
New Table Look-Up Methods for Faster
Frobenius Map Based Scalar Multiplication

over GF (pn)

Palash Sarkar, Pradeep Kumar Mishra, and Rana Barua

Cryptology Research Group,
Indian Statistical Institute, 203 B T Road,

Kolkata-700108, INDIA

Abstract. We describe a new scalar multiplication algorithm for ellip-
tic and hyperelliptic curve cryptosystems. The algorithm is obtained by
combining Koblitz’s idea of using Frobenius automorphism along with
a very special kind of look-up table. In the case where the base point
is unknown, we present an efficient algorithm to compute the look-up
table online. Our algorithm applies to prime power fields GF (pn).
One important subclass of such fields are Optimal Extension Fields
(OEF’s) which are believed to be ideal for efficient implementation
of cryptographic primitives. Over prime power fields, our algorithm
compares favourably to other known algorithms for scalar multiplication.

Keywords: Scalar multiplication, Frobenius map, elliptic curves, hyper-
elliptic curves, window methods, look-up table, normal basis.

1 Introduction

Elliptic and hyperelliptic curves provide a rich source of cyclic groups over which
the discrete logarithm problem is believed to be hard. Hence these groups are
suitable for defining public key cryptosystems. The dominant operation in any
such cryptosystem is the so called scalar multiplication, which is the operation
of computing mX, where m is an integer and X is either a point of an elliptic
curve or a reduced divisor in the Jacobian of a hyperelliptic curve.

The efficiency of an elliptic or hyperelliptic curve cryptosystem is crucially
dependent on the speed of scalar multiplication. Not surprisingly, this has led
to a tremendous research in algorithms for fast scalar multiplication. These al-
gorithms fall naturally into two classes.

– General algorithms which work for any cyclic group.
– Algorithms which exploit the algebraic properties of elliptic and hyperelliptic

curves.

One of the most important technique of the second kind is the use of endomor-
phisms to speed up scalar multiplication. This was first proposed by Koblitz [13]
and has also been studied by later authors (for example see [4,5,7,10,14,23,24]).

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 479–493, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

480 P. Sarkar, P.K. Mishra, and R. Barua

The most natural endomorphism is the Frobenius automorphism and was ini-
tially proposed by Koblitz [13]. A series of research papers have resulted in the
applicability of the Frobenius map technique to elliptic and hyperelliptic curves
over any finite field. See [14] for a more detailed description of the development
of this technique.

Let Fq be the underlying field. The Frobenius map technique (and hence our
algorithm) really applies when the q is a prime power (rather than a prime).
The case p = 2 has been explored extensively by the researcher community. Our
algorithms apply to the case p > 2, for example, for Optimal Extension Fields.
Optimal Extension Fields (OEF’s) are finite fields of the form GF (pm), p > 2,
where p and m are chosen to match the underlying hardware. OEF’s, optimally
utilising the underlying hardware offer considerable advantage in software im-
plementations of elliptic curve cryptosystems. In prime power fields, of which
OEF’s are special cases, our algorithm provides a substantial reduction in the
number of point arithmetic (addition/doubling) operations as compared to other
existing algorithms.

In this work, we concentrate on developing a new scalar multiplication algo-
rithm based on the Frobenius map. The basic idea of the algorithm is known and
has been described for both elliptic curves [10,24,23] and hyperelliptic curves [4,
14]. The principle innovation that we introduce is a very special kind of look-
up table. Given a point X, we define a look-up table TabX in the following
manner: The table stores 3h points and for (a0, . . . , ah−1) ∈ {0, ±1}h, we define
TabX [a0, . . . , ah−1] to be the point

TabX [a0, . . . , ah−1] = a0X + a1φ(X) + · · · + ah−1φ
h−1(X) (1)

where φ is the Frobenius map. This is a simple idea. Aoki et al [1] have worked
on similar lines for elliptic curves. A proper utilization of this idea provides
a substantial reduction in the number of point arithmetic operations.We also
extend the idea to the situation when {a0, . . . , ah−1} ∈ {0, ±1, ±2, . . . ,±2w}h

for some w > 0. The table can be precomputed and stored when the point X
is known in advance. However, there are applications where the point X is not
known in advance. We present an algorithm to compute TabX in such a situation.
It turns out that by using a simple trick, it is possible to reduce the number of
point additions needed to compute TabX .

