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Abstract. In this paper we break a knapsack based two-lock cryp-
tosystem proposed at ICICS’03 [7]. The two-lock cryptosystem is a
commutative encryption algorithm that is very useful for the construc-
tion of the general t-out-of-n oblivious transfers and millionaire protocol.
However, our analysis shows that the proposed knapsack based two-lock
cryptosystem is extremely insecure. The serious flaw is that the sender
in the two-lock cryptosystem can retrieve the secret key of the receiver
fairly easily. We have implemented the attack on a Pentium 4 2.5 GHz
processor. For the parameters given in [7], it takes only several minutes
to break that knapsack based two-lock cryptosystem.
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1 Introduction

Cryptography plays an important role in today’s digital world. Many crypto-
graphic techniques have been developed to meet the various requirements arising
from applications. Among them oblivious transfer is a very useful cryptographic
primitive. The concept of oblivious transfer (OT) was first proposed by Rabin
in [6]. In that paper, the sender has one bit secret message and would like the
receiver to get it with probability, but the receiver does not want the sender
to know whether the secret message being received or not. The 1-out-of-2 OT
means that the sender has two secrets and would like the receiver to get one of
them at the receiver’s choice, meanwhile the receiver does not want the sender
to know which secret bit being chosen. The concept of t-out-of-n OT is the
generalization of that of 1-out-of-2 OT. The sender can not determine which t
messages the receiver obtained, and the receiver can not learn the other (n − t)
messages. A millionaire protocol is used to solve the following problem. Two
parties, each has a secret integer. Without revealing those two secret integers,
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they could compare those two integers. In both the t-out-of-n oblivious transfers
and millionaire protocol cases, the basic security requirement is that those two
parties should not know each other’s secret information.

The two-lock cryptosystems proposed in [7] can be used to efficiently con-
struct the t-out-of-n oblivious transfer and/or millionaire protocol. The two-lock
cryptosystem consists of two commutative encryption algorithms A and B. Let
A and B denote the encryption algorithms belong to Alice and Bob, respectively.
A and B satisfy Bs(Ak(m)) = Ak(Bs(m)) for any randomly chosen secret keys k
and s. This two-lock cryptosystem operates as follows. If the sender Alice wants
to send a secret message m to Bob, they communicate with each other as follows:

1. Alice sends to Bob: Y = Ak(m).
2. Bob sends to Alice: Z = Bs(Y ).
3. Alice sends to Bob: C = A−1

k (Z).
4. Bob decrypts: m = B−1

s (C).

where A−1
k (·) and B−1

s (·) denote the decryption of Ak(·) and Bs(·) respectively.
It is easy to see that at the end Bob can obtain the message m. A two-lock cryp-
tosystem should meet the following security requirements: it should be com-
putationally infeasible for an adversary to recover the keys k or s such that
C = A−1

k (Z) or Z = Bs(Y ). And it should be computationally impossible for
the two parties to recover each other’s secret key. The very simple and efficient
discrete logarithm based two-lock cryptosystem has been proposed in [1]. In [7],
a new knapsack based two-lock cryptosystem was proposed.

In this paper, we show that the knapsack based two-lock cryptosystem pro-
posed in [7] is extremely insecure. The sender in the two-lock cryptosystem can
recover the receiver’s secret key fairly easily.

This paper is organized as follows. In Section 2, we introduce the proposed
knapsack based two-lock cryptosystem with some informal analysis. Our attack
against this cryptosystem is given in Section 3. In Section 4, detailed experiment
results of our attack are listed with some remarks. Section 5 concludes the paper.

2 The Knapsack Based Two-Lock Cryptosystem

We first recall the definition of knapsack problem. Let a1, · · · , al, S, l be some
integers. The knapsack or subset-sum problem is to determine, given positive
integers a1, · · · , al, S, whether there is a subset of the {aj} that sums to S. This
is equivalent to determine whether there are variables x1, · · · , xl ∈ {0, 1} satis-
fying x1a1 + · · ·+xlal = S. The density d(a) of the knapsack vector (a1, · · · , al)
is defined as d(a) = l/log2max{a1, · · · , al}. The general knapsack problem is
known to be NP-complete [4]. The first knapsack-based cryptosystem was pro-
posed by Merkle and Hellman in 1978 [5], followed by a number of variants.
Unfortunately, most of them were broken. The main reason is that although the
general knapsack problem is hard, the knapsack algorithm being used in those
cryptosystems may not be hard, and the cryptanalyst can deduce the original
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solvable knapsack from the seemingly random knapsack. A good overview of
these systems and their cryptanalysis can be found in [2,3].

