
An Improved Algorithm for uP + vQ
Using JSF1

3
�

BaiJie Kuang, YueFei Zhu, and YaJuan Zhang

Network Engineering Department Information Engineering University,
Zhengzhou, 450002, P.R.China

{kbj123,zyf0136,springzyj}@sina.com

Abstract. Techniques for fast exponentiation (multiplication) in vari-
ous groups have been extensively studied for use in cryptographic prim-
itives. Specifically the joint expression of two exponents (multipliers)
plays an important role in the performances of the algorithms used. The
crucial optimization relies in general on minimizing the joint Hamming
weight of the exponents (multipliers).
J.A.Solinas suggested an optimal signed binary representation for pairs
of integers, which is called a Joint Sparse Form (JSF) [25]. JSF is at
most one bit longer than the binary expansion of the larger of the two
integers, and the average joint Hamming density among Joint Sparse
Form representations is 1/2.
This paper extends the Joint Sparse Form by using a window method,
namely, presents a new representation for pairs of integers, which is called
Width-3 Joint Sparse Form (JSF3), and proves that the representation
is at most one bit longer than the binary expansion of the larger of
the two integers and its average joint Hamming density is 37.1% via the
method of stochastic process. So, Computing the form of uP + vQ by
using JSF3 is almost 8.6% faster than that by using JSF.

1 Introduction

Known to all, the design of the Public Key Cryptosystem mostly depends on
the particular algebra construction. The basic public-key operation in a finite
field Fq is to compute ga for a given element g ∈ Fq and a positive integer
a. This is typically accomplished by the the binary method [6], based on the
binary expansion of a. The method requires ∼ l/2 general multiplications and
∼ l squarings (on average). (l = �log2 q�).

More generally, it is needed to evaluate expressions of the form gahb. In par-
ticular, most common digital signatures (RSA,ECDSA) are verified by evaluating
an expression of the above. This is typically accomplished by the Straus’ Meth-
ods [5,6,2]. The method requires ∼ l general multiplications and ∼ l squarings
(on average). After then, numerous methods of speeding up scalar multiplication
have been discussed in the literature; for a survey, see [8].
� This work was supported by NSF(No.90204015), Found 973(No.G1999035804), and

Elitist Youth Foundation of HeNan Province(No.021201400) in China.

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 467–478, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

468 B. Kuang, Y. Zhu, and Y. Zhang

While on general Elliptic Curve E(Fq), P = (x, y) ∈ E(Fq), then −P =
(x,−y). Thus point subtraction is as efficient as addition. This property moti-
vates using a signed binary expansion (allowing coefficients 0 and ±1). A partic-
ularly useful signed digit representation is the non–adjacent form (NAF) [3,24].
By using a window method, one processes some other signed digit representation,
called the width–w nonadjacent form (NAFw) [1,3,8,24]. (when w=2, NAFw is
equivalent to NAF). There is a simply and efficient algorithm for presenting
NAFw of any integer. When computing kP , the method requires ∼ l/(w + 1)
general point additions and ∼ l doubles.

Furthermore, many Elliptic Curve Cryptosystems require the computation of
the form uP +vQ, where P, Q are points on an elliptic curve and u, v are integers,
such as verification schemes of ECDSA [10]. In the following, we will call this
form multi scalar multiplications. So the efficiency of implementation depends
mostly on the efficiency of evaluation of multi scalar multiplications. Thus, fast
multi scalar multiplications is essential for Elliptic Curve Cryptosystems. There
are lots of research papers on the problem of speeding up uP + vQ in the recent
years [1,2,3,7,8,12,16,21,25,26].

Computing the form uP + vQ, J.A.Solinas [25] suggested an optimal signed
binary representation for pairs of integers, called Joint Sparse Form (JSF). There
is an algorithm to product JSF for pairs of integers. And it is at most one bit
longer than the binary expansion of the larger of the two integers, and the average
joint Hamming density among Joint Sparse Form representations is 1/2.

In [25], Solinas remarks that a generalization would allow coefficients other
than ±1. Avanzi [1] presents an analogue of JSF with windows, whose average
joint Hamming density is 3/8.

