Key Agreement Using Statically Keyed
Authenticators

Colin Boyd!'*, Wenbo Mao?**, and Kenneth G. Paterson®* * *

! Information Security Research Centre, Queensland University of Technology,
Brisbane, Australia
2 Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ, UK
3 Information Security Group, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, UK

Abstract. A family of authenticators based on static shared keys is
identified and proven secure. The authenticators can be used in a va-
riety of settings, including identity-based ones. Application of the au-
thenticators to Diffie-Hellman variants in appropriate groups leads to
authenticated key agreement protocols which have attractive properties
in comparison with other proven-secure protocols. We explore two key
agreement protocols that result.

1 Introduction

There is a vast range of protocols for key establishment. Historically such pro-
tocols have been regarded as difficult to design correctly and the literature is
replete with broken examples. This has led to the realisation that a proof of
security is an almost essential property of any new protocol. In recent years
the number of key establishment protocols that carry a security proof has in-
creased enormously. Most popular has been the model introduced by Bellare and
Rogaway and later refined by themselves and others.

In the modular approach to protocol design and proof [2], Bellare, Canetti
and Krawczyk introduced the notion of an authenticator as a protocol translator.
Protocols may be proven secure in an ideal model (the so-called authenticated
links model, or simply the AM) in which the adversary is prevented from fab-
ricating messages coming from uncorrupted principals. The role of the authen-
ticator is to transform a protocol secure in the AM, into one that is secure in
the more realistic unauthenticated links model (the UM). A major advantage of
using this modular approach is that authenticators may be re-used with differ-
ent AM protocols. This facilitates an engineering approach to protocol design,
where components may be selected as appropriate to the application at hand. A

* Work supported by the Australian Research Council through Discovery Project
DP0345775.
** Research partially funded by the EU Fifth Framework Project IST-2001-324467
“CASENET”.
*** Supported by the Nuffield Foundation, NUF-NAL 02.

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 248-P62, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Key Agreement Using Statically Keyed Authenticators 249

potential disadvantage of the approach is that for some protocols there may not
exist any efficient decomposition into an AM protocol and an authenticator. We
remark that, despite the extensive theoretical framework that has been built up,
there have been few new protocols proven secure as a result of this technique.

Bellare et al. [2] designed two general-purpose authenticators, one based on
signatures and the other based on public key encryption. They showed how these
authenticators can be used to generate efficient protocols with similar properties
to some existing ones, but with the benefit of a formal security proof. In a later
refinement of the technique, Canetti and Krawczyk [9] designed a MAC-based
authenticator which uses a pre-existing shared secret as the MAC key.

In our earlier work [7], we focussed on deniability properties of protocols
resulting from taking an identity-based approach to obtaining keys for the MAC-
based authenticator of Canetti and Krawczyk [9]. In this paper, we provide a
more detailed study of provable security aspects of MAC-based authenticators.
We focus on two methods for obtaining the MAC key. The first uses static
Diffie-Hellman keys (supported by certificates). The second uses an identity-
based non-interactive key distribution protocol due to Sakai et al. [L6]. We show
that both authenticators have the security properties required to make them
usable in the Canetti-Krawczyk methodology. By applying these authenticators
to a basic Diffie-Hellman protocol that is secure in the AM, and using various
optimisations, we obtain two concrete protocols that are provably secure in the
UM. We compare our first protocol with the Unified Model protocol [5] and
with the SIGMA protocol of Krawezyk [13]. We compare our second protocol
to recent protocols of Chen and Kudla [T0]. Analysis shows that our protocols
are competitive with these existing protocols in terms of efficiency and security
properties. Our protocols show that taking a systematic approach to the use of
protocol components can bring new ideas to this heavily researched area.

The rest of this paper is structured as follows. In the next section we provide
an overview of the modular approach to protocol proofs. Section B provides
security proofs for our two MAC-based authenticators. In Sections] and [§ we
develop and analyse the two key exchange protocols that result from using these
two authenticators on the basic Diffie-Hellman protocol.

2 Authenticators and the Canetti—-Krawczyk Model

In this section we describe the modular approach to protocol proofs [2] and the
Canetti-Krawezyk (CK) model [9]. We aim to give an informal understanding of
how the approach works, sufficient to follow the rest of the paper. However, we
necessarily omit the formal details and refer the interested reader to the original
papers [2[9].

The CK model is based on the idea of message driven protocols. In such
protocols a set of principals Py, Ps, ..., P, are activated either by:

— messages from the network;
— external requests to initiate a protocol run.

250 C. Boyd, W. Mao, and K.G. Paterson

The output of a protocol consists of the cumulative output of all protocol prin-
cipals as well as the output of the adversary.

