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Abstract. We propose a novel framework named Hidden Colored Petri-
Net for Alert Correlation and Understanding (HCPN-ACU) in intrusion
detection system. This model is based upon the premise that intrusion
detection may be viewed as an inference problem – in other words, we
seek to show that system misusers are carrying out a sequence of steps
to violate system security policies in some way, with earlier steps prepar-
ing for the later ones. In contrast with prior arts, we separate actions
from observations and assume that the attacker’s actions themselves are
unknown, but the attacker’s behavior may result in alerts. These alerts
are then used to infer the attacker’s actions. We evaluate the model
with DARPA evaluation database. We conclude that HCPN-ACU can
conduct alert fusion and intention recognition at the same time, reduce
false positives and negatives, and provide better understanding of the
intrusion progress by introducing confidence scores.

1 Introduction

Intrusion detection system (IDS) is originated as a mechanism for managing the
detection of system misuse through the analysis of activity [3]. A typical state-
of-the-art IDS detects intrusions by analyzing audit data from various sources
(hosts and networks) and alert users or defense systems automatically when
possible intrusive behaviors are observed. A key factor in determining an effective
IDS is its ability to properly correlate information drawn from appropriately
placed IDS sensors due to the following three reasons. First, IDS sensors can
generate massive amount of alerts [17], if they have a high sensitivity to potential
misuse; examining these alerts is costly and not all of this information leads
to good decisions. Second, the false positive rate is one of the most serious
problems with current IDSs [2,4]. Third, false negatives are another problem –
those intrusions missed by the IDS may later result in damage to the system.
Given these, intelligent analysis of activity is critical to the overall success of the
IDS. Alert Correlation and Understanding (ACU) can improve the effectiveness
of the IDS by examining how the outputs of IDS sensors (the alerts) may be
used to better identify misuse and develop response plans.

Current approaches in ACU can be classified into two primary categories:
alert fusion and intention recognition. Alert fusion, also known as aggregation,
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or clustering, is to aggregate similar alerts from multi-sensors into so called meta-
alerts (or hyper-alerts) based on feature similarities, with the hope to enhance the
quality of the resulting information [35,33,9,10,20,6,17,29]. The fusion process
usually involves the merging of the features of the two alerts. For example,
alerts from the same sensor and belong to the same attack (identified by the
same source and target IP address) are considered similar alerts [33]. In alert
fusion, alerts are first classified into alert clusters that correspond to the same
occurrence of an attack based on similarity. Each cluster is then merged and a
new, global alert is generated to represent the whole cluster [9,29]. The main
purpose of the alert fusion is to reduce the number of alerts to be provided to
the administrators and reduce the false positives to some extent [10].

In contrast, intention recognition (or attack plan recognition) [16,32,13,12,7,
8,26,27] seeks to recognize an attacker’s intention from the alerts. The emphasis
here is to give administrators and active reactors better understanding of on-
going activities so that they can make appropriate responses. The importance
of intention recognition is not so much in the “average” generic attack on a
system, but for instances where it is important to more fully identify complex,
multi-stage scenarios. Detecting an attacker’s plan at an early stage would make
it easier to prevent the attacker from achieving his/her goal. Intention recogni-
tion is also aimed to reduce some false positives during correlation; further, it
should be possible to increase true positives (therefore reducing false negatives)
by inferring the existence of attacks during correlation.

Some of these technologies have already been implemented in Commercial
Off The Shelf (COTS) intrusion detection tools from companies such as Net-
forensics, Q1, Object neworks, and Arcsight, to name a few. However, current
ACU approaches have several limitations:

– Alert fusion and intention recognition are usually two separate steps. Inten-
tion recognition approaches are applied on the result of alert fusion [9].

– Uncertainty information is usually not used in the ACU process. For exam-
ple, the rate of false positives and false negatives would provide some hint
on whether a conclusion that an attacker did take some action can be drawn
reliably when an alert was observed. Other sources of uncertainties include
trustworthiness of alerts gathered from different sensors.

– No confidence score is associated with the ACU’s outputs.