This paper also extends the JSF by using some other signed digit representa-
tion of integers and presents the concept of the form representation of integers,
and brings forward Width–3 Joint Sparse Form (JSF3). At last it also proves the
average joint Hamming density (AJHD) is 37.1% via the method of stochastic
process. So, this improvement can speed the computation of the form uP + vQ
by up to 8.6%, compared to compute that by using JSF. Computing uP + vQ
by using JSF3 wins that by using the other previous forms.

The rest of the paper is organized as follows. In Section 2, we briefly review
elliptic curves and give some preparation knowledge on the representation of
integers. Section 3 first gives the definition of JSF3 for pairs of positive integers
u1, u2, then proves its existence, i.e. presents an algorithm for producing it, and
last shows AJHD of that is 37.1% via stochastic process. Section 4 gives the
application of the technique and discusses avenues for further work.

2 Preparation Knowledge

2.1 Elliptic Curves

Up to a birational equivalence, an elliptic curve over a field K is a plane nonsin-
gular cubic curve with a K–rational point [22]. Elliptic curves are often expressed

An Improved Algorithm for uP + vQ Using JSF1
3 469

in terms of Weierstraß equations:
E/K : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.
where a1, · · · , a6 ∈ K. If characteristic Char (K) �= 2, 3, the equation may be
simplified to y2 = x3 + a4x + a6, and if Char(K)=2 the equation (for a non-
supersingular curve) may be simplified to y2 + xy = x3 + a2x

2 + a6.
Together with an extra point O, the points on an elliptic curve form an

Abelian group. We use the additive notation. The scalar multiplication is the
form:

kP = P + P + · · ·+ P
︸ ︷︷ ︸

k times

.

And multi scalar multiplications is the form uP + vQ. The crucial optimization
relies in general on minimizing the joint Hamming weight of the two multipliers.

2.2 Expansion of Integer

A given nonegative integer n has a common binary expansion

n = (al−1, · · · , a1, a0) =
l−1
∑

i=0
ai2i, ai = 0, 1.

and integer n has another binary expansion

n = (bt−1, · · · , b1, b0)=
t−1
∑

i=0
bi2i, bi ∈ {0,±1,±3, · · · ,±(2w−1 − 1)}, (w > 0).

We call it the width–w generalized (binary) expansion form of n (GFw).
Obviously, there are many such expansions. We say that GFw is reduced if
the expansion has the property that the product of any w consecutive terms is
nonegative. More, the reduced GFw is width–w non adjacent form (NAFw) if
the expansion has the property that there is at most a nonzero term of any w
consecutive terms. We know, every integer has unique NAFw [3,24]. There is also
a simple and efficient algorithm for computing the NAFw of a given integer. The
NAFw of a positive integer is at most one bit longer than its binary expansion,
and the NAFw has the minimal Hamming weight among GFws of n. Namely,
The average Hamming density among NAFw is 1/(w + 1) [3,24].
Let n be a positive integer, the notation ”n mods8” denotes that the modular
reduction 8 is to return the smallest residue in absolute value. Correspondingly
for Width–3 generalized expansion of n, n = (al−1, · · · , a1, a0), obviously, a0 =
0 if n is an even number; and if n is an odd number, then

a0 ∈ { n mods8, (n + 4) mods8, −(n mods8), −((n + 4) mods8) }.
So, we may call a0

Fetching-Original-Value of n (FOV(n)), if a0 = n mods8;
Fetching-Anti-Value of n (FAV(n)), if a0 = (n + 4) mods8;
Fetching-Sign-Value of n (FSV(n)), if a0 = −(n mods8);
Fetching-Number-Value of n (FNV(n)), if a0 = −((n + 4) mods8).

Example 1: For an integer n=13, n = (al−1, · · · , a0).
If a0 = n mods8, namely, a0 = −3, then n=(1,0,0,0,-3), a0=FOV(n).
If a0 = (n + 4) mods8, namely, a0 = 1, then n=(1,0,-1,0,1), a0=FAV(n).