In the AM, the adversary A, a probabilistic polynomial time algorithm, con-
trols the principals P, ..., P,. The possible actions of A are:

activate a principal with incoming message m. This includes the ability to start
a protocol session.

corrupt a principal and obtain its internal information.

session-key query to obtain the session key agreed in a completed session.

session-state reveal to obtain the internal state of a principal corresponding to
an incomplete session. For example, this can include ephemeral parameters
deleted after the session is complete.

In the AM, the adversary A may only activate principals with incoming
messages that have already been sent by another principal to that principal. A
set M of undelivered messages is defined. When a principal P; sends a message
m to another principal P; then m is stored in M. Later m can be used by A to
activate P; (and no other party) and then m is deleted from M. All messages in
the protocol are different; this is enforced by appending a session identifier that
is unique for each session.

In the UM an adversary U has the same capabilities as A except that any
message calculated by U may be used to activate principals. An important part
of every protocol is an initialisation function, I, that sets up the public keys and
associated parameters. An adversary is allowed to perform a special test session
query by identifying an uncorrupted session whose principals are uncorrupted.
The adversary is then given either the correct session key for this session or a
random string of the same length, each with probability 1/2. The definition of
protocol security is essentially the same in both the AM and the UM and is
based on indistinguishability of these two strings.

Definition 1. A protocol is called SK-secure if:

— two uncorrupted parties that complete sessions with matching identifiers both
accept the same session key;

— the probability that the adversary can distinguish between the correct key in
a test session and a random string of the same length is no more than 1/2
plus a negligible function in the security parameter.

Canetti and Krawczyk [9] show that a protocol that is SK-secure in the AM
is transformed into an SK-secure protocol in the UM if an authenticator is used.
In order to explain what an authenticator is, we must first define the concept of
emulation.

Definition 2. A protocol ' in the UM, emulates a protocol © in the AM if
given any adversary U against protocol ', there exists an adversary A against
7 such that the output of ' with adversary U is indistinguishable from m with

A.

Key Agreement Using Statically Keyed Authenticators 251

Definition 3. An authenticator is a mapping of protocols that transforms a
protocol in the AM to a protocol 7' in the UM such that ' emulates 7.

In common with Bellare et al. [2], we require the indistinguishability in
Defn. 2] to be computational. That is, there should be no efficient algorithm
that can distinguish the output of the two protocols.

All the authenticators we talk about in this paper take the special form,
known as message transmission authenticators, or simply MT-authenticators.
The message transmission protocol, MT, is the protocol in the AM that simply
transmits a message between two principals. Formally, any party P; may be
activated with (P;,m) in order to send (P;, P;,m) to P; and then has output
‘P; sent m to P;'. If party P; is activated with (P;, P;,m) from P; then P; has
output 'P; received m from F;'. Note that sending and receiving of a message m
entails it being first stored in, and then removed from, the message store M.

A UM protocol is an MT-authenticator if it emulates the AM protocol MT.
Bellare et al. [2] showed that the mapping of protocols obtained by replacing
each message M in an AM protocol by an MT-authenticator corresponding to
M is an authenticator. Therefore, given an SK-secure protocol in the AM, we can
convert it to an SK-secure protocol in the UM simply by replacing each separate
message of the AM protocol by the MT-authenticator for that message. It is
often desirable to optimise the protocol that results from the naive use of this
approach when there is more than one message in the basic AM protocol. This
optimisation typically consists of piggy-backing flows from one authenticated
message onto flows from another and reordering independent protocol messages.
Further optimisation is often possible, and can be argued heuristically not to
disturb the protocol security.

3 Two Authenticators

Our MT-authenticators can be viewed as variants of the MT-authenticator based
on MACs that was proposed by Canetti and Krawczyk [0]. The format of our
authenticators is shown in Fig. [l On successful completion of the protocol, B
will output ‘B received m from A’. In Fig. [[l k is a security parameter, m is the
message to be transmitted and H is a hash function with a & bit output which
we replace by a random oracle in our security proofs. In the MAC-based MT-
authenticator of Canetti and Krawczyk it is assumed that the key Fsp is already
shared between A and B during the initialisation phase. In our authenticators
Fap is generated by A and B from the long-term keying material which is
established in the initialisation phase. We consider two different methods for
achieving this: static Diffie-Hellman and an identity-based approach. The main
purpose of this section is to prove that our two methods of generating Fsp still
produce authenticators (in the sense of Defn. Bl). A second difference between
our approach and that of Canetti and Krawczyk [9] is that we replace the MAC
by a hash function where the static shared key is included as an input to the
hash. The reason for this is that it makes both the authenticator and the proof
a little simpler. We can only do this by modelling the hash function as a random

252 C. Boyd, W. Mao, and K.G. Paterson

oracle, but in any case we would need to use the random oracle assumption in
our proofs even if a MAC were used.