In this paper, we propose a novel framework named Hidden Colored Petri-
Net for Alert Correlation and Understanding (HCPN-ACU). This model is based
upon the premise that intrusion detection may be viewed as an inference problem
– in other words, we seek to show that system misusers are carrying out a se-
quence of steps to violate system security policies in some way, with earlier steps
preparing for the later ones. We assume that the attacker’s actions themselves
are unknown, but the attacker’s behavior may result in alerts. These alerts are
then used to infer the attacker’s actions. In this paper, we discuss how HCPN
can model the attacker’s behaviors, intrusion’s prerequisites and consequences,
security policies, and the alerts. We argue that HCPN-ACU can conduct alert
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fusion and intention recognition at the same time, reduce false positives and
negatives, and provide better understanding of the intrusion progress.

The remainder of the paper is organized as follows. In section 2, we introduce
the background and motivation of this research. Specifically, we discuss the task
of ACU and the limitations in current ACU approaches. In section 3, we pro-
pose the HCPN- framework to model the ACU inference process, present basic
theories related to the inference process, and describe how HCPN-ACU works.
We introduce the inference and learning algorithms in section 4, and evaluate
our system with the DARPA intrusion detection evaluation database in section
5. In section 6, we conclude this paper.

2 Background and Motivation

ACU is increasingly gaining attention as an area of research due to the following
two reasons: the potential to improve efficiency by reducing the number of alerts
that an IDS would generate to more manageable levels while still retaining strong
detection capacities, and the potential to improve IDS correctness by reducing
the false positives and negatives in the alerts generated by the IDS sensors and/or
low level heterogeneous IDSs.

Fig. 1 depicts the architecture of an IDS that contains the ACU component.
In this architecture, audit data are first analyzed and alerts are generated. These
alerts are then fed as the observations into the ACU component. We can consider
ACU as a second level analyzer or booster that uses the first level analyzers’
results as inputs.

 

Alerts 

Raw Audit Data 

ACU 

A
nalyzer

A
nalyzer

A
nalyzer

A
nalyzer

Sensors

Sensors

Sensors

Sensors

Fig. 1. The Architecture of an IDS that contains ACU

Three tasks are associated with ACU: aggregating alerts to reduce the total
number of alerts presenting to the administrators and active reactors; reducing
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false positives and negatives; and understanding the attacker’s intrusion behavior
and plan.

ACU is usually conducted as two steps: First, similar alerts from multi-
sensors are aggregated into so called meta-alerts (or hyper-alerts) based on fea-
ture similarities. These meta-alerts are then correlated based on the prerequisite-
consequence relationships [7,8,26,27].

Let’s examine how current approaches work using the Distributed Denial of
Service (DDoS) attack as an example. Assume that an intruder needs to conduct
the following five steps to launch a DDoS attack:

1. IPsweep the hosts from a remote site;
2. Probe (SadmindPing) live IPs to look for the sadmind daemon running on

Solaris hosts;
3. Break into some of the hosts via the sadmind vulnerability (SadmindBOF);
4. Install the Trojan mstream DDoS software on some of the hosts;
5. Launch the DDoS.

To correlate alerts with current ACU approaches, security experts build a
set of rules that describe each action’s prerequisites and consequences. In other
words, each action is associated with a set of prerequisites that must be met be-
fore the attacker can take the action, and a set of consequences that the action
would lead to. Table 1 lists the prerequisites and consequences of the Sadmind-
Ping action and the sadmindBOF action. From the table, we can see that the
intruder can conduct the SadmindPing action only if he/she already knows that
the host exists. As a result of probing, the attacker would know whether the
sadmind daemon is running on the host. Similarly, an intruder usually launches
the sadmind attack only if he/she already knows that the sadmind daemon is
running on the host. After launching the attack, the intruder compromises the
host.

Table 1. Prerequisites and consequences of actions SadmindPing and sadmindBOF

Action Prerequisites Consequences

SadmindPing Knowledge that the host exists
Knowledge that the sadmind
daemon is running on the host

SadmindBOF
Knowledge that the sadmind
daemon is running on the host

The host is compromised

Let us consider the following three ACU scenarios. To make discussion easier,
we assume that SadmindPing’s prerequisites are always met and no other action
other than SadmindPing would provide the prerequisites for SadmindBOF.