The following describes the knapsack based two-lock cryptosystem proposed
in [7]. Let t, k, n, l be secure parameters. Alice wish to send Bob a positive
integer sequence m = (m1, · · · , ml) = (u1,1, · · · , ul,1)+ (v1,1, · · · , vl,1) where the
binary length of mi is n and mi �= mj(i �= j). They begin their confidential
communication as follows.

1. Alice: For h = 1 to t, randomly select positive integers eh, Mh, fh, Nh such
that Mh > kmax{u1,h, · · · , ul,h}, Nh > kmax{v1,h, · · · , vl,h}, (eh, Mh) =
1, (fh, Nh) = 1 and (Mh, Nh) = 1. Compute uj,h+1 = ehuj,h mod Mh,
vj,h+1 = fhvj,h mod Nh, for j = 1 to l. By Chinese remainder theorem,
compute (y1, · · · , yl) such that uj,t+1 = yj mod Mt and vj,t+1 = yj mod Nt,
for j = 1, · · · , l, i.e. yj = uj,t+1N

φ(Mt)
t + vj,t+1M

φ(Nt)
t mod MtNt, where

φ(·) is the Euler function. Then select a random integer α and send Y =
(Y1, · · · , Yl) = (y1 − α, · · · , yl − α) to Bob.

2. Bob: Select a random nonsingular matrix B = (bi,j)l×l, where bi,j ∈ {0, 1}
and the hamming weight of each column is k. Send Z = (z1, · · · , zl) = Y B
to Alice.

3. Alice: for h = t to 1, compute dh = e−1
h mod Mh, gh = f−1

h mod Nh. Let
Ui,t = dt(zi+kα) mod Mt, Vi,t = gt(zi+kα) mod Nt for i = 1, · · · , l. For h =
t−1, · · · , 1, calculate Uj,h = dhUj,h+1 mod Mh, Vj,h = ghVj,h+1 mod Nh, for
j = 1, · · · , l. Finally, send Bob C = (c1, · · · , cl) = (U1,1+V1,1, · · · , Ul,1+Vl,1).

4. Bob: Compute (m1, · · · , ml) = (c1, · · · , cl)B−1.

In [7], the authors argue that if the adversaries intend to find a nonsingular
matrix (b

′
i,j)l×l form Z = (z1, · · · , zl) such that zj = b

′
1,jy1 + · · · + b

′
l,jyl, then

they will be confronted with a random knapsack problem with density about
l/log2(MtNt). Let l ≥ 1000, t ≥ 50, k = 128, n = 100 and MtNt ≤ 2900, then
the density d(a) > 1. However, as we will show below, it is the proposed sparse
structure of the column vector of B = (bi,j)l×l that leads to the failure of the
knapsack based two-lock system.

3 Cryptanalysis of the Knapsack Based Two-Lock
Cryptosystem

Our main idea is that if a dishonest Alice deceives Bob with a random-looking
vector (Y1, · · · , Yl) of integers, then she can recover the matrix B = (bi,j)l×l

by solving easy knapsack problems due to the fact that Alice can choose all
the information vectors sent to Bob at her choice. Thus if Alice chooses an easy
knapsack and disguise it as a random-looking knapsack, then she can recover the
original easy vector she sent to Bob from the vector encrypted by Bob using the
knapsack-like encryption scheme. Since the basic security requirement of t-out-
of-n oblivious transfers and millionaire protocol is that the two communication
parties should not know the counterpart’s secret key, the attack above indicates
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that the proposed knapsack based two-lock cryptosystem is insecure for t-out-
of-n oblivious transfers and millionaire protocol applications.

Now we are ready to give the description of our attack in detail. The problem
we face is to restore the matrix B = (bi,j)l×l from Z = (z1, · · · , zl) and Y =
(Y1, · · · , Yl), where Z = Y B and Y = (Y1, · · · , Yl) is chosen at Alice’s choice.
We wish to recover each column vector (b1,j , · · · , bl,j)T of hamming weight 128
such that zj = b1,jY1 + b2,jY2 + · · · + bl,jYl, for j = 1, 2, · · · , l. It is obvious that
the better the vector chosen by Alice, the easier it is to recover the matrix B.
Since MtNt ≤ 2900, without loss of generality we take the binary representations
of the integers Yi to have 900 bit length. Our attack consists of three stages. At
the first stage, Alice chooses a special integer vector Y

′
= (Y

′
1 , · · · , Y

′
l ). At the

second stage, Alice disguises that special integer vector into a random-looking
vector Y = (Y1, · · · , Yl). Finally, Alice recovers the matrix B = (bi,j)l×l from
Z = (z1, · · · , zl) and Y = (Y1, · · · , Yl), where Y is encrypted by Bob as Z = Y B.