A B
Choose message m

NB €r {O,I}k

Np
%

m7H(FAB,B,NB,m2

Fig. 1. Statically keyed MT-authenticator

3.1 Authenticator Using Static Diffie-Hellman

Here, the initialisation function I, on input security parameter k, generates for
each party P; a long-term key pair consisting of private key x; and public key
y; = g*¢, where g generates a group G of prime order ¢q. The shared secret
between principals P; and P; is Fp, p, = gvii. When this key is used in the
protocol of Figure[ll we name the resulting protocol Aspy. The fact that Agpy is
an MT-authenticator relies on the difficulty of the following well known problem.

Computational Diffie-Hellman Problem (CDHP): Let G, g and ¢ be as
above. The CDHP in G is as follows: Given g,¢",¢Y with z,y € Z,, compute
g"Y € G. An algorithm A has advantage € in solving the CDHP if

Pr[A(g,9%,9") = g™] = e.

Here the probability is measured over random choices of z,y in Z, and the
random operations of A. We will use the Computational Diffie-Hellman (CDH)
Assumption, which states that e is negligible in the security parameter k for all
efficient algorithms A.

Theorem 1. Suppose that H is a random oracle. Then protocol Aspy emulates
MT if the CDH Assumption holds.

Proof. We follow [2] in our proof structure. Our aim is to take any adversary U
against the protocol Aspy and construct A in the AM against MT such that the
outputs of the two are indistinguishable. The first step in the proof is to show
that most of the actions of U can be emulated by A in the ‘obvious’ way, then
leaving the bulk of the proof to show that the exceptional case (which prevents
completion of the obvious emulation) happens with only negligible probability
in the security parameter.

Key Agreement Using Statically Keyed Authenticators 253

The scenario is that A runs I/ and attempts to emulate the protocol output.
For any party P in the AM we denote the corresponding party in the UM as P’.
Note that A simulates the actions of all parties in the UM. Firstly A chooses and
distributes all the long-term keys for all parties in the protocol using function
I. When U activates party A’ in the UM to send message m to party B’ then
A activates A to send m to B in the AM. (Recall that this entails m being put
into the message store M.) Similarly, when B’ in the UM outputs ‘B’ received m
from A", A activates B with message m from A in the AM. When U corrupts a
party in the UM, A corrupts the corresponding party in the AM and hands the
information (including the long-term key which A has) to U. Finally A outputs
whatever U outputs.

The only obstacle occurs if A wants to activate a party in the AM with
a message which is not in the set M of stored messages. Let B be the event
that, for uncorrupted parties A’ and B’, B’ outputs ‘B’ received m from A”" and
either A was not activated by A to send m to B, or B previously output ‘B
received m from A'. Suppose that B occurs with non-negligible probability e(k).
We will show that if this is the case then it is possible to solve the CDHP with
non-negligible probability. This will contradict our CDH Assumption.

From now we assume the existence of an efficient algorithm ¢/ that runs the
protocol in the UM such that event B occurs with non-negligible probability
(k). We also assume that ¢ will complete in finite time 7 (k). We construct an
algorithm V that interacts with ¢/ in order to solve the CDHP. V simulates the
actions of all parties Pj, P, ..., P, and must be able to respond properly to all
actions of U. V also mediates calls to the random oracle H.

V is given as input a tuple (G, g, q, 9%, ¢¥) and is tasked with the problem of
finding ¢*¥. Let n(k) be a polynomial bound (in the security parameter k) on
the number of principals that might be activated by U. Firstly V' chooses two
parties Py, Py with f # ¢g randomly from the set of all parties P, ..., P,.)V then
generates long-term secret keys x; chosen randomly from Z, for all parties P;
except Py and Py. The protocol parameters given to U/ are the group parameters
(G, g,q), the public keys y; = g”* for parties P; different from P; and Py, and
g”,gY for parties Py and P, respectively.

When U activates any party, V follows the protocol specification on behalf
of that party, choosing a random value for the output of all queries made to H
in that process. V stores all the hash values output, together with the inputs
to H, in a list L and uses L to consistently reply to H queries. Note that for
H queries resulting from protocol runs between Py and Py, V does not know
the value g*¥ and so cannot calculate the correct entry to place on the list L.
Instead, V places the symbolic string “Fp,p,” on L along with a record of the
other values that should have been input to H in that query. V can then use
these entries to recognize subsequent queries of the same type. & may also make
H queries not associated with any particular protocol run; V responds to these
as above, using the list L to ensure that queries are answered consistently. If I/
corrupts any party P; apart from Py and P, then V can answer with x;. If U
corrupts Py or Py, then V terminates with failure.