470 B. Kuang, Y. Zhu, and Y. Zhang

If a0 = −(n mods8), namely, a0 = 3, then n=(1,0,1,3), a0=FSV(n).
If a0 = −((n+4) mods8), namely, a0 = −1, then n=(1,0,3,-1), a0=FNV(n).

From the example above, we can draw that:
Lemma 1. For an integer n, n = (al−1, · · · , a0), we can have that:

If a0=FOV(n), then a1 = 0, a2 = 0.
If a0=FAV(n), then a1 = 0, a2 �= 0.
If a0=FSV(n) or a0=FNV(n), then a1 �= 0.

Definition 1. (joint Hamming weight (JHW)) [26] Let n0, n1 be two l–bit
elements of N . Considering the 2× l array whose rows are the signed expansions
of the elements, we say that the joint Hamming weight (JHW) of n0 and n1 with
the expansions form is the number of nonzero columns of the array and denote
JHW of n0, n1 by JHW(n0, n1) (JHW for short). The average joint Hamming
density (AJHD) is the ratio of JHW(n0, n1) to its length, where n0, n1 run over
l–bit elements N .

2.3 JSF for Pairs of Integers

Computing the form uP + vQ, J.A.Solinas [25] suggested an optimal signed
binary representation for pairs of integers, called Joint Sparse Form (JSF). The
expansion takes on the following properties:

(JSF–1.) Among three consecutive columns at least one is a double zero.
(JSF–2.) It is never the case that ui,j+1 · ui,j �= −1.
(JSF–3.) If ui,j+1 · ui,j �= 0, then u1−i,j = 0, u1−i,j+1 �= 0.

There is an algorithm to product JSF for arbitrary pairs of integers. JSF is at
most one bit longer than the binary expansion of the larger of the two integers,
and the average joint Hamming density among Joint Sparse Form representations
is 1/2.

3 JSF3 for Pairs of Integers

We call the joint width–3 generalized expansions for integers n0, n1 the width
3–joint generalized expansion form of n0, n1 (JGF3). More, we call it the
reduced width–3 generalized expansion form of n0, n1 (JRF3) if both are
reduced. Analogically, call it the joint NAF3 (JNF3). It isn’t difficult to see
that JHW of JNF3 is quite smaller, but it is not the smallest among all JGF3s.
Thereinafter, we give the expansion that is quite small among JGF3s, whose
AJHD is 37.1%, while that of JNF3 is 43.8%.

Definition 2. The joint width–3 generalized expansion for integers n0, n1,
n0 = (u0,m−1, · · · , u0,1, u0,0).
n1 = (u1,m−1, · · · , u1,1, u1,0).

An Improved Algorithm for uP + vQ Using JSF1
3 471

is called Width–3 Joint Sparse Form (JSF3(n0, n1)), shortly noted by JSF3,
if the expansion satisfies the following conditions:

(JSF3–1.) Of any three consecutive columns, at least one is zero,and of any
five consecutive columns, at least two are zeros.

(JSF3–2.) For every row, the product of adjacent terms is not -1.
(JSF3–3.) If ∃i ∈ {0, 1} satisfies ui,j �= 0, ui,j+1 �= 0,then, u1−i,j+1 �= 0, and

u1−i,j = 0.
(JSF3–4.) If ∃i ∈ {0, 1} satisfies ui,j �= 0, ui,j+2 �= 0, then u1−i,j+2 �= 0.

Example 2. For two integers n0 = 2365 and n1 = 2921, we have the JSF3
shown below:

n0 = (1, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0,-3).
n1 = (1, 1, 0, 0,-1, 0, 0, 0,-3, 0, 0, 1).

3.1 The Existence of JSF3 for Pairs of Integers

Algorithm 1. (JSF3)
Input: Nonnegative integers n0, n1, not both zero.
Output: JSF3 for integers n0, n1

n0 = (u0,m−1, · · · , u0,1, u0,0)
n1 = (u1,m−1, · · · , u1,1, u1,0), ui,j ∈ {0,±1,±3}, i = 0, 1, 0 ≤ j < m.