Scenario 1: alert SadmindPing and alert SadmindBOF are both issued by
the low level analyzers. A typical ACU component will correlate these two alerts
since the set of consequences of SadmindPing contains all the prerequisites of
SadmindBOF.
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Scenario 2: alert SadmindBOF is issued by the low level analyzers
but alert SadmindPing is not. A typical ACU component will consider
alert Sadmind-BOF as a false positive since the prerequisites of SadmindBOF
are not met.

Scenario 3: alert SadmindBOF is issued by the low level analyzers ten times
but alert SadmindPing is not issued. A typical ACU component will first aggre-
gate the ten alert SadmindBOF into one hyper alert SadmindBOF and then
correlate the hyper alert SadmindBOF with other alerts. Since the prerequisites
of SadmindBOF are not met, alert SadmindBOF is considered a false positive.

From these scenarios, we can observe three issues in current ACU approaches:
First, in current approaches, IDS’s observations (alerts) are not distinguished

from an attacker’s real actions. This can be easily noticed when we examine the
correlation process – alerts are correlated based on actions’ prerequisites and
consequences directly. An action is assumed to have happened iff the correspond-
ing alert is issued and the prerequisites of the action are met.

However, alerts and actions are not one to one mapped. Due to false posi-
tives, the low level analyzers may issue alert SadmindBOF while no Sadmind-
BOF action is actually conducted. This suggests that the co-occurrence of
alert Sadmind-Ping and alert SadmindBOF in scenario 1 does not necessarily
mean that SadmindBOF is really carried out by the intruder. Similarly, due to
false negatives, SadmindPing might be missed by the low level analyzers and no
alert is issued. This suggests that issuing alert SadmindBOF alone, as what hap-
pened in scenario 2, does not necessarily mean that SadmindBOF is not taken
by the attacker. Table 2 summarizes these two error conditions.

Table 2. Conditions in which the current ACU approaches may generate errors

Scenario Alerts Issued ACU Result Failure Condition
Scenario 1 alert SadmindPing,

alert SadmindBOF
Both SadmindPing and
SadmindBOF have hap-
pened

When alert SadmindBOF
is a false positive

Scenario 2 alert SadmindBOF SadmindBOF did not
happen

When alert SadmindPing
is a false negative

Note that the reason ACU errors occur here is that alerts are treated the same
as actions during the correlation process. Information such as false negative rate
and false positive rate of that action is not used in the correlation process.

Second, the number of the occurrence of the same alert is not used in the
correlation process due to the two-step strategy in current ACU approaches.
The drawback of this limitation can be observed when comparing scenario 3
with scenario 2. We would guess that the action SadmindBOF very likely has
happened in scenario 3 since the alert SadmindBOF is issued ten times; while
it less likely has happened in scenario 2, where alert SadmindBOF is issued
only once. However, as we already discovered, current ACU approaches typically
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generate exactly the same result in both scenarios. The number of the occurrence
of alert SadmindBOF does not affect the correlation result.

Third, no confidence scores are provided in the current ACU approaches.
Alerts are either correlated and should be delivered to the administrators, or not
correlated, considered as false positives, and discarded. Using scenarios 2 and 3
as examples, confidence scores would aid administrators and active reactors to
better understand the whole attack picture.

3 The Hidden Colored Petri-Net Framework

In this section, we propose a novel framework named Hidden Colored Petri-Net
for Alert Correlation and Understanding (HCPN-ACU). HCPN is our exten-
sion to Colored Petri-Net (CPN) [19]. CPN has been used in modeling Discrete
Event Dynamic Systems (DEDS) such as “communication protocols, operat-
ing systems, hardware designs, embedded systems, software system designs, and
business process re-engineering” [21]. It has also been introduced to model the
intruder’s misuse behaviors [11,22,23].