254 C. Boyd, W. Mao, and K.G. Paterson

The simulation continues until &/ halts, or time 7 (k) has passed. In the latter
cases V simply aborts /. Finally, V chooses a randomly from the prefixes of all
oracle queries in L, and returns « as its guess for g*¥.

Let J denote the event that V is successful. We must now evaluate Pr(J7).

It is easy to see that because H is a random oracle, the simulation provided
by V is indistinguishable from what ¢/ would see in a real attack, unless & makes
an oracle query prefixed by the value g*¥ at some point in the simulation, or
unless U corrupts Py or FPy. In the former case, V may not consistently reply to
oracle queries since V cannot “recognise” the input ¢*¥. Then U’s behaviour is
strictly speaking undefined, but this is catered for in our simulation because V
will eventually halt U.

Let &£ denote the event that &/ makes an oracle query prefixed by the value
g™¥. Let F denote the event that B occurs with {A’, B’} = {Py, P,}. In other
words, F is the event that a message was passed between Py and P, that was
not previously sent or already received by one of these parties. Since f and g
were chosen at random from {1,...,n(k)}, we have Pr(F) = e(kj)/("g“)) Let G
denote the event that U/ corrupts Py or P,. Notice that if event F occurs, then
P and P, must be uncorrupted. Hence if F occurs, then so must the event —G.

After event £, V’s simulation may no longer be correct, but up until the
point that £ occurs, it is, so long as G does not occur. Therefore the probability
that £ occurs in the simulation is the same as the probability that it does in U’s
real attack, provided G does not occur. Note too that V’s probability of success
Pr(J) is equal to Pr(€ A =G)/qu (k) where qm (k) is a polynomial bound on the
number of hash queries made during the simulation. This is because of the way
that V selects an entry at random from the list L and because V aborts if event
G occurs.

Now suppose that event F occurs. This means that either P; or P, has
accepted a value which equals the output of a query to H prefixed with g*¥.
Then either U has successfully guessed an output of H without making the
relevant query to H, an event of probability 27%, or event £ occurs. Notice too
that if F occurs, then so does =G. Hence we have Pr(F) < 27% 4+ Pr(£ A =G),
from which we deduce Pr(€ A =G) > Pr(F) — 27% := ¢,(k), a non-negligible
quantity. Hence we have

Pr(J) = Pr(€ A=G)/qu(k) = e (k)/qu (k).

We see that Pr(7), the probability that V is successful, is non-negligible in the
security parameter k. This completes the proof.]

Remark. The reduction in the proof may be tightened if we assume, instead of
the CDH Assumption, that the gap-DH problem is hard. With this assumption
we may allow V access to an oracle that will distinguish between Diffie-Hellman
triples and random triples in G. The gap-DH assumption [15] is that CDHP
is still hard even given access to this oracle. In this case V can test if U has
asked a critical query (one involving ¢g*¥) of the random oracle and can abort
the protocol run with certainty of the correct answer at that point. Therefore
we can improve the success probability to the following:

Key Agreement Using Statically Keyed Authenticators 255
Pr(J) > e (k).

3.2 Authenticator Using Identity-Based Static Keys

Using the notation of Boneh and Franklin [6], we let Gy be an additive group of
prime order ¢ and G2 be a multiplicative group of the same order ¢q. We assume
the existence of an efficiently computable, non-degenerate, bilinear map é from
G1 x G1 to Go. Typically, G; will be a subgroup of the group of points on an
elliptic curve over a finite field, Go will be a subgroup of the multiplicative group
of a related finite field and the map é will be derived from either the Weil or Tate
pairing on the elliptic curve. By é being bilinear, we mean that for Q, W, Z € Gy,
both

(QW +2)=6QW)-6(Q.72) and &Q+W,2)=eQ,7)&(W,2).

By é being non-degenerate, we mean that for some element P € Gy, we have
é(Pa P) 7£ 1@2'

When a € Zy and Q € Gy, we write a@) for added to itself a times, also
called scalar multiplication of @ by a. As a consequence of bilinearity, we have
that, for any Q,W € G, and a,b € Z:

¢(aQ,bW) = é(Q, W)™ = é(abQ, W).

We refer to for a more comprehensive description of how these groups,
pairings and other parameters should be selected in practice for efficiency and
security.