Set k0 ← n0, k1 ← k1
Set j ← 0
While k0 > 0 or k1 > 0 do

For i from 0 to 1 do
If ki is even, then u← 0
Else

u←FOV(ki)
If k1−i is even, then

If k1−imod 8=4, then u←FAV(ki)
If k1−imod 4=2 and ki mod 32=±1,±3, then u← FNV(ki)
If k1−imod 4=2 and ki mod 32=±5,±11, then u← FSV(ki)
If k1−imod 4=2 and ki mod 32=±13,±15, then u← FSV(ki)
If k1−imod 32=±2,±6 and kimod 32=±7, then u←FSV(ki)
If k1−imod 32=±2,±6 and kimod 32=±9, then u←FNV(ki)
If k1−imod 32=±10,±14 and kimod 32=±7, then u←FNV(ki)
If k1−imod 32=±10,±14 and kimod 32=±9, then u←FSV(ki)

Else
If ki mod 32=±13,±15 and k1−i mod 16=±5,±7,
then u←FAV(ki)
End If
If ki mod 16=±5,±7 and k1−i mod 32=±13,±15,
then u←FAV(ki)

472 B. Kuang, Y. Zhu, and Y. Zhang

End If
End If

End If
Set ui,j ← u

Next i
Set k0 ← (k0 − u0,j)/2, k1 ← (k1 − u1,j)/2
Set j ← j + 1

EndWhile

In order to prove the desired properties of JSF3, it is necessary to generalize
Alg.1 by allowing as inputs JRF3 for pairs of e0, e1.

Algorithm 2. (JSF3)
Input: JRF3 for integers e0, e1, not both zero.

e0 = (e0,m−1, · · · , e0,1, e0,0)
e1 = (e1,m−1, · · · , e1,1, e1,0), ei,j ∈ {0,±1,±3}.i = 0, 1, 0 ≤ j < m.

Output: JSF3 for integers e0, e1

Set j ← 0
Set d0 ← 0, d1 ← 0
Set u0,−2 ← 0, u0,−1 ← 0, u1,−2 ← 0, u1,−1 ← 0
Set a0 ← e0,0, b0 ← e0,1, x0 ← e0,2, y0 ← e0,3, z0 ← e0,4
Set a1 ← e1,0, b1 ← e1,1, x1 ← e1,2, y1 ← e1,3, z1 ← e1,4
Set k0 ← a0 + 2b0 + 4x0 + 8y0 + 16z0
Set k1 ← a1 + 2b1 + 4x1 + 8y1 + 16z1

While k0 > 0 or k1 > 0 do
For i from 0 to 1 do

If ki is even then u← 0
Else {SIMILAR TO Alg.1}
End If
Set ui,j ← u
Set βi,j ← (ui,j−2, ui,j−1, di, ei,j , ei,j+1, ei,j+2, ei,j+3, ei,j+4)

Next i
Set Sj ← (β0,j , β1,j)
Set d0 ← (d0 + a0 − u0,j)/2, d1 ← (d1 + a1 − u1,j)/2
Set a0 ← b0, b0 ← x0, x0 ← y0, y0 ← z0, z0 ← e0,j+5
Set a1 ← b1, b1 ← x1, x1 ← y1, y1 ← z1, z1 ← e1,j+5
Set j ← j + 1(if j > m, let ei,j = 0)
Set k0 ← d0 + a0 + 2b0 + 4x0 + 8y0 + 16z0
Set k1 ← d1 + a1 + 2b1 + 4x1 + 8y1 + 16z1

EndWhile

The most straightforward way to prove the existence of JSF3 for every pair
of positive integers n0, n1 is to present an algorithm to produce it.

An Improved Algorithm for uP + vQ Using JSF1
3 473

It is easy to check that, in the special case in which the e′
i,js are “ordinary”

unsigned bits, Alg.2 is equivalent to Alg.1. So the correctness of the Alg.2 insures
that of the Alg.1.

We call the vectors Sj the states of the algorithm, The output vector
(u0,j , u1,j) is a function of the state Sj . Thus we may describe the action of
Alg.2 as follows: that jth iteration of the Do loop inputs the state Sj−1, outputs
(u0,j−1, u1,j−1) and changes the state to Sj , namely,

Sj−1
(u0,j−1, u1,j−1)� Sj .

