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Abstract. This paper presents a non-interactive verifiable secret
sharing scheme (VSS) tolerating a dishonest majority based on data
predistributed by a trusted authority. As an application of this VSS
scheme we present very efficient unconditionally secure multiparty
protocols based on predistributed data which generalize two-party
computations based on linear predistributed bit commitments. The
main results of this paper are a non-interactive VSS where the amount
of data which needs to be predistributed to each player depends
on the number of tolerable cheaters only, a simplified multiplication
protocol for shared values based on predistributed random products, a
protocol for fair exchange of secrets based on predistributed data, and
non-interactive zero knowledge proofs for arbitrary polynomial relations.

Keywords: Verifiable secret sharing, pre-distributed data, multiparty
protocols.

1 Introduction

This paper gives a protocol for information theoretically secure verifiable secret
sharing (VSS) in the commodity based model which tolerates a dishonest ma-
jority. On the basis of pre-distributed data a dealer can share a secret such that
all players are convinced that the shares they hold are valid, i. e., sets of players
larger than a threshold ¢ can reconstruct the shared secret. When dealing with
an adversary which is able to corrupt a majority of the players, this requirement
is slightly relaxed, since corrupted players are always able to abort the protocol.

As an application of this VSS scheme we present very efficient multiparty
protocols in the commodity based model which can tolerate up to ¢t < n cor-
rupted parties. If the number ¢ is known the protocols can be chosen to be robust
against n—t players trying to abort the calculation. The protocols can be seen as
a generalization of [21] to multiparty protocols. But the multiplication procedure
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used here is much simpler than the one in in [21] and compared to trivial exten-
sions of [2] like pre-distributing two-party computations like oblivious transfer
and then applying a general construction like [I3] we save data. The amount of
data to be pre-distributed to one party depends, for fixed security parameter and
fixed size of the field, only on ¢ and not on the total number n of parties. Due to
the advantages of the commodity based model we can obtain a non-interactive
VSS allowing non-interactive zero knowledge proofs.

VSS. Tompa and Wolf [29] and McEliece and Swarte [20] were the first to
study the problem of secret sharing in presence of a corrupted majority. They
proposed solutions which work when the dealer is honest and corrupted players
may attempt to cheat during the reconstruction of the secret. Later, Chor et
al. [7] defined a complete notion of VSS, and gave a solution which was based
on some intractability assumptions.

In Ben-Or et al. [4], an information theoretically secure VSS scheme was
proposed which worked against any adversary which corrupts up to less than
1/3 of the players and the dealer. In [4], it was assumed that the players are
connected by pairwise secure channels (the so-called secure channels model).
As VSS, when implemented without a broadcast channel, implies Byzantine
Agreement, the results of show that the solution of [4] is optimal in the
secure channels model.

Rabin and Ben-Or [23] were able to show that in a secure channels plus
broadcast channel model unconditionally secure VSS is possible against any
dishonest minority. In [I1], Cramer et al. proposed a VSS scheme secure against
an adaptive adversary which can corrupt any dishonest minority by using a linear
information checking protocol. The protocols of [T1] and [23] are interactive.

While secrecy in the secure channels plus broadcast channel model can easily
be maintained even against an adversary which corrupts a majority of players,
the same cannot be said of the validity of the shares. Clearly, correct verifiability
of the shares in the presence of a faulty majority cannot be achieved in the secure
channels plus broadcast channel model without further assumptions [23].

Assuming that the discrete logarithm problem is intractable Feldman pro-
posed a VSS scheme [I2] where the verifiability of the shares is information
theoretically secure but the secrecy of the secret is only computationally secure.
Pedersen proposed a “dual” of Feldman’s scheme. Pedersen’s scheme pro-
tects the secrecy of the secret unconditionally, while verifiability is protected
only computationally under the assumption that the discrete logarithm problem
is intractable.