3.1 Our Attack

We take the scheme with parameters l = 2000, k = 128 and 2899 < MtNt < 2900

to demonstrate our algorithm. As stated above, the attack consists of three
stages, i.e. choosing stage, disguising stage and recovering stage.

Stage 1. Choosing Special Integer Vector Y
′
. Choose integers

Y
′
1 , · · · , Y

′
2000 such that their binary representations being the row vectors of

the following binary matrix (the rightmost bit is the least significant bit):



040×18 040×18 · · · 040×18 A1
40×18

040×18 040×18 · · · A2
40×18 040×18

...
...

...
...

...
A50

40×18 040×18 · · · 040×18 040×18




2000×900

(1)

Note that 040×18 and Ai
40×18, i = 1, · · · , 50, are sub-matrices of specified size, i.e.

040×18 denotes zero matrix and Ai
40×18, i = 1, · · · , 49, denote 40 × 18 matrices

such that their row vectors are randomly chosen from the linear vector space
GF (2)18. A50

40×18 denotes the matrix such that its leftmost 3 column vectors are
the zero vectors and other elements are randomly chose from GF (2) in such a
way that the row vectors are all the non-zero vectors. The reason for such a
choice of A50

40×18 is stated in the following stage 2.

Stage 2. Disguising the Special Integer Vector Y
′
. We use the standard

transformation to disguise an easy knapsack into a seemingly more complicated
one, i.e. we first select a large integer W such that (W, MtNt) = 1 and let
Yi = WY

′
i mod MtNt. Alice then sends the resultant integer vector to Bob. After

receiving the encrypted vector from Bob, Alice reverses the procedure mentioned
above using Y

′
i = YiW

−1 mod MtNt. Then Alice gets the easy knapsack and
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recovers the secret key of Bob as stage 3 states. To guarantee recovering the
original vector from the encrypted vector successfully, the following condition
should be satisfied:

l∑
i=1

bi,jY
′
i < MtNt (2)

which results from

zj =
l∑

i=1

bi,jYi =
l∑

i=1

bi,j(Y
′
i W mod MtNt) (3)

Since there are on average at most 2 carriers from Ai
40×18 to Ai+1

40×18 when the
row vectors are summed together, we put the leftmost 3 columns of A50

40×18 to
be zero vectors taking into account that 2899 < MtNt < 2900.

Stage 3. Recovering the Matrix B. The problem we now face is, given
z′
j = zjW

−1 mod MtNt and Y
′
1 , · · · , Y

′
2000, to find the column vector

(b1,j , · · · , b2000,j)T of hamming weight 128 such that z′
j = b1,jY

′
1 + b2,jY

′
2 +

· · ·+b2000,jY
′
2000, for j = 1, 2, · · · , 2000. First rewrite z′

j as binary representation

z′
j = (zj,900, · · · , zj,773, zj,772, · · · , zj,2, zj,1)2. (4)

Then we get

z′
j = (zj,900, · · · , zj,19, zj,18, · · · , zj,2, zj,1)2

= b1,jY
′
1 + b2,jY

′
2 + · · · + b2000,jY

′
2000

= b1,j(01 · · · 018019 · · · 08640865 · · · 0882 ∗883 · · · ∗900)2 + · · · +
b41,j(01 · · · 018019 · · · 0864 ∗865 · · · ∗882 0883 · · · 0900)2 + · · · +
b2000,j(010203 ∗4 · · · ∗18 019 · · · 08640865 · · · 08820883 · · · 0900)2,

where the subscripts denote positions and the asterisks denote randomly chosen
elements from GF (2). We can see from above equation that the least signifi-
cant bits zj,18, · · · , zj,2, zj,1 only depend on the sum of b1,jY

′
1 + · · · + b40,jY

′
40.

The bits zj,36, · · · , zj,20, zj,19 depend on b41,jY
′
41 + · · · + b80,jY

′
80 and the carry

from b1,jY
′
1 + · · · + b40,jY

′
40, . . . , and so on. It is obvious from above observa-

tions that determining (b1,j , · · · , b2000,j)T is dependent on the determination of
(b1,j , · · · , b40,j)T , for given the knowledge of (b1,j , · · · , b40,j)T , we can follow an
iterative way to determine the remaining bits in (b1,j , · · · , b2000,j)T . For the de-
termination of (b1,j , · · · b40,j)T , according to 128 × 40/2000 = 2.56, we use an
exhaustive search through all the 2 − 3 combinations of row vectors of A1

40×18
to find out the ‘1’ bits in (b1,j , · · · , b40,j)T . The complexity of this procedure
is about

(40
2

) ≈ 29.60733 or
(40

3

) ≈ 213.2703, which is absolutely negligible on an
ordinary PC. We select the true combination of the row vectors, thus determine
the ‘1’ bits in (b1,j , · · · , b40,j)T .