Let ti,j = di + ei,j + 2ei,j+1 + 4ei,j+2 + 8ei,j+3 + 16ei,j+4.
We next enumerate the possible values for the state and all the states are

divided into below 12 cases based on the difference of Sj .

Table 1. State-Table

Sj βi,j β1−i,j

B0 ti,j ≡ 0 mod 16 t1−i,j ≡ 0 mod 16
B1 ti,j ≡ 8 mod 16 t1−i,j ≡ 0 mod 8
B2 ti,j ≡ 4 mod 8 t1−i,j ≡ 0 mod 8
B3 ti,j ≡ 4 mod 8 t1−i,j ≡ 4 mod 8
B4 ti,j ≡ 2 mod 4 t1−i,j ≡ 0 mod 4
B5 ti,j ≡ 2 mod 4 t1−i,j ≡ 2 mod 4
B6 ti,j ≡ 1 mod 2 t1−i,j ≡ 0 mod 2
B7 ti,j ≡ ±13, ±15 mod 32 t1−i,j ≡ ±5 mod 16
B8 ti,j ≡ ±13, ±15 mod 32 t1−i,j ≡ ±1, ±3 mod 16
B9 ti,j ≡ ±1, ±3 mod 32 t1−i,j ≡ ±1, ±3 mod 32
B10 ti,j ≡ ±1, ±3 mod 32 t1−i,j ≡ ±5, ±7 mod 16
B11 ti,j ≡ ±5, ±7 mod 16 t1−i,j ≡ ±5, ±7 mod 16

Table 2. State-Following-Table

Sj Sj+1 Sj Sj+1

B0 B0, B1 B6 Bj , j �= 4, j �= 6
B1 B2, B3 B7 B5

B2 B4 B8 B1

B3 B5 B9 B0

B4 B6 B10 B2

B5 Bj , j = 7, · · · , 11, B11 B3

It is easy to verify the following by checking all the cases. As a result, we
have the following values for Sj+1 for each Sj . All following states are shown in
Table 2.

474 B. Kuang, Y. Zhu, and Y. Zhang

Theorem 1. Alg.1 always outputs the Width–3 Joint Sparse Form for its inputs.
Proof . It is straightforward to verify that the expansion produced by the Alg.2
is in fact JGF for n0, n1. It remains to prove that this expansion satisfies terms
of Definition 2. The process is similar to that [25]. And the proof appears in
the Appendix A of the paper.

3.2 Efficiency of JSF3 for Pairs of Integers

Now, Our primary task is to prove the AJHD of JSF3 is 37.1%.
It is easy to see that GF3 is at most one bit longer than the ordinary binary

expansion. As a result, JSF3 is at most one bit longer than the binary expansion
of the larger of the two integers.
Theorem 2. The average joint Hamming density among Joint 3–Sparse Form
representations is 37.1%.

Proof. Let state space
Γ = {Gi|i = 0, 1, · · · , 10, 11}, where Gi = Bi, i = 0, 1, · · · , 10, 11.

We can prove that a stochastic process {Sn|n ≥ 0} output by Alg.2 takes
values in a countable set Γ and is a homogeneous Markov Chain in terms of Γ
[see definition in page 252 [9]]. So, let pi,j denote the transition probabilities
pi,j(n), where pi,j(n) = P{Sn+1 ∈ Gj |Sn ∈ Gi}. {pi,j} forms the following
transition matrix P.

P =









































1
4 0 3

4 0 0 0 0 0 0 0 0 0
0 0 2

3
1
3 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

4
3
16

1
4

1
4

1
64

3
64

1
8

1
16 0 1

4 0 3
32

15
128

5
32

3
32

5
32

0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0









































From transition matrix P, for any two states Gi, Gj ∈ Γ , the state Gi is equiv-
alent to Gj , so {Sn|n ≥ 0} is irreducible, and for any Gj , it is nonrecur-
rent. Therefore, the chain exists stationary distrubution {πj , Gj ∈ Γ}, and

limm→∞(1
m

m
∑

n=1
p
(n)
i,j) = πj , where p

(n)
i,j = P{S(m+n) ∈ Gj |Sm ∈ Gi},(Gi, Gj ∈

Γ, m ≥ 0, n ≥ 1).
From the equations below, which πj(j = 0, 1, · · · , 11) satisfies [9],

(π0, π1, · · · , π11, 1) = (π0, π1, · · · , π11)(P, g⊥).