In this paper, we introduce a VSS scheme based on pre-distributed data
which is information theoretically secure against dishonest majorities, that is,
both the secrecy of the secret and the wverifiability of the shares are achieved
independently of how much computational power is available to an adversary.
Moreover, our solution is non-interactive.
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Multiparty Computation. As an application of our protocol, we provide a
very simple and efficient information theoretically secure multiparty computa-
tion protocol based on pre-distributed data which is secure against dishonest
majorities. In [IJ2[T0] protocols for multiparty computations secure against a
faulty majority were proposed. In these papers, it was assumed that all the
players were connected by oblivious transfer channels and a broadcast channel
was available. Due to the use of pre-distributed data instead of oblivious transfer
the protocols presented here are more efficient and do not need zero-knowledge
proofs based on cut-and-choose arguments which increase the round complexity
of protocols. Furthermore our protocol performs computations directly over a
field GF(q) and not only over binary fields.

Finally, it should be remarked that, if a protocol is secure against any dis-
honest majority, even a single player should be able to abort the computation
as was pointed out in [I0]. However, the protocols for secure computation pro-
posed in [TI2IT0T3] can be aborted by a single player even when the number of
honest players is known to be much larger than one. This is not the case with
our protocol. Given that there are n players of which at most ¢ are dishonest,
then there exists a secure VSS protocol for which n — ¢ players are necessary to
abort the execution of this protocol. This property also holds for the application
to multyparty protocols.

1.1 Commodity Based Cryptography and Related Work

In [3] the commodity based cryptographic model was introduced on which the
protocols presented here are based. In this model players buy cryptographic
primitives from “off-line” servers. These primitives can be used later on to im-
plement general cryptographic protocols. The commodity based model was in-
spired in the internet architecture, which is usually based on the “client-server”
paradigm. Once the primitives, or commodities as they are called by Beaver, are
acquired, no further interaction between the server and the users is required.
Therefore, the server need not know any secret values of the players.

In this contribution, we show that the use of off-lines servers provides very
efficient and simple protocols for verifiable secret sharing and secure function
evaluation over GF(g) in the presence of a faulty majority.

Although this model was formalized just in [3], several independent works
share the same flavor. We cite key-pre-distribution schemes [I8], uncondition-
ally secure bit commitments [24J6] and unconditionally secure digital signature
schemes [T6].

The work which comes closest to the application of our VSS scheme to mul-
tiparty computations is [21]. There secure protocols for two-party computations
in the commodity based model are proposed. Our protocol for multiparty secure
computation can be understood as an extension of [21].
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1.2 Our Contribution

In this Section we summarize our contribution. Due to the assumption that there
is a trusted center which pre-distributes data during a setup phase, we could
design a protocol for verifiable secret sharing which has the following interesting
features.

— It is the first VSS protocol where the security of the secret and of the ver-
ifiability are achieved even against an all-mighty adaptive adversary which
can corrupt any majority of the players and the dealer.

— It is non-interactive

— The verifiability of the protocol is not based on any cut-and-choose argument
or expensive zero knowledge proofs.

— It is conceptually very simple.

Furthermore for a fixed security parameter k and a fixed field size ¢ the
amount of data which has to be pre-distributed depends on t only.

As an application of our VSS, we propose a protocol for secure multiparty
computations which also shows very interesting features (which to the best of
our knowledge for the first time appear together in a single protocol): It is based
on novel verifiable primitives in the commodity based model which allow two
players to perform secure multiplication of shares over GF'(q); It is information
theoretically secure against any adversary which can corrupt any majority of
the players; and given that there are n players of which at most ¢ are dishonest,
n —t players are necessary to abort an execution of the multy party computation
protocols.