An HCPN-ACU is an 11-tuple HCPN = (Σ, Q, D, A, O, G, E, Π0, ∆, Γ, Θ),
where:

1. Σ (color set) is a non-empty finite set of agents;
2. Q (place set) is a finite set of resources;
3. D (transition set) is a finite set of actions agents might take;
4. A (arc set) is a finite set that A = A1 ∪ A2, where A1 ⊆ (Q × D), and

A2 ⊆ (D × Q);
5. O (observation set) is a set of observations. It can be alerts or raw audit and

traffic data;
6. G (guard function set) is a set of guard functions associated with arcs A1,

such that G =
{
g : A1 → SM(Σ)

}
. Guard functions represent the conditions

to be met before an action can be conducted by the agents.
7. E (effect function set) is a set of effect functions associated with arcs A2, such

that E =
{
e : A2 → SM(Σ)

}
. Effect functions represent the agent-resource

relationship change due to an action.
8. Π0 (initial marking distribution) is the initial agent-resource ownership prob-

ability distribution Π0 = P0
(
Q, SM(Σ)

)
=

{
π :

(
Q, SM(Σ)

) → [0, 1]
}
.

9. ∆ (transition probability) is the probability that actions might be conducted
next: ∆ = P (D will be fired next|D is enabled) = {δ : D → [0, 1]}

10. Γ (observation probability) is the probability that O is observed given action
D and is defined as Γ = P (O|D) = {γ : (D, O) → [0, 1]} .

11. Θ (tolerance) is the tolerance function used to determine whether two states
are indistinguishable.

In HCPN-ACU, a token element (q, c) stands for the fact that the agent c
has access to resource q. An enabled transition means that the prerequisites of
the corresponding actions are met. The marking distribution Π represents the
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agent-resource ownership probability. The progress of intrusion is represented
by the change of marking distribution along time.

The HCPN-ACU can be further simplified with the following default settings
due to the nature of the IDS:

1. Use a transition named normal to absorb the false positives.
2. The number of token elements (q, c) does not affect the agent-resource own-

ership. For this reason, we need to consider only the probability {(q, c)} ≤ M
and don’t distinguish between one single token element and multiple ones.

3. All guard functions need only to care about the probability {(q, c)} ≤ M
with the same reason.

4. We may add in the model an arc from the transition to each input places
to indicate that the carrying out of the action would also affect the input.
With these additional arcs, the system will be able to automatically infer
that the input places have been compromised if the action is determined to
have been taken. Thus, the model has potential to infer missing alerts from
other alerts to reduce false negatives.

Let us use the local-to-root (L2R) attack from [16,11] as an example. The
attack involves four actions: copy, chmod, touch, and mail. Each action would
grant the access of one resource to the attacker. Fig. 2 depicts the HCPN-ACU
model of this L2R attack. There are five transitions in the graph. Transitions
are used to model the actions copy, chmod, touch, and mail; a special transition
named “normal” is used to model the unintrusive actions. Six places are used
in the figure to represent resources involved. The place q1 is a special place to
model the resource that would be accessible to all agents. Arcs in the figure
describe the prerequisites and consequences of actions. For example, an attacker
needs to hold both q4 and q5 to be able to conduct the mail action. After the
mail command is issued, the attacker would be able to hold q6. Each attacker is
assigned a color. For instance, user1 might be represented as red. If q3 is dyed
with red, q3 is compromised by user1.

Although the HCPN-ACU also describes the prerequisites and consequences
of actions, there are several differences between HCPN-ACU and the ACU ap-
proaches discussed earlier in this paper.

First, instead of assuming a one-to-one mapping between alerts and actions,
we assume that the low level analyzers may observe each action as different alerts
with different probabilities (named observation probabilities). These probabili-
ties are induced from the false positive rate and false negative rate of each action.
For example, the copy action might be observed as alert copy, alert touch, or nor-
mal (simply missed). For this reason, the correlation results in HCPN-ACU are
determined by alerts, the observation probabilities, and the number of each kind
of alerts.

Second, HCPN-ACU presents the compromised resources instead of alerts
to the administrators and active reactors. Since the number of compromised
resources is usually much smaller than the number of alerts, this can effectively
reduce the amount of data passed to the administrators and active reactors.