An Improved Algorithm for uP + vQ Using JSF1
3 475

where g = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), and the symbol ⊥ denotes matrix trans-
position.
We get the solution

(
4

163
,

12
163

,
20
163

,
16
163

,
20
163

,
61
326

,
20
163

,
19
326

,
129
2608

,
43

2608
,

19
326

,
43
652

).

Let its absorbing probabilities pj(n) = p{Sn ∈ Gj}, j = 0, 1, · · · , 11, and
initial distribution probabilities pj = p{S0 ∈ Gj}, j = 0, 1, · · · , 11 of the chain,
then the vector of (u0,j , u1,j) = (0, 0) is output by Gj , j = 0, 1, · · · , 5. So AJHD
is given by

Σ =
11
∑

j=6
limm→∞ 1

m

m
∑

n=1
pj(n) =

11
∑

j=6
limm→∞(1

m

m
∑

n=1

∑

Gi∈Γ

p
(n)
i,j pi)

=
11
∑

j=6

∑

Gi

pi(limm→∞(1
m

m
∑

n=1
p
(n)
i,j)) =

11
∑

j=6
limm→∞(1

m

m
∑

n=1
p
(n)
i,j)

=
11
∑

j=6
πj .

Therefore Σ =121/326. The AJHD of JSF3 is 37.1% approximately.

4 Applications to ECC

The execution time of ECC schemes such as the ECDSA are typically dominated
by point multiplications, In ECDSA, there are two types of point multiplications
kP , where P is fixed (signature generation), and uP + vQ, where P is fixed and
Q is not known a priori (signature verification). Using the above algorithm tech-
nique, the latter type can be sped by precomputation some data for points,such
as 2P, 2Q, 3P, 3Q, P ± Q, P ± 3Q, 3P ± Q, 3P ± 3Q, and storing some data for
points such as P, Q, 3P, 3Q, P ±Q, P ± 3Q, 3P ±Q, 3P ± 3Q. Adapting the fast
Straus’ Method by using JSF3 yields a technique which requires ∼ l doublings
and ∼ (0.37)l general additions (on average). In other words, that sometimes
works almost 8.6% faster than that by using the Joint Sparse Form.

The front type can also be sped. The following is a simplest approach. Sup-
pose that the order r of the private key space is less than l. Let Q = 2(�l/2)+1�P ,
then k = a+ b2(�l/2)+1�P , thus compute k = aP + bQ, one applies Alg.1 to gen-
erate JSF3 for integers a, b . This technique of computing it using JSF3 requires
∼ l doublings and ∼ (0.19l) additions, which wins over that using JSF.

If the Elliptic Curves are particular curves, as Koblitz Curves, there may
be the form with width–3, analogous to JSF3. So, it would be of interest to
construct the forms which apply to Koblitz Curves.

476 B. Kuang, Y. Zhu, and Y. Zhang

References

1. R. Avanzi. On Multi-exponentiation in Cryptography. 2003, manuscript, Available
at http://citeseer.nj.nec.com/545130.html.

2. D. J. Bernstein. Pippenger’2 exponentiation algorithm. Available at:
http://cr.rp.to/papers.html,2002.

3. M. Brown, D. Hankerson, J. Lopez and A. Menezes. Software Implementation of
NIST Elliptic Curves Over Prime Fields. CACR Technical Reports. CORR 2000-
56, University of Waterloo, 2000.

4. R. Crandall. Method and Apparatus for Public Key Exchange in a Cryptographic
System. U.S. Patent # 5, 159, 632, Oct 27.1992.

5. H. Cohen. A Course in Computational Algebraic Number Theory, Volume 138 of
Graduate Texts in Mathematics, Springer, 1996.

6. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete logarithms. IEEE Trans. on Information Theory IT-31 (1985), pp. 469-472.