2 Model

Here, we present a model for non-interactive verifiable secret sharing protocol
based on pre-distributed data. Note that we do not give a general definition of
a verifiable secret sharing scheme, but rather propose a model we believe is
general enough to cover any non-interactive protocol based on pre-distributed
data. For a general definition of a verifiable secret sharing scheme, please look
at [23]. We work in the commodity based cryptography model as proposed by
Beaver in [3|. There are n players {Py, P,,...,P,} a dealer D and a trusted
center. Also, we assume the existence of an authenticated broadcast channel.
Note that this assumptions are only made to simplify the protocol presentation
as a broadcast channel can as well be pre-distributed by the trusted center during
a setup phase [3]. The trusted center is supposed to act only during a setup phase
and no sensitive information concerning the players input is ever transmitted to
it. The players are connected to the trusted center by secure channels. Secure
channels between the parties are assumed, too, but can be pre-distributed as
well.

We assume a central adversary with unbounded computational power who
actively corrupts ¢ players, t < n.
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Notation. For a VSS scheme IT with a trusted center T, a set of dealers D,
and a finite set of players P the protocol consists of (S, I, V, Commit, Share,
Verify), where

— & is a finite set of possible secrets,

— K is a finite set of possible signing-keys,

— V is a finite set of possible verification-keys,

— C is a finite set of possible commitments,

— Sy, is a finite set of possible shares,

— Commit : § x K — C is a commitment-algorithm,

— Share : C x P — Sy, is a share-generation-algorithm, and

— Verify : C x S, x V — {accept, reject} is a verification-algorithm.

— Reconstruct : S}t;"l — § is a reconstruction algorithm which regains a secret
s from t 4+ 1 wvalid shares.

System Setup by T'. For a dealer D € D, T chooses a signing-key K € IC, and
for each player P; in P, T chooses a verification-key v; € V, then transmits the
keys via private channels to D and each P;. Fach player keeps the keys secret.
After delivering the keys, T never engages in the protocol again.

Share. On input of a secret s € S, D broadcasts a commitment ¢ € C where
¢ = Commiit(s, K) to all players. Then, each player P; computes his share s; € Sy,
where s; = Share(c, P;). A werification of the validity of the shares will not be
necessary in this stage as this can be quaranteed from the pre-distributed data.

Reconstruct. All the players {Py,Ps,...,P,} broadcast their shares
{s1,82,...,8n}. Each player P; checks if there exits a subset of players
{Pi,,P,,... P, } with Verify(c, s;,, Vi) = accept for allk =1,... ,t+1 where
t+1 is equal to or greater than the reconstruction threshold. If this is the case,P;
runs Reconstruct(s;,,...,s;,,) and outputs s, otherwise it outputs A.

The scheme is said to be secure if it satisfies the following properties[T]:

1. Termination: If the dealer D is honest then all the honest players complete
the Share protocol and if honest players decide to run the Reconstruct proto-
col after a successful run of the Share protocol they should generate output
(possibly A indicating that no secret could be reconstructed).

2. Secrecy: If the dealer is honest and no honest player has started Reconstruct,
them the adversary has no information about the secret s unless the recon-
struction threshold was chosen to be smaller than the number of players the
adversary can corrupt.

3. Correctness: Once the uncorrupted players complete the protocol Share,
there is a fixed value re S, so that the following requirement holds: If at
least ¢ + 1 players are willing to reconstruct the secret, each uncorrupted
player, with high probability, outputs r at the end of Reconstruct. If there
are more than n — ¢ Byzantine faults, all honest players output A and the
protocol terminates. Furthermore if the dealer was uncorrupted r = s.
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Remark 1. Note that our definition of security is slightly weaker than the defi-
nitions of security for VSS protocols with honest majority [I1]. In our definition,
cheating parties can prevent the completion of the protocol. When dishonest
majorities are in question, this situation cannot be avoided. If the protocol is
secure against adversaries which corrupt up to t parties, t > n/2, always n —t
parties will be able to abort the protocol.

3 A VSS Protocol Based on Pre-distributed Data

The protocol IT consists of the following sub-protocols: Setup, Share, Recon-
struct, and Verify. In the unconditionally secure protocol below the probability
of cheating successfully equals the probability to successfully guess an element
from the field over which computations are done. Hence we choose a prime power
¢ and the field GF'(q) with ¢ elements depending on the security parameter, e. g.,
g =2*.

