj

B which was impersonated by
A, then the instance Πj

B queried the oracle H2 on the input α, rA, rB , A, B, n

and obtained the answer η, where α is a random number selected by Πj
B . Let

λ′ denote the answer of the oracle H on the input π, rA, rB , A, B, n, where π is
the adversary’s guess of the password of A. Under the condition that Ev is false,
we have λ′ �= λ. Hence, the probability that (λ′/λ)2

t ≡ 1 (mod n) is negligible.
Due to the uniqueness of the solution of (λx2)2

t ≡ z (mod n) in Qn, it is clear
that the probability Pr(β = α) is negligible also. Therefore, the probability that
rB , z and η were sent by Πj

B is negligible.
Next, let us assume that rB , z and η were sent by an instance Πj

B which is not
impersonated by A. Then Πj

B is partnered with Πi
A. Under the assumption that

random numbers generated by entity instances and by random oracles never re-
peat, it is clear that Πj

B is the only instance partnered with Πi
A. Thus, the session

key ski
A could not be held by any instance other than Πi

A and Πj
B . Due to the ran-

domness assumption of H3, the session key ski
A is just a random session key for

anyone without knowing β. To recover β, the only thing that the adversary could
do is to perform off-line dictionary attacks, that is, the adversary selects a ran-
dom password π, obtains a solution α of the congruence (λ′x2)2

t ≡ z (modn),
and then tests the correctness of α using µ or η, where λ′ = H(π, rA, rB , A, B, n).
Let Eβ denote the event that the adversary A correctly recovers β in the off-
line dictionary attacks. Assume that the probability Pr(Eβ) is non-negligible.
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Then for any λ ∈ Z
∗
n and z ∈ Qn, the adversary A can obtain the solution

of (λx2)2
t ≡ z (mod n) in Qn with non-negligible probability. In this case, we

can construct a factoring algorithm C for n as follows: the algorithm C selects
ρ ∈ Q̄n and λ ∈ Z

∗
n and gives λ and z = (λρ2)2

t

mod n to A. The adversary A
solves the congruence (λx2)2

t ≡ z (mod n) and returns β ∈ Qn. Under our as-
sumption, it can be concluded that Pr((λβ2)2

t ≡ (λρ2)2
t

(mod n)) = Pr(Eβ).
Thus, Pr(β2t+1 ≡ ρ2t+1

(mod n)) = Pr(Eβ). Note that f(x) = 22t

mod n is
a permutation on Qn. Hence, Pr(β2 ≡ ρ2( mod n)) = Pr(Eβ). Since ρ ∈ Q̄n

and β ∈ Qn, the algorithm C can find the factorization of n by computing
gcd(n, ρ + β) and gcd(n, ρ − β), which contradicts the factoring assumption.
Hence, Pr(Eβ) must be negligible.

Finally, let Auth denote the event that rB , z and η were sent by an instance
Πj

B which is not impersonated by A. Then Pr(¬Auth|¬Ev
) is negligible. More-

over,

Pr(Succ|¬Ev
) = Pr(Succ|¬Auth)Pr(¬Auth|¬Ev

) + Pr(Succ|Auth)Pr(Auth|¬Ev
)

≤ Pr(¬Auth|¬Ev
) + Pr(Succ|Auth)

= Pr(¬Auth|¬Ev ) + Pr(Succ|Eβ
)Pr(Eβ) + Pr(Succ|¬Eβ

)Pr(¬Eβ)
= Pr(¬Auth|¬Ev

) + Pr(Eβ) + 0.5(1− Pr(Eβ))
= 0.5 + Pr(Eβ)/2 + Pr(¬Auth|¬Ev )

which demonstrates that Pr(Succ|¬Ev )− 1/2 is negligible.
Case 2: Test query is called on Πj

B . Assume that the instance Πj
B sent out

rB and z after receiving rA, n, A in the first flow, where z = (λα2)2
t

mod n,
α ∈ Qn, and λ = H(w, rA, rB , A, B, n). The instance Πj

B accepted after receiving
µ, which is equal to the value of H1(α, rA, rB , A, B, n). As in Case 1, wee first
show that, except with negligible probability, rA, n, A and µ were not sent by an
instance Πi

A which is impersonated by A.
If rB , z and η were sent by an instance Πi

A which is impersonated by A,
then the integer n may not necessarily be a Blum integer. In addition, the ad-
versary has knowledge of the factorization of n. Let π denote the adversary’s
guess of the password of B and let λ′ denote the answer of the oracle H on the
input π, rA, rB , A, B, n. Under the condition that Ev is false, we have λ′ �= λ.
By Theorem 1, the congruence (λ′x2)2

t ≡ z (mod n) has solutions in Qn for
every integer λ′ ∈ Z

∗
n. Thus, the probability that the adversary could obtain

α by solving the congruence is 1/|Qn|. Let n = P a1
1 P a2

2 . . . P ar
r denote the

prime-power factorization of n. By [11], r ∼ ln lnn, which demonstrates that
1/|Qn| ∼ (lnn)/φ(n). On the other hand, it is known that (see [19]), for all inte-
gers n ≥ 5, φ(n) > n/(6 ln lnn). Hence, the probability that the adversary could
recover α is negligible. Therefore, the probability that rB , z and η were sent by
Πj

B is negligible. Next, following the analysis in Case 1, we can also show that
Pr(Succ|¬Ev )− 1/2 is negligible in Case 2. �

Theorem 4. The protocol QR-EKE is a secure password-authenticated key ex-
change protocol under the factoring assumption and the random oracle model.
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Proof. It is easy to verify that the protocol QR-EKE satisfies the first condition
of Definition 1. To prove that protocol QR-EKE also satisfies the second condi-
tion of Definition 1, let us fix a polynomial-time adversary A who makes v imper-
sonation attempts in attacking the protocol QR-EKE. Let π1, π2, . . . , πv denote
her guesses of the password in the v impersonation attempts. Let Ev denote the
event that one of the guesses, say πi, is a correct guess. Under the condition that
Ev is true, it is clear that the adversary’s success probability Pr(Succ) in attack-
ing the protocol QR-EKE is equal to 1, i.e., Pr(Succ|Ev

) = 1. Let ¬Ev denote
that event that Ev is false, i.e., π1, π2, . . . , πv are incorrect password-guesses. By
Theorem 3, ζ = Pr(Succ|¬Ev

)− 1/2 is negligible. Hence,

Advake
A = 2Pr(Succ)− 1,

= 2Pr(Succ|Ev )Pr(Ev) + 2Pr(Succ|¬Ev
)Pr(¬Ev)− 1,

= 2v/|D|+ 2(0.5 + ζ)(1− v/|D|)− 1,

= v/|D|+ 2ζ(1− v/|D|).
which indicates that QR-EKE satisfies the second condition of Definition 1 and
thus is a secure password-authenticated key exchange protocol. �

Similarly, we can also prove that QRc-EKE is a secure password-
authenticated key exchange protocol under the factoring assumption and random
oracle model.
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