A Novel Framework for Alert Correlation and Understanding 459

 

normal 

q4 q6 

copy 
q1 

q2 

q3 

q5 touch 

chmod

mail 

Alert 1
Alert 2

Alert N

Fig. 2. An Example HCPN-ACU Model for the L2R Attack

Presenting compromised resources also helps administrators and active reactors
to pick up a wise reaction.

Third, HCPN-ACU not only presents the compromised resources but also
indicates the probability that a specified resource has been compromised by a
specific intruder.

Three assumptions are made in HCPN-ACU:
First, the action prerequisites and effects are known as domain knowledge.

This assumption is reasonable since the prerequisites and consequences of the
alerts are usually known when the alerts are defined in an IDS,. All intention
(or plan) recognition approaches are based on this assumption and they usually
include this knowledge as rules in a database [7].

Second, the initial probability of resources owned by the agent can be deter-
mined by the system through such ways as policy and logon credentials. To deal
with the situation where information is incomplete, we can assign a small prob-
ability to all agent/resource pairs using smoothing technology [31] to indicate
that each resource may be accessible by an agent through unknown approaches.

Third, agents do not cooperate with each other. With this assumption, we
can represent agents (identified as different source IPs and user IDs) with dif-
ferent colors and consider them separately. This assumption is valid for many
intrusion cases because many attacks happened today are launched by isolated,
script-based intrusion such as worms1. However, this assumption is not valid
for sophisticated intrusions where a skilled attacker controls several agents and
attacks the same system at the same time. To handle attacks launched by coop-

1 We perceive that future worms may act as cooperative agents and would thus be
more dangerous.
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erating agents, an improved model is needed to correlate cooperating agents as
“one” agent. We consider this as our future work.

4 Inference and Learning Algorithms

In this section, we briefly introduce the algorithm to infer an attacker’s most
probable action sequence given the model and the observations, as well as the
algorithm to learn the model’s parameters based on intrusion logs.

4.1 Basic Operations

In HCPN-ACU, a transition (action) is enabled iff all input places (prerequisites)
satisfy the guards. In other words, given a marking distribution Πt, the prob-
ability that a transition d ∈ D is enabled can be determined by the following
calculation:

P (E (d) |Πt) = P (d is enabled|Πt) = P

(
∧

q∈I(d)
(Πt (q) ≥ G (a = (q, d)))

)

=
∏

q∈I(d)

P (Πt (q) ≥ G (a = (q, d))) =
∏

q∈I(d)

πt (q) . (1)

Similarly, a place q will be compromised by the color c iff it’s compromised
by c or at least one of the transitions (of which q is an output place) is enabled.
Given a state St = (Πt, ∆t), the probability that a transition d ∈ D will be fired
next without knowing the observation can be determined by this calculation:

δ
′
t (d) = P (D = d|Πt) = δ (d) P (E (d) |Πt) = δ (d)

∏

q∈I(d)

πt (q) . (2)

δt (d) =
δ

′
t (d)

∑

d′
δ

′
t (d′)

. (3)

Given the state St−1=( Πt−1, ∆t−1) and an observation Ot, the probability
that the action d is taken is denoted as P (Dt = d|St−1, Ot) and can be deter-
mined by the following calculation

P (Dt = d|St−1, Ot) =
P (Dt = d, Ot|St−1)

P (Ot|St−1)

=
P (Dt = d|St−1) P (Ot|Dt = d, St−1)

P (Ot|St−1)
. (4)

Because P (Dt = d|St−1) is equal to δt−1 (d) and Ot is independent of St−1
given Dt, the above equation becomes:

=
δt−1 (d) P (Ot|Dt = d)

P (Ot|St−1)
=

δt−1 (d) γ (Ot|d)
∑

d′ ∈D

δt−1 (d′) γ (Ot|d′)
. (5)
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4.2 Inference Problem

The inference problem (the correlation process) can be stated as follows: Given
observations O1,O2, · · · , Ot, and the model parameter λ, which action sequence,
represented by D1,D2, · · · , Dt, is most likely to have produced O from λ? That’s
to say, which sequence of state transitions is most likely to have led to this
sequence of observations? In other words, we want to optimize the following
criteria:

arg max
D

[P (D|O, λ)] = arg max
D

[
P (O|D, λ) P (D|λ)