For simplicity, we assume S = C = GF(q), K € GF(q)[z,y], ¥V = GF(q) X
GF(q)[z] as in the following construction.

The basic intuition behind the protocol is simple. The trusted center will
share a random value with the players in a way that each player is committed to
his share to each other player. When executing the Share algorithm, the dealer
changes this random number, to which he is committed by the pre-distributed
VSS, into a commitment to his secret.

Setup. A trusted center 7' randomly chooses bivariate polynomial f(z,y) €
GF(q)[z,y] such that

t+1 t+1

fz,y) = Z Zaijxiyja

i=0 j=0

where each coefficient a,; is randomly and uniformly chosen from GF(g), and
t + 1 is the threshold of the secret sharing scheme.

T sends the bivariate polynomial f(x,y) to the dealer D through a private
channel. Then T chooses for each player P;a random verification key (a secret
point) v; # 0 from GF(q), and sends v;, f(v;,y) and s;(z) = f(x,4) to P; through
a private channel]. After delivering these private keys, T' does not engage in the
rest of the protocol.

For the random “secret” a = f(0,0) the polynomial f(v;,y) will later be used
by P; to verify shares of other players and the polynomial s;(x) is the share of
the party P; for a.

! The index ¢ which is the “name” of a participant is here interpreted as a value of
GF(q). To have enough different names we need g > n.
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Share. In this stage of the protocol the shares of a random secret a as well as the
verification polynomials will be changed to shares and verification polynomials
for a specific secret s.

Let

t+1 t+1

gz, y) =YY bya'y’

i=1 j=1

denote a publicly known polynomial for which ¢(0,0) = 0. On input s for a secret,
the dealer D computes a value ¢ satisfying ¢ = s — a, where a is computed as:
a = f(07 O)

Then, D broadcasts the value c. Next each party P; calculates the polynomial
g(vi,y) + ¢ and adds it to the polynomial f(v;,y) which was obtained by P; in
the sharing phase to obtain the new verification function g(v;,y) + ¢+ f(vi,y)
for the shared secret s. The shares s(x) for the secret s will be computed by
adding g(z,1) to s;(x) = s(x, ) which was obtained by P; in the setup phase.

For the secret s = f(0,0)+¢(0,0)+c the verification functions and the shares
computed above have the same distribution as if s would have been equal to the
value a used in the setup phase.

As f(z,y) is chosen by the trusted center and g(z,y) is publicly known the
validity of the shares computed above is evident and need not be verified at this
stage.

Reconstruct. It is enough to show how a shared random secret a is recon-
structed. The notation will therefore be as in the setup phase. Each player P;
broadcasts his share s;(x) over the broadcast channel.

Verify
On receiving a share s;(z) from the player P; over the broadcast channel, each
player P; checks the share by checking the following equation:

ver;; = {accept if s5(v;) = f(vi, ) }

reject otherwise

If ver;; = reject, player P; broadcasts the message reject(j). If more ¢t + 1
players broadcast reject(j), the player P; is disqualified. It is easy to see that
(with high probability) all honest players will obtain the same result in the
verification procedure.

If n—t or more players are rejected, all the players output A and the protocol
terminates.

If less than n — t players are rejected, there will be a set of ¢ 4+ 1 valid shares
siy, (x), ..., s;, () in possession of each honest player P;,. Thus, the secret a =
f(0,0) can be reconstructed by Lagrange interpolation from s;,(0),... ,s;,,(0).

From this construction we will obtain the following result which we state
without proof.
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Theorem 1. The above protocol is a secure VSS in the commodity based model.

Note that in our protocol, for each player P; the secret “check” information
vi, 1 < 7 < n is never released, so it can be distributed only once for several
protocols (even with different dealers). The check information can hence be safely
reused within a bigger protocol and reduce communication from the trusted
center to the players.