The size of the look-up table is determined by the number of points to be
stored. In the case, where the underlying field is represented using normal basis,
the number of points required to be stored is quite small. However, if polynomial
basis representation of the field elements are used, then the storage requirement
increases. Thus our algorithm is most useful when the underlying field is repre-
sented using normal basis.

The plan of the paper is as follows. In Section 2, we present the necessary
preliminaries. Section 3 describes the basic idea of the table look-up algorithm.
This is developed into a general look-up table based algorithm to compute scalar
multiplication in Section 4. In Section 5, we describe algorithms to compute the
look-up tables online. Section 6presents a detailed discussion on the results ob-

New Table Look-Up Methods 481

tained and compares the performance of the algorithm to other scalar multipli-
cation algorithms. Finally, Section 7 concludes the paper.

2 Preliminaries

Let K be a field and K be the algebraic closure of K. A hyperelliptic curve C of
genus g over K is an equation of the form C : v2 + h(u)v = f(u) where h(u) in
K[u] is a polynomial of degree at most g, f(u) in K[u] is a monic polynomial of
degree 2g + 1, and there are no solutions (u, v) in K ×K, which simultaneously
satisfy the equations

v2 + h(u)v = f(u);
2v + h(u) = 0;
h′(u)v − f ′(u) = 0.

(2)

Elliptic curves are hyperelliptic curves of genus 1. If L is any extension field
of K, then the set of all L-rational points of C is the set {(x, y) ∈ L × L :
y2 +h(x)y = f(x)} ⋃{∞} where ∞ is a special point called the point at infinity.
The set of L-rational points of an elliptic curve form a group under a suitably
defined addition operation. On the other hand, for g > 1, the set of points on
a hyperelliptic curve does not form a group. Instead it is customary to consider
the free abelian group generated by the set of points. Elements of this group are
called divisors. The set of certain special kinds of divisors called reduced divisors
form an additive group.

The additive group of the set of points of an elliptic curve has been used to
obtain ElGamal type cryptosystems. Similarly, the group of reduced divisors of
hyperelliptic curves has also been proposed for such types of cryptosystems [11].
One of the most important structures for practical applications is the binary
Koblitz curves, which are elliptic curves over the binary field.

In the rest of the paper by a point we will mean either a point on an elliptic
curve or a reduced divisor of an hyperelliptic curve. The main operation for
realizing elliptic and hyperelliptic curve cryptosystems is mX, where m is an
integer and X is a point. This operation is called scalar multiplication. Our focus
in this paper will be to obtain efficient algorithms for scalar multiplication.For
details of elliptic and hyperelliptic curve cryptosystems we refer the reader to [11,
17,3].

2.1 Prime Power Fields

For cryptographic applications, binary fields GF (2n) and prime fields GF (p)
were considered most attractive for software implementations. Later Optimal
Extension Fields (OEF’s) [2], a special class of finite fields of the form GF (pm)
were proposed, where p and m were chosen suitably to exploit the underlying
hardware optimally for performance gain. An OEF is a finite field of the form
GF (pn), where (i) p is a pseudo-Mersenne prime and (ii) an irreducible binomial
P (x) = xn−ω exists over GF (p). The prime p is generally chosen to be very close

482 P. Sarkar, P.K. Mishra, and R. Barua

to the word size of the processor, so that each machine word can accomodate
one element of the subfield GF (p) and each element of the OEF GF (pn), can be
accomodated in n words, with minimum wastage of memory. Also, OEF’s allow
efficient modular reduction for arithmetic in the extension field. The algorithms
proposed in this work are suitable for the prime power fields of type GF (pn),
which contains the OEF’s as a subclass of it.

2.2 Normal Basis

Let q be a prime power. A field Fqn is said to have a normal basis if it has a basis
(over Fq) of the form {α, αq, · · · , αqn−1}. Any element of the field can be repre-
sented as x =

∑n−1
j=0 ajα

qj

or briefly as an ordered n-tuple x = (a0, · · · , an−1). In

the field Fqn , we have, xq = (
∑n−1

j=0 ajα
qj

)q = (
∑n−1

j=0 ajα
qj+1

). Thus if x is repre-
sented by the tuple (a0, · · · , an−1) then xq is represented by (an−1, a0, · · · , an−2),
as αqn

= 1. With a normal basis representation of elements, xq can be computed
from x by a circular shift operation only. See [16] for more details on normal
basis.