Now we give a full description of the attack.
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1. parameters: l = 2000, k = 128, 2899 < MtNt < 2900, (z900,j , · · · , z2,j , z1,j) =
z′
j , (Y

′
1 , · · · , Y

′
2000) as defined in the above matrix.

2. (z1
18, · · · , z1

1) = (z18,j , · · · , z1,j).
3. For i = 1 to 50, make an exhaustive search over the 40 row vectors of Ai

40×18
to find out about 2 − 3 rows whose summation’s least significant 18 bits
are (zi

18, · · · , zi
1). Set the elements of (b40(i−1)+1,j , · · · , b40i,j) corresponding

to the selected rows as 1, others 0. If i = 50 stop else set (zi+1
18 , · · · , zi+1

1 )
be the bits in the position range [18i + 1, 18(i + 1)] of (z900,j , · · · , z1,j)2 −∑i

f=1(b40f,j(Y40f,j)2 + · · · + b40(f−1)+1,j(Y40(f−1)+1,j)2).

Complexity of the attack. From the above algorithm, we can recover the jth
column vector (b1,j , · · · , b2000,j)T of B with O(220) operations on average, i.e.
absolutely negligible amount of computations on an ordinary PC, and recover
the matrix B with O(231) operations.

3.2 Some Remarks

In the algorithm above, we simply choose 2 − 3 rows out of the 40 rows in order
to clearly illustrate the main structure of our attack. In the experiments, we
choose 5 rows out of the 40 rows in order to gain a high success probability.
The complexity is also very small as shown in Section 4. In addition, we can
also use the method above to attack the case that l = 1000, k = 128 and
2899 < MtNt < 2900, the complexity is O(227) if using partition 18 × 50 and
20×50. From the discussion above, we know that the insecurity of the proposed
knapsack based two-lock cryptosystem is due to the sparseness of the columns
of Bob’s secret matrix B, which facilitates the attack with the growth of l if the
partition of Y

′
i ’s binary representations is properly chosen. Increasing the number

of ‘1’ bits in each column could enhance the resistance against our attack, but
note that the size of the modulus constrains the number of ‘1’ bits in each
column. At Alice’s side, modular arithmetic is carried out which means that the
summation of Y

′
i s can not be larger than the modulus; otherwise Bob cannot

decrypt correctly. So improving the knapsack based two-lock cryptosystem is
nearly impossible.

4 Experiment Results

To check the actual performance as well as the correctness of our cracking al-
gorithm, we have implemented our attack against the proposed knapsack based
two-lock cryptosystem in C on the Pentium 4 2.5GHz processor. We use the
stream cipher RC4 as the random noise source to supply the integers vector
(Y

′
1 , Y

′
2 , · · · , Y

′
2000) and the matrix B = (bi,j)l×l where l = 2000. Then we simu-

late the process in the knapsack based two-lock cryptosystem to get the resulting
vector (z1, z2, · · · , zl). After obtaining (z1, z2, · · · , zl), we apply our attack algo-
rithm proposed in Subsection 3.1 to restore the matrix B = (bi,j)l×l column-by-
column. Instead of making an exhaustive search over the 3 out of 40 row vectors
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of Ai
40×18to find out the correct rows, we made an exhaustive search over the

5 out of 40 row vectors to provide a higher success probability. The probability
that there are at most five rows to be summed is

∑5
i=0

(40
i

)( 1960
128−i

)
(2000

128

) ≈ 0.961156, (5)

where i = 0 corresponds to the case that (b1,j , · · · , b40,j)T happens to be a zero
vector. In our experiments, there are on average

(
40
5

)
/218 ≈ 2.5101, (6)

wrong solutions corresponding to each value of (zi
18, · · · , zi

1). Actually, there
are some columns where our algorithm only output one solution. We select the
very solution with the minimum hamming weight. If some solutions have the
same hamming weight, we check every possibility until we find the true key or
an equivalent key. In our experiment, one 40-bit segment of one column of the
secret key B can be recovered in about 3.6 milliseconds on average. We recovered
the whole matrix key in about six minutes on the Pentium 4 2.5GHz processor
PC. It is equivalent to about 239.8 clock cycles. This experiment result is in
expectation since the theoretical complexity given in Section 4 is O(231).

5 Conclusion

We have shown that the recently proposed knapsack based two-lock cryptosys-
tem is insecure for oblivious transfers and millionaire protocol applications. It
is an interesting problem to design new secure two-lock cryptosystems based on
non-discrete logarithm problems.
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