Another interesting fact about this VSS scheme is that, given that each player
uses the same verification information v; in all of its executions, it is linear, that
is, the sum of two shares of two secrets becomes a verifiable share of the sum of
the secrets. We state the following proposition without proof.

Proposition 1. Denote by [s]; the pair of the verification function and the share
held by a player P; for a given secret s. Then for two secrets a,b shared with the
above VSS scheme using the same verification information v; for each player P;
and a value X € GF(q) it holds that [a]; + A[b]; = [a + Ab];.

Note that the commitment algorithm Commit(s, K) is very related to the
idea of check vectors. Pre-distributed commitments are very much similar to
Rabin’s “check vectors” [23]. The idea of a “check vector” is that a party A
provides some correlated secrets to parties B and C, and these secrets let B
send an authenticated message to C. This is similar to what we do, except that
the typical use of check-vectors in the literature, party A knows the message
(whereas in our constructions it does not). Thus, as party A need not know the
message when it distributes the check vectors, it can be used in an off-line way.

We note that the trusted center can share a random secret with the players.
Moreover, the trusted center can pre-distribute shares to secrets which have a
certain relation. This feature will be explicitly used in the next section as well
as in the protocols for secure multiparty computations.

4 Proving Polynomial Relations among Shared Secrets

A linear VSS can be seen as a linear commitment to the shared secret. Using
techniques from [21] it is possible to very efficiently prove polynomial relations
among shared secrets.

We denote by [a]; the pair of the verification function and the share the
player P; holds from the secret a.

For proving a linear relation among commitments one turns this relation into
a set of linear functions which all must equal zero when evaluated on the commit-
ted values if and only if the relation holds. Proving that a given linear function
evaluates to zero on committed values can be done by means of Proposition [T}
using the linearity of the VSS scheme one computes from the given commitments
a new commitment which represents the linear function evaluated on the given
commitments and this new commitment is then opened to be zero.

To be able to prove arbitrary polynomial relations on committed values we
will first restate a protocol from [21] which allows to compute a new commit-
ment which represents the product of two given commitments. This protocol



Unconditionally Non-interactive Verifiable Secret Sharing 363

can directly be applied to the linear secret sharing scheme presented here. The
protocol is called a distributed one time multiplication proof (DOTMP) and con-
sists of two phases: a pre-distribution phase where the trusted center shares
additional values among the players and a non interactive proof where the addi-
tional shared information is used to compute shares to the product of two shared
values without reconstructiong these.

Protocol DOTMP

— Initialization: The trusted center verifiably shares (with the players) three
random numbers /,1” and [”, such that I = [I’. Thus, each player P; receives
[l]z, [l/L and [l// = ll/]l

— Multiplication: Each player P; player now holds shares to three random
values [,1’ and ", such that I = [I’ as well as two shares [a]; and [b]; to
the values a, b which are to be multiplied, to obtain a share [ab]; to ab each
player P; computes [y]; = [a]; — [l = [a —1]; and [y/]; = [b): = [I'}; = [b—=1');
and together with the other players reconstruct y and y’. Now P; calculates
W); + yll)s + o' 1 + .

Using this protocol arbitrary polynomial relations can be proven analogously
to the linear relations. The polynomial relations are turned into a set of multivari-
ate polynomials which should simultaneously vanish on the committed values. To
prove that a polynomial vanishes on given committed values a new commitment
representing the polynomial evaluated at the given commitments is computed
step by step using the above multiplication protocal as well as addition and
scalar multiplication which are granted by the linearity of the VSS scheme. The
new commitment is then opened to be zero. Summarizing the above we obtain:

Proposition 2. For given shared values a,b,c and a constant A € GF(q) it is
possible to calculate shares for the value ab + Ac if and only if t + 1 players
cooperate.

FEspecially it is possible to give zero knowledge proofs for arbitrary polynomial
relations on shared values.