In this setting, the initialisation function I on input a security parameter
k selects suitable groups G, Gy and map é. Then I generates a random key
5 € Z4. This key will play the role of the master secret of the Trusted Authority
in the ID-based system. Then I distributes to each party P; with identity ID;
a long-term key pair consisting of public key Q; = Hi(ID;) and private key
S; = sQ,. Here Hy is a hash function mapping identities ID; € {0,1}* onto G;.

With this initialisation, any two principals P;, P; with identities 1.D;, I D;
can efficiently calculate the shared key Fj; = é(Q;, Q;)® = é(Si, Q;) = é(S;, Q:).
This method of identity-based, non-interactive key distribution is due to Sakai
et al. [16]. When this key is used in the protocol of Figure[dl, we call the result-
ing protocol Asgpy- The fact that Asgpny is an MT-authenticator relies on the
difficulty of the following problem.

Bilinear Diffie-Hellman Problem (BDHP): Let Gy, Gy and é be as above.
The BDHP in (Gy, Go,é) is as follows: Given (P,zP,yP,zP) with P € G; and
x,y,z € Zg, compute é(P, P)"™* € Gy. An algorithm A has advantage € in
solving the BDHP in (Gq,Ga,e) if

Pr[A((P,zP,yP,zP)) = é(P, P)"™*] = e.

Here the probability is measured over random choices of P € Gy, z,y, 2 € Z, and
the random operations of A. We will use the Bilinear Diffie-Hellman Assumption,
which states that, for all efficient algorithms A, the advantage € is negligible as
a function of the security parameter k used in generating (G1,Ga, é).

256 C. Boyd, W. Mao, and K.G. Paterson

Theorem 2. Suppose that H and Hq are random oracles. Then protocol AsgpH
emulates MT if the Bilinear Diffie-Hellman Assumption holds.

Proof. The proof is the same as for Theorem [0 until we assume the existence
of an efficient algorithm ¢ which runs the protocol in the UM such that event
B occurs with non-negligible probability e. We construct an algorithm V' that
interacts with U in order to solve the BDHP.

This time V is given as input (Gy,Gs,€) and a tuple (P,zP,yP, zP) with
the aim of finding é(P, P)*¥%. The idea is that z will take the role of s and
P and yP will be the public keys of two entities, Py and FP,, where f and g
are selected randomly from {0, 1,...,n(k)} . Protocol parameters (Gy, G, é) are
given to U At any point, U generates the public key for entity P; with identity
ID; by making an H; query on ID;. V handles these H; queries as follows.
When i # f,g, V responds with Hy(ID;) = h;P where h; € Z, is selected at
random. V then sets the private key for entity P; to .S; = h; - zP. When i = f,
V responds with P and when ¢ = g, V responds with yP.

When U activates any party, V follows the protocol specification on behalf
of that party, choosing a random value for the output of all queries made to H
in that process. V stores all the hash values output, together with the inputs to
the H, in a list L and uses L to consistently reply to H queries. Note that for
H queries resulting from protocol runs between Py and Py, V does not know
the value é(P, P)*¥* and so cannot calculate the correct entry to place on the
list L. Instead, V places the symbolic string “Fp,p,” on L along with a record
of the other values that should have been input to H in that query. V can then
use these entries to recognize subsequent queries of the same type. U may also
make H queries not associated with any particular protocol run; V responds to
these as above, using the list L to ensure that queries are answered consistently.
If U corrupts any party P; apart from P and P, then V can answer with S;. If
U corrupts Py or P, then V terminates with failure.

The simulation continues until I/ halts or time 7 (k) has passed. In the latter
case V simply aborts /. Finally, V chooses a randomly from the prefixes of all
oracle queries in L, and returns « as its guess for é(P, P)*V=.

The rest of the proof is the same as that of Theorem [, with the value
é(P, P)*¥* replacing the value g*¥. o

4 An Authenticated Key Agreement Protocol

In this and the following section we will examine the effect of applying our au-
thenticators to the basic Diffie-Hellman protocol in the AM in order to derive
SK-secure protocols in the UM. We present optimised versions of the protocols
rather than the protocols that result by naively applying the authenticators to
each AM protocol message. The latter protocols automatically carry a security
proof but are not very efficient. In contrast, our optimised protocols rely on
heuristic arguments that the proofs are preserved in making the various optimi-
sations.

Canetti and Krawczyk [0] proved that Diffie-Hellman with ephemeral keys is
an SK-secure protocol in the AM as long as the Decision Diffie-Hellman (DDH)

Key Agreement Using Statically Keyed Authenticators 257

Assumption holds in the group in which it is executed I Although we could use
groups for which the DDH Assumption is believed hard, we can instead use the
weaker CDH Assumption and hash the Diffie-Hellman key with a hash function
modelled as a random oracle. So for our basic Diffie-Hellman protocol, A and B
choose random values 74 and rp respectively, exchange the values ¢g"4 and g2,
and calculated the shared secret Zap = Ho(g"4"2) where Hs is a random oracle.
Since we are already using the random oracle model for the authenticators, it
seems logical to use it here too. This also allows us to be more flexible in our
choice of groups.