P (O|λ)

]
. (6)

Since the term P (O|λ) is not related to D, we can discard it when selecting
paths. So we need to only optimize:

arg max
D

[P (O|D, λ) P (D|λ)] = arg max
D

P (O, D|λ) . (7)

This problem can be solved with dynamic programming (DP) by defining
ωt (j) as the maximum score of a length t state sequence ending in action j and
producing the first t observations from O, as shown in the following equation:

ωt (j) = max
D1···,Dt−1

P (O1, · · · , Ot, D1, · · · , Dt−1, Dt = j|λ) . (8)

where δi
t−1 (j) ≈ P

(
Dt = j|S′

t−1, λ
)

and S
′
t−1 is the state corresponding to

ωt−1 (i).

4.3 Model Parameter Estimation Problem

The model parameter estimation problem can be stated as: Given observations
O1, O2, · · · , Ot, the model structure, and associated attacks, how can we estimate
the model parameters so that the model best explains the known data.

We solve this problem with Expectation Maximum (EM) algorithm [25].
The EM algorithm consists of two major steps: an expectation step (E-Step),
followed by a maximization step (M-Step). In the E-Step, the unobserved data
(transitions in HCPN) is estimated based on the current model parameters λk.
In the M-Step, Maximum Likelihood (ML) estimation is used to estimate model
parameters λk+1 using estimated data. This process is iterated until the segmen-
tation is fixed. In our current system, we assume that the initial probabilities are
determined based on the security policies. We need to estimate the observation
probabilities and transition probabilities. Likelihood of observations given the
observation probability θ = γ (o|d) is defined as:

L (γ, d) =
∑

i

ln (P (Oi|γ, d)) =
∑

Oi=o

ln γ +
∑

Oi �=o

ln (1 − γ)

= N ln γ + L ln (1 − γ) . (9)
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where N is the number of instances that O is observed when transition d is
taken and L is the number of instances that O is NOT observed when transition
d is taken. Observation probability is chosen to maximize the above likelihood
as shown in the following equation:

∂L (θ, d)
∂θ

=
N

θ
− L

1 − θ
= 0 ⇒ (N + L) θ = N ⇒ θ =

N

(N + L)
. (10)

Transition probabilities can be estimated similarly.

5 Experiments on DARPA Dataset

We have developed an off-line alert correlation system based on our HCPN-
ACU framework and performed several experiments using the two DARPA 2000
intrusion detection evaluation datasets [24]. Each dataset includes the network
traffic data collected from both the DMZ and the inside part of the evaluation
network. In the datasets, attackers probe, break-in, install the DDoS daemon,
and launch DDoS attacks.

Instead of running our low level analyzers to generate alerts, we used alerts
generated by RealSecure Network Sensor 6.0 as what Ning et. al. [28] did: “In
all the experiments, the Network Sensor was configured to use the Maximum
Coverage policy with a slight change, which forced the Network Sensor to save
all the reported alerts.” We choose to use RealSecure Network Sensors because
attack signatures used in RealSecure Network Sensor 6.0 are well documented,
and Ning et. al. already have a set of rules to describe action’s prerequisites and
consequences.

In the experiments, we used the second dataset and one set of data (associated
with one host) from the first dataset as the training set. We do this because the
second dataset is lack of representative data. We used the first dataset as the
testing set. We performed two sets of tests, one on the DMZ traffic and one on
the inside network traffic.

The HCPN-ACU model used in the experiments consists of 20 places (re-
sources), 29 transitions (actions), and 28 alerts. The actions used in the experi-
ments have the same names as the alerts. However, each action might be observed
by the sensors as different alerts. We used 0.02 as the initial probability for all
resources other than the resource known to all users - SystemExisits. The train-
ing takes less than 20 seconds and the inference takes less than 5 seconds for
about 900 alerts on a Celeron 1.0GHz PC.