Proof. The security and correctness are obvious for the linear part and have only
to be proven for multiplicative relations, i.e., for the DOTMP protocol:

We now analyze the security and correctness of our protocol for proving
multiplicative relations among shares. To show that it is secure, note that the
players only learns the values y and y’, which give no information on a and b,
since [ and !’ are random numbers.

To show the correctness of our protocol, we note that [II'| +y[l'] +y'[l] +yy' =
[+ (a=D[+ 0=+ (a—1)(b=1") = [II'+al’ =1I'+bl—U'l4+ab—1b—1"a+1l'] =
[ab] (due to the linearity of the VSS).

By applying addition of shares and multiplication of shares we can obtain
shares for arbitrary polynomial relations among shares. E.g. to prove that mm’ =
m’ the dealer lets the players compute [mm'] — [m”] = [mm’ — m”] and shows
this to be zero.
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For adding two shared values or for multiplication with a constant no-one
has to know the shared values which are linearly transformed. Note that in
DOTMP, too, no-one has to know the shared values which have to be multiplied
in advance as the values y and y’ are reconstructed in the protocol. Hence an
arbitrary polynomial evaluation on shared values works iff t+1 players cooperate.
This is optimal as n—t players could abort the VSS scheme anyway. These linear
transformations and multiplications on shared values will be the building blocks
for the multiparty protocols presented in Section [Bl To obtain fair protocols we
need one more pre-distributed primitive: pre-distributed fair exchange of secrets.

5 Pre-distributed Fair Exchange of Secrets

In this section, we show how to use our VSS protocol so that n parties Py,... P,,
each one holding a secret x;, can exchange these secrets so that no cheating party
can, at the end of the protocol, have substantially more advantage over an honest
party. For definitions and more details see [9][13].

The basic idea here is that a trusted center pre-distributes, during a setup
phase, verifiable secret sharing (commitments) which can be gradually disclosed.
In the following protocols, a cheating party which leaves the protocol before it
is terminated achieves an advantage of at most a polynomial fraction of a bit.

Each party P; holds a secret x; and each party has shared its secret with all
the other players. So, besides his own secret, each player holds shares (including
the verification information) of all the other players secrets. Denote the share
of the secret x; in possession of player P; by [z;];. A multiparty fair exchange
of secrets in the commodity based model is a protocol where a trusted center
pre-distributes some information to a set of players Py, ..., P, during a setup
phase and later on, P;,..., P, run a sub-protocol Fair Exchange. At the end of
Fair Exchange the following conditions hold:

— If all the parties are honest and follow the protocol, each party will know all
the z;,1 <i <n.

— A cheating party which leaves the protocol before it is terminated has an ex-
tra knowledge over honest parties of at a fraction of a bit which is polynomial
in the security parameter k.

The protocol consists of two phases: Setup and Fair Exchange. We assume
that the players have already verifiably shared their secrets using the protocol
we described above. All computations are done over GF(q).

Setup

— The trusted center sends to each player a random number r;.

— The trusted center verifiable shares each r; with all the players.

— Let ri1,..., 7 pk) be astring of bits chosen at random such that each prefix
7i1,-..,7;; of this string contains I/p(k) bits of information on the random
number r; € GF(q). For 1 < k < p(k) and 1 < i < n the trusted center
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verifiably shares r; j, with all the players. So, at the end of the setup phase,
each player P; possesses his own secret x;; shares of all the other players
secrets, [z;];,1 < j < n; a random value r; and shares for each bit of the
above binary string representation of each random number associated to the
other players [r; x],1 < k <log,p and 1 < i < n. We call these data which
is distributed during the setup phase a one-time distributed fair exchange
(OTDFE).

Fair Exchange

— All the players compute shares to a; = z; —r;, 1 < i < n. Due to the linearity
of the VSS, each party P;, 1 < j < n only computes [z;]; —[ri]; = [z; —7i]; =
[ail;-

— All the players reconstruct a;, 1 < ¢ < n. Thus, from now on, all the a; are
public values.