The following theorem may be proven in a standard way. We emphasise that
although Canetti and Krawczyk use the stonger DDH Assumption they do not
use the random oracle assumption, so their result on the AM security of Diffie-
Hellman is not weaker.

Theorem 3. The basic Diffie-Hellman protocol is SK-secure in the AM given
the CDH Assumption and that Hs is a random oracle.

Here, we leave the details of the ephemeral Diffie-Hellman group flexible,
assuming only that it is a cyclic group of prime order in which the CDH As-
sumption holds. Natural choices for this group will arise in the context of each
of our two authenticators.

4.1 Key Agreement from Static Diffie-Hellman

We have shown in Section Bl how an MT-authenticator can be obtained from
static Diffie-Hellman key exchange. The general result of Canetti and Krawczyk
[9] and Theorem Blensure that using this MT-authenticator to replace each mes-
sage of the basic Diffie-Hellman protocol results in a protocol that is SK-secure
in the UM. We present an optimised version of this protocol as Protocol [l The
group G already needed for the authenticator is a natural choice for the basic
Diffie-Hellman exchange, and we have selected it here. In Protocol [l parties A
and B generate ephemeral secrets 74 and rp, and exchange values t4 = g™
and tg = ¢"B. In the optimisation process, messages have been piggy-backed
upon one another and values t4 and tp play dual roles as both messages and
the random nonces of A and B respectively. In addition the pair (t4,tp) form a
unique session identifier which is required for all protocols. We have also added
the identities of the sender in the first two messages in plaintext. This will be
a functional necessity in case either party does not initially know with which
partner it is running the protocol. Both A and B can compute the shared secret
Z aop which is then used to calculate a session key using a suitable key derivation
function.

! The DDH Assumption says that Diffie-Hellman triples (g%, g%, g*¥) cannot be effi-
ciently distinguished from triples (g%, ¢, g*), where z,y, z are random exponents.

258 C. Boyd, W. Mao, and K.G. Paterson

Shared Information: Static Diffie-Hellman key: Fap = g*2%B.

A B

TA €ER Zq

At
b4 TBERZq

tp = gTB

ta=g"4

thByH(FAB,B>tA,tB)

Verify hash

H(Fap, A,tp,ta) Verify hash

Zap = H2(t5") Zap = H2(t)?)

Protocol 1: Key agreement protocol based on static Diffie-Hellman

4.2 Comparison with Related Protocols

The most similar proven secure protocol to Protocol [[]is the Unified Model Pro-
tocol (UMP) analysed by Blake-Wilson and Menezes [5] in the Bellare-Rogaway
model. In the variant of the UMP that we consider, the shared secret Z4p is
equal to g"A"B||Fap, the concatenation of ephemeral and static Diffie-Hellman
keys. A MAC key (for confirmation) and session key are both derived from Z4p
using independent hash functions.

Protocolll and the UMP have similar properties and efficiency which we will
summarise below. Another proven secure protocol that is worth examining is the
SIGMA protocol of Krawczyk [13] which was used as the basis of the Internet
Key Exchange (IKE) protocol and which has also been proposed as the basis
for its replacement. It is interesting to note that when it comes to additional
properties SIGMA and Protocol [[] are in some senses complementary. We will
give further details below.

Efficiency. In Protocol [[l each principal has to complete three exponentiations
in total. The computational requirements of Protocol [are almost identical to
those of the UMP. However, one difference is that both parties can complete Pro-
tocol [before computing the ephemeral secret Z4p5. This means that Protocol
[Mcan be completed more quickly than the UMP.

Protocol M has better computational and bandwidth efficiency than SIGMA.
An exact comparison relies on the details of the signature scheme used in SIGMA
and the size of various parameters. The MQV protocol [14] has slightly smaller
computational requirements in total but currently has no published security
proof. In terms of bandwidth, Protocol Mand the UMP also seem to be optimal.
The only components included are the ephemeral key and the MAC or hash. In
contrast, the SIGMA protocol includes both a MAC and a digital signature sent
by each party, in addition to the Diffie-Hellman ephemeral key.

Key Agreement Using Statically Keyed Authenticators 259

Identity Protection and Knowledge of Peer Entity. One of the main
distinctive properties of SIGMA, which motivated its design, is strong identity
protection. This property allows the protocol principals to hide their identities
from adversaries. In contrast to SIGMA, Protocol [[] and the UMP do not seem
well suited to provide identity protection, since each party must know the iden-
tity of the other in order to calculate Fap and authenticate to the other.