7. R. Gallant, R. Lambert and S. Vanstone. Faster Point Multiplication On Elliptic
Curves with Efficient Endomorphisms. Advances in Cryptology – Crypto 2001,
LNCS, Volume 2139, Springer-Verlag, pages 190-200, 2001.

8. D.M. Gordon. A Survey of Fast Exponentiation Methods. Journal of Algorithms,
27(1):129-146,1998.

9. KaiLai Chung. Elementary Probability Theory with Stochastic Processes. Springer-
Verlag Berlin Heidelberg New York Toppan Company (S)Pte Ltd. Singapore 1978.

10. IEEEP 1363-2000,(2000). IEEE standard Specifications for Public-Key Cryptogra-
phy. IEEE Computer Society, August 29,2000.

11. D.E. Knuth. The Art of Computer Programming. Vol 2: Semi numerical Algorithms
2nd ed., Addison-Wesley,1981.

12. Mathieu Ciet, Tanja Lange. Franceso Sica, and Jean-Jacques Quisquater. Improved
Algorithms for Efficient Arithmetic on Elliptic Curves using Fast Endomorphisms.
Advances in Cryptology – Eurocrypt 2003, LNCS, Volume 2656, Springer-Verlag,
pages 388-400, 2003.

13. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(1987),
203-209.

14. Neal Koblitz. CM-Curves with Good Cryptographic Properties. Advances in Cryp-
tology – Crypto 91, LNCS, Volume 576, Springer-Verlag, pages 279-287, 1992.

15. V.Miller. Uses of elliptic curves in cryptography. Advances in Cryptology – Crypto
85, LNCS, Volume 218, Springer-Verlag, pages 417-426, 1986.

16. F.Morain and J.Olivos. Speeding Up the Computations on an Elliptic Curve Us-
ing Addition-Subtraction Chains. Inform.Theor. Appl., Volume 24, pages 531-543,
1990.

17. Willi Meier, Othmar Staffelbach. Efficient Multiplication on Certain Nonsupersin-
gular Elliptic Curves. Advances in Cryptology – Crypto 92, LNCS, Volume 740,
Springer-Verlag, pages 333-344, 1993.

18. V.Muller. Fast Multiplication on Elliptic Curves over Small Fields of Characteristic
Two. Journal of Cryptology, 11(4):219-234, 1998.

19. V.Muller. Efficient Point Multiplication for Elliptic Curves over Special Optimal
Extension Fields. In Walter de Gruyter, Editor, Public-Key Cryptography and
Computational Number Theory, pages 197-207, Warschau, Poland, September 11-
15, 2000(2001).

20. National Institute of Standards and Technology. FIPS – 186-2: Digital Signature
Standard (DSS), January 2000. Available at http://csrc.nist.gov/publications/fips.

An Improved Algorithm for uP + vQ Using JSF1
3 477

21. Y-H. Park, S. Jeong, C. Kim, and J. Lim. An Alternate Decomposition of an Integer
for Faster Point Multiplication on Certain Elliptic Curves. Advances in Crytpology
– PKC 2002, LNCS, Volume 2274, Springer-Verlag, pages 323-334, 2002.

22. J.H. Silverman. The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,
1986.

23. J. Solinas. An Improved Algorithm for Arithmetic on a Family of Elliptic Curves.
Advances in Cryptology – Crypto 1997, LNCS, Volume 1294, Springer-Verlag, pages
357-371, 1997.

24. J. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryptogra-
phy, 19:195-249, 2000.

25. J. Solinas. Low-Weight Binary Representations for Pairs of Integers. CACR
Technical Reports, CORR 2001-41 University of Waterloo, 2001, Available at:
www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps, 2001.

26. Yasuyuki Sakai and Kouichi Sakurai. Algorithms for Efficient Simultaneous Ellip-
tic Scalar Multiplication with Reduced Joint Hamming Weight Representation of
Scalars, 5th International Conference, ISC 2002, LNCS, Volume 2443, Springer-
Verlag, pages 484-499, 2002.