— For k=1 to p(k) do:

e For i =1 ton do:
* Reconstruct the secret r; j. If n — ¢ or more parties refuse to recon-
struct a r;, the protocol is aborted.

— If all the r; ,, were successfully recovered, each party computes r7;,1 < i < n.
Together with the a;, 1 < i < n it gives full knowledge of each secret x; to
all the parties.

From the construction it is obvious that we obtain the following result for
the above fair exchange protocol:

Proposition 3. Let {Py,..., P,} be a set of players holding correct shares of a
secret s, then the above fair exchange protocol either terminates with output s for
all honest players or any t-subset of players aborting the protocol can only have
an advantage of a fraction of a bit which vanishes polynomially in the security
parameter k.

There is a more efficient variant of the above scheme. The bits r; 1,...,7;m
can be shared as elements of a smaller field than GF(q). This increases the
probability with which a party can successfully present faulty shares, but this
does not compromise the asymptotic security. The advantage an aborting party
may have over other parties is polinomial in k, whereas the probability of being
able to successfully present faulty shares decreases exponentially in the length
of the representation of GF'(q). Hence there is for a fixed maximal advantage for
aborting parties a trade-off between the length of the expansion r;1...,7; )
chosen for the fair exchange and the size of the field over which the bits are
shared. For this modification it is important that correctly guessing one value
of the (smaller) field does not allow a party to present many faulty shares. To
avoid this one can choose the verification information v; of a player P; newly
for each shared bit r; ;. Of course this implies that the shared bits r; 1 ..., 75 ,)
do not exhibit any linearity any more, but this is not needed for fair exchange
anyway.
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6 Secure Multiparty Computations

In this section we will sketch a simple way to obtain multiparty protocols for se-
cure function evaluation from the VSS scheme presented. For details concerning
multiparty protocols we refer to the literature, e. g. [TTATHIT3ITI].

Intuitively a multiparty computation is a protocol by which n interacting
Turing machines can map n—tuples of inputs (one input held by each party)
into n—tuples of outputs (one held by each party). Such a computation will be
considered secure if it is private, correct and fair [I4], informally these properties
are:

Private: No party learns anything more than what can be computed from the
own input and the output of the protocol.

Correct: The output received by each party is guaranteed to be the output of
the specified function.

Fair: Corrupted parties should receive an output iff honest parties do.

The fairness requirement is usually relaxed in the faulty majority scenario.
We assume that the additional information a corrupted party has about the
computation’s output can be made arbitrarily small in a security parameter k.

The secure multiparty protocols presented here have four stages. A setup
phase where the trusted center pre-distributes data. An input phase where the
players receive inputs and commit to these by VSS. A computation phase where
linear transformations and multiplications are performed on shared values, but
no information about the inputs is revealed. And the opening stage during which
the relaxed notion of fairness described above has to be ensured.

Setup Phase. In this stage, all the players contact the trusted center and re-
ceive pre-distributed verifiable secret sharing, DOTMP and OTDFEs. An upper
bound on the number of commodities needed must be known in this stage. We
call the union of these primitives a One-Time Distributed Computation.

Input StagePhase. The players receive inputs from GF(q) and share their
inputs with the given commodities for VSS as described in the main part of this
paper. As each dealer is a participant of the secure computation as well this
party has to compute a share of his own from the pre-distributed data.

Computation Phase. During the computation stage, the players evaluate an
arithmetic circuit gate by gate using the linearity of the VSS for linear transfor-
mations and the DOTMP protocol for multiplications. Note that computations
are necessary on intermediate results as well. Intermediate results are shared
among the players, but not known to any player hence it is important that the
linearity of the VSS and the DOTMP protocol can be used even if no-one knows
the contents of the shared secrets involved.
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Opening Phase. All players reconstruct the result of the computation. To
ensure fairness the pre-distributed protocols for multiparty fair exchange can be
used.

The security of the multiparty protocol can be derived from the security of

each sub component of the protocol (VSS, DOTMP, OTDFEs).
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