As a consequence of its strong identity protection, a property that is missing
from the SIGMA protocol, but which is held by Protocol 0l and the UMP; is
what is often called ‘knowledge of the peer entity’. This means that party A in
SIGMA can complete the protocol without any indication that B is prepared
to communicate. By simply deleting the final message, A will accept the session
key, apparently shared with B, even though B may never have received any
indication of the existence of A. Krawcyzk discusses the possibility of adding an
extra acknowledgement message from B to add knowledge of the peer entity to
SIGMA, but this has obvious drawbacks.

Key Compromise Impersonation and Deniability. Although SIGMA is
more flexible in providing identity protection, Protocol [[] fares much better than
SIGMA when it comes to another desirable feature: deniability. This is the prop-
erty that each party should be able to deny having taken part in the protocol
run. Krawczyk pointed out that although SIGMA provides deniability when both
parties cooperate with each other, if one party defects by revealing its random
input, then the other cannot deny taking part.

Following the definition of deniable encryption by Canetti et al. [§] we may
say that a two-party protocol is deniable for party A, if a legitimate party B
could have simulated the protocol without the presence of A. Since all protocols
using our authenticators can be simulated perfectly by either party the protocols
can be seen to provide very strong deniability: there is no situation in which one
party can prevent the other from denying having been involved.

Another property that may be useful is resistance to key compromise imper-
sonation (KCI). It is obvious that in the situation when the adversary obtains
the long-term key of a party A, the adversary can masquerade as A; KCI is pos-
sible if the adversary can masquerade as other parties to A in this event. Such an
attack could potentially allow compromise of A’s private key to go undetected.

The SIGMA protocols provide protection against KCI since any partner of
A needs to demonstrate knowledge of its own private key through generation of
a new signature. However, Protocol [land the UMP do not protect against KCI.
This is because knowledge of either party’s private key is enough to complete
the protocol. The mechanisms used to prevent KCI and allow undeniability are
in conflict. In SIGMA, signatures protect against KCI but prevent deniability,
while in Protocol [l and the UMP, the mechanism used to provide deniability
allows KCI.

260 C. Boyd, W. Mao, and K.G. Paterson

5 Identity-Based Key Agreement

There has been considerable recent interest in identity-based key agreement
based on pairings. In this section we give more detail of how to apply our
identity-based authenticator to derive an identity-based key agreement proto-
col. We compare this protocol with a protocol proven secure in [10].

We assume the same algebraic setting as in Section In principle we can
use Diffie-Hellman in any group for the AM protocol. However, it is practical
to choose a group that is already implemented for the authenticator. The group
G is an obvious choice if we make the natural assumption that the CDHP is
hard in G;: we are already making the stronger assumption that the BDHP is
hard for (G, G2, é) to obtain a secure authenticator anyway. We can use any
non-zero element P € Gy as the base for the Diffie-Hellman protocol. The result
of applying our identity-based MT-authenticator to the basic Diffie-Hellman pro-
tocol and then optimising is the identity-based key agreement protocol shown
as Protocol 2 Its properties are explored in detail in [[7], in particular its strong
deniability feature.

Shared Information:
Fixed key Fap derived from static Diffie-Hellman key: Fap = H1(é(Qa,QB)%);
A generator P of G;.

A B

rA €ER Zq

Ta=raP A, Ta

TB €ER Lq
Tg =rpP
B,Tp,H(Fap,B,Ta,TB)

Verify hash
H(FaB,A,Tg,Ta)

Verify hash
Zap = Ha(raTs) Zag = Ha(rTa)

Protocol 2: Identity-based key agreement protocol

The most efficient identity-based key agreement protocol with confirmation
and enjoying a security proof currently seems to be that due to Chen and Kudla
[10, Protocol 4]. Their proof is in the Bellare-Rogaway model but makes the
strong restriction that the adversary reveals no session keys in the course of its
attack. In [10, Protocol 4], the parties exchange ephemeral values r4Q4 and
rg@p and calculate the shared secret Zap = é(QA,QB)S("A"‘TB). MACs are
used in a standard way to provide key confirmation.

Protocol 4 of requires each party to compute one elliptic curve pairing
and two elliptic curve multiplications (equivalent to exponentiations in a mul-

Key Agreement Using Statically Keyed Authenticators 261

tiplicative group). Therefore the computational effort required is the same as
that in Protocol 2. However, if many protocol instances take place between the
same parties, Protocol @ can cache and re-use the same F4 g value and therefore
requires only one pairing for all of these protocols. In contrast Protocol 4 of [10]
requires one pairing for every protocol run, even between the same parties.