27. N.P. Smart. Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic.
Journal of Cryptology, 12(2):141-151, 1999.

Appendix A: The Proof of Theorem 1

Theorem 1. Alg.1 always produces the width–3 joint sparse form expression of
its inputs.
Proof : It is straightforward to verify that the expansion produced by the Alg.2 is
in fact JGF for n0, n1. It remains to prove that this expansion satisfies properties
(JSF3–1.), (JSF3–2.), (JSF3–3.), (JSF3–4). From the Table 1 and Table 2, The
process that proves the conclusions follows as:

(JSF3–1.): This condition is equivalent to the assertion that, for every j, at
least one of Sj , Sj+1, Sj+2 is in one of states Bi, i = 0, · · · , 5, and at least two
of Sj , Sj+1, Sj+2, Sj+3, Sj+4 are in the states Bi, i = 0, · · · , 5. Firstly, we prove
that for every j, at least one of Sj , Sj+1, Sj+2 is in one of states Bi, i = 0, · · · , 5.
Suppose that Sj isn’t in any Bi, i = 0, · · · , 5, then Sj is in states Bi, i = 6, · · · , 11.
If Sj is in states B6, then Sj+1 or Sj+2 is in one of states Bi, i = 0, · · · , 5; if Sj

is in one of states Bi, i = 7, · · · , 11, then Sj+1 is in one of states Bi, i = 1, · · · , 5.
So Sj+2 or Sj+3 is in one of states Bi, i = 0, · · · , 5. Secondly, the process that
proves at least two of Sj , Sj+1, Sj+2, Sj+3, Sj+4 are in the states Bi, i = 0, · · · , 5
is similar to the above.

(JSF3–3.): Might as well, suppose that u0,j �= 0, u0,j+1 �= 0, then it follows
from the Table 2 that Sj is in the states B6 and Sj+1 is in one of states Bi, i =
7, · · · , 11. It is straightforward to compute and to verify that u1,j+1 �= 0, u1,j

= 0.
(JSF3–4.): Might as well, suppose that u0,j �= 0, u0,j+2 �= 0, then Sj is in

one of states B6, B7, and Sj+1 is in the state B5, and Sj+2 is in the state
Bi, i = 7, · · · , 11. It is straightforward to compute and to verify that u1,j+2 �= 0.

(JSF3–2.): Might as well, suppose that u0,j �= 0, u0,j+1 �= 0, then Sj is in the
states B6 and Sj+1 is in one of states Bi, i = 7, · · · , 11. Suppose u0,j ·u0,j+1 = −1,

478 B. Kuang, Y. Zhu, and Y. Zhang

then u0,j = 1, u0,j+1 = −1, or u0,j = −1, u0,j+1 = 1, t0,j mod 8=±1. So u0,j

only fetches FSV (t0,j), and t0,j = ±1,±7,±9,±15 mod 32. Thus, according
to the Alg.1 the conditions that may be satisfies u0,j · u0,j+1 = −1 shown as
following,

(1.) t0,j = ±7 mod 32 and t1,j = ±2,±6 mod 32.
(2.) t0,j = ±9 mod 32 and t1,j = ±10,±14 mod 32.
(3.) t0,j = ±15 mod 32 and t1,j = ±2,±6 mod 16.

If t0,j = ±7 mod 32 and t1,j = ±2,±6 mod 32, then u0,j = ±1, u0,j+1 = ±3,
so it is not correct.

Similarly, if t0,j = ±9 mod 32 and t1,j = ±10,±14 mod 32, then u0,j =
±1, u0,j+1 = ±3, so it is not correct.

Similarly, if t0,j = ±15 mod 32 and t1,j = ±2,±6 mod 16, then u0,j =
±1, u0,j+1 = ±3, so it is also not correct.

Therefore, there is not the condition which satisfies the u0,j · u0,j+1 = −1.
Namely, u0,j · u0,j+1 �= −1.

	Introduction
	Preparation Knowledge
	Elliptic Curves
	Expansion of Integer
	JSF for Pairs of Integers

	JSF$_3$ for Pairs of Integers
	The Existence of JSF$_3$ for Pairs of Integers
	Efficiency of JSF$_3$ for Pairs of Integers

	Applications to ECC