As mentioned in section 3, our HCPN-ACU system outputs resources com-
promised instead of alerts themselves. Table 3 lists the correlation result for the
inside network traffic. From the table we can see that the attacker has installed
daemons on hosts 172.016.112.010, 172.016.112.050, and 172.016.115.020, and
ready to launch the DDoS attack. Note, however, our system does not report
that it’s ready to launch DDoS attack on host 172.016.115.020 due to false neg-
atives.
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Table 3. Correlation results for the inside traffic

Host Place Name Probability
172.016.112.010 SystemCompromised 1.00

VulnerableSadmind 0.66
DaemonInstalled 0.55

ReadyToLaunchDDOSAttack 0.95
172.016.112.050 SystemCompromised 1.00

VulnerableSadmind 0.66
DaemonInstalled 0.55

ReadyToLaunchDDOSAttack 0.95
172.016.115.020 SystemCompromised 1.00

VulnerableSadmind 0.66
DaemonInstalled 0.80

131.084.001.031 DDoSHappened 0.90

Table 4 shows the detection and false alert rates for RealSecure Network
Sensor 6.0. Table 5 shows the experiment results of our approach. We separated
them into two tables because our approach presents different information.

Table 4. Detection Rate (DR) and False Alert Rates (FAR) for RealSecure Network
Sensor 6.0: AD = Attacks Detected; RA = Real Attacks

Dataset # of Attacks # of Alerts # of AD DR # of RA FAR
DMZ 89 891 51 57.30% 57 93.60%
Inside 60 922 37 61.67% 44 95.23%

Table 5. Detection and False Positive Rates (FPR) for HCPN-ACU: CR = Compro-
mised Resources; T = True; D = Detected

Dataset # of CR # of CR Shown # of D CR Detect Rate # of T CR FPR
DMZ 12 15 12 100.00% 12 20%
Inside 13 12 12 92.31% 12 0%

We counted the numbers in Table 4 the same way as what Ning et. al. did [28].
When counting the compromised resources in Table 5, we noticed that the at-
tacker tried Sadmind Amslverify Overflow towards the targets 172.016.114.010,
172.016.114.020, and 172.016.114.030. No additional attacks were carried out
against these hosts. This suggests that the Sadmind Amslverify Overflow at-
tacks were failed. However, since our rules indicate that the consequence of the
Sadmind Amslverify Overflow attack is SystemCompromised, our HCPN-ACU
would report that these hosts are compromised. In our calculation, we consid-
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ered these reports as false positives. These false positives might be eliminated
by using the system configuration information in the prerequisites.

From Table 4 and 5, we can clearly observe that HCPN-ACU can reduce the
number of “alerts” presented to the administrators and active reactors, improve
the detect rate, and reduce the false positive rate.

6 Conclusions and Future Work

In this paper, we described a novel framework named HCPN-ACU for the alert
correlation and understanding task. We showed that HCPN-ACU has the fol-
lowing features:

– It combines alert fusion and intention recognition in one system.
– It presents resources compromised to show the progress of an attack instead

of alerts themselves. Since the number of resources compromised are much
smaller than the number of alerts generated, HCPN-ACU can reduce the
number of alerts shown to the administrators and active reactors.

– It can reduce false positives with a special transition named “normal action”.
In the inference process, false positives are automatically associated with this
transition.

– It can reduce the false negatives because later alerts would increase the
probability that a missing action has happened.

– It provides confidence scores to the detection result by assigning probabilities
to each mark indicating how likely an attacker has compromised a resource.

– The inference process is very efficient and the HCPN can be organized in
layers to scale up. This makes it applicable in real world systems.

We perceive three weaknesses of HCPN-ACU. First, it requires the knowledge
of the alerts and the system to be protected. For large networks, complete system
information may not be easily available. Second, it requires training data to learn
the system parameters. Training data might be difficult to get in real system.
Third, a careful intruder may fool the system by carrying out specially designed
steps.

Our system can be improved in the following two areas:

– Experiments on alerts from multiple sources: Our current experiments
are carried out on DMZ and inside network traffics separately. It would be
interesting to see the results using the information from both sources.

– Detection of coordinated attacks: One of the major assumptions in the
current framework (and all other intention recognition based approaches) is
that no attacks are cooperative. This may not be true when sophisticated
attacks happen. To eliminate this assumption, we plan to integrate attacker
correlation into the HCPN.
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