Although Protocol 4 of [T0] does not provide forward secrecy, Chen and Kudla
do provide alternatives with this property. With regard to additional properties
discussed in Section @] Protocol 4 of seems to share some similarity with
our protocol and some similarity with the SIGMA protocol. Chen and Kudla
establish that their protocol protects against KCI attacks, though only in a
security model where no reveal queries are made by the adversary. Their protocol
also provides deniability: it is easy to see that either party can simulate a protocol
run. Identity protection is not discussed by Chen and Kudla, but their protocols
require each party to know the identity of the other party in order to derive
the session key. Therefore it seems that, like our protocols, identity protection
against active adversaries cannot be efficiently achieved. Protocol 4 of [10] does
provide confirmation of knowledge of the peer entity.

6 Conclusion

We have shown that the CK model can be profitably used to design novel, prov-
ably secure key exchange protocols. We obtain protocols that have not been
proven secure before; subsequent optimisation yields protocols with efficiency
properties equal to or better than all known similar protocols. We have also
examined the additional properties that our protocols possess. Our work illus-
trates that a systematic approach to design of provable security can have other
benefits apart from the proofs themselves. It may be profitable to augment our
authenticators with more examples by using different ways of deriving static
keys. The self-certified keys of Girault [12] are one promising example. In addi-
tion we reiterate that our authenticators can also be used with any other proven
secure AM protocol to provide new SK-secure protocols. One AM protocol that
could be used is the key transport protocol proven SK-secure by Canetti and
Krawcyzk [9]. A particularly interesting key transport protocol results if only
identity-based components are used in the construction.

References

1. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology - CRYPTO 2002, LNCS.
Springer-Verlag, 2002.

2. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols. In Proceedings of the
thirtieth annual ACM symposium on theory of computing, pages 419-428. ACM
Press, 1998.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D.R.
Stinson, editor, Advances in Cryptology — CRYPTO’93, volume 773 of LNCS, pages
232-249. Springer-Verlag, 1994.

262

4.

10.

11.

12.

13.

14.

15.

16.

C. Boyd, W. Mao, and K.G. Paterson

M. Bellare and P. Rogaway. Provably secure session key distribution — the three
party case. In 27th ACM Symposium on Theory of Computing, pages 57-66. ACM
Press, 1995.

S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In M. Darnell, editor, Crypography and Coding - 6th IMA Con-
ference, pages 30-45. Springer-Verlag, 1997. LNCS Vol. 1355.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. STAM
Journal of Computing, 32(3):585-615, 2003.

C. Boyd, W. Mao, and K.G. Paterson. Deniable authenticated key establishment
for Internet protocols. In Proceedings of 11th International Workshop on Security
Protocols, LNCS. Springer-Verlag, to appear.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In
B. Kaliski, editor, Advances in Cryptology — Crypto’97, volume 1294 of LNCS,
pages 90-104. Springer-Verlag, 1997.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In B. Pfitzmann, editor, Advances in Cryptology —
FEurocrypt 2001, volume 2045 of LNCS, pages 453-474. Springer-Verlag, 2001.

L. Chen and C. Kudla. Identity based authenticated key agreement protocols
from pairings. In IEFEE Computer Security Foundations Workshop, pages 219—
233. IEEE Computer Society Press, 2003. Updated version at Cryptology ePrint
Archive, Report 2002/184.

S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory — ANTS-V, volume
2369 of LNCS, pages 324-337. Springer-Verlag, 2002.

M. Girault. Self-certified public keys. In D. W. Davies, editor, Advances in Cryptol-
ogy — EUROCRYPT 1991, volume 547 of LNCS, pages 490-497. Springer-Verlag,
1992.

H. Krawczyk. SIGMA: The SIGn and MAc approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In D. Boneh, editor, Advances in Cryp-
tology — Crypto 2003, volume 2729 of LNCS, pages 400-425. Springer-Verlag, 2003.
L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2):119-134,
March 2003.

T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography
(PKC’01), volume 1992 of LNCS, pages 104-118. Springer-Verlag, 2001.

R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
The 2000 Sympoium on Cryptography and Information Security, Okinawa, Japan,
January 2000.

	Introduction
	Authenticators and the Canetti--Krawczyk Model
	Two Authenticators
	Authenticator Using Static Diffie-Hellman
	Authenticator Using Identity-Based Static Keys

	An Authenticated Key Agreement Protocol
	Key Agreement from Static Diffie-Hellman
	Comparison with Related Protocols

	Identity-Based Key Agreement
	Conclusion