2.3 Frobenius Map

Let Fq be a finite field. The Frobenius map φ : Fqn → Fqn is an automorphism of
Fqn and is defined as φ(x) = xq. The map is extended to points of an elliptic or
hyperelliptic curve over Fqn in the following manner: A point of an elliptic curve
is represented using a pair of elements of Fqn ; similarly a reduced divisor of a
hyperelliptic curve is represented using a tuple of elements of Fqn . An application
of the Frobenius map to a point is to actually apply the map individually to the
field elements which represent the point. We note that φn is the identity map on
Fqn . If the field Fqn is represented using a normal basis, then the computation of
φ(x) is “for free”. Further, as observed in [24,23], in the case q = 2, the Frobenius
map is φ(x) = x2 and hence can be computed using a field squaring which is a
relatively cheap operation even if polynomial basis representation of elements is
used.

2.4 Scalar Multiplication Using Frobenius Map

In [13], Koblitz had suggested the use of Frobenius map to speed up scalar mul-
tiplication algorithm. This idea has later been developed by several authors [5,7,
10,18,22,23]. For hyperelliptic curves, it has been shown [14,4] that the Frobenius
map based method can be used over any field of finite characteristic.

Let q be a prime power, Fq be the finite field of order q and Fqn an extension
field of Fq. Let C be the curve of genus g to be used for the cryptosystem and
we consider the Fqn-rational points of C. Let φ be the Frobenius map from Fqn

to Fqn . Let m be an integer, X a point (either a point of an elliptic curve or a
reduced divisor of a hyperelliptic curve) and we wish to compute mX. The base-
φ expansion of m is

∑n−1
i=0 uiφ

i, where under reasonable assumptions each ui is

New Table Look-Up Methods 483

an integer in the range [−qg, qg]. It is possible to obtain the base-φ expansion
of m. Next we define some additional parameters which will be required in the
rest of the paper.

1. A = max�log2(|ui|)�.
2. For i ∈ {0, . . . , n − 1} write |ui| =

∑A
j=0 u

′
i,j2

i, where u
′
i,j ∈ {0, 1}.

3. ui,j = sgn(ui)u
′
i,j , where sgn(ui) is the sign of ui.

4. For 0 ≤ i ≤ n − 1, define X0 = X and Xi = φi(X0) = φi(X).
5. Parameters h and w are respectively the column and row window sizes.
6. Parameters s and r are defined by the equation:

n = s × h + r, where r is a unique integer in the set {1, . . . , h}.
6. Parameter k = �(A + 1)/w�.
The expression mX can be written as

mX = u0X0 + u1X1 + · · · + un−1Xn−1
= (u0,0 + u0,12 + · · · + u0,A2A)X0

+(u1,0 + u1,12 + · · · + u1,A2A)X1
+ · · ·
+(un−1,0 + un−1,12 + · · · + un−1,A2A)Xn−1

(3)

We consider the above expression to be an n× (A+1) matrix. Let τ = qn. Then
depending on the nature of the underlying field Fτ , there are several cases.

1. Case n = 1 and τ = q is a prime: In this case, (3) reduces to a single row.
In this situation, the Frobenius map based technique does not really apply.
Hence we will not consider this kind of fields in this paper.

2. Case n > 1: In this situation (3) will have more than one rows and the
Frobenius map technique can be applied. It will be convenient to divide this
into two subcases.
– Subcase q = 2: The field is F2n and the curves are the binary Koblitz

curves. In this case each ui ∈ {0, ±1} and hence (3) is actually a single
column. This is the other extreme to Case 1 above. In [24,23], equa-
tion (3) is called the φ-adic expansion of m.

– Subcase q > 2: In this situation, (3) has a more square shape and again
our algorithm offers improvements over existing algorithms.

The following simple algorithm can be used to compute mX from (3) (see [4,10,
14,23,24]).
Algorithm 1.
Input : integer m =

∑n−1
i=0 uiφ

i and point X .
Output : mX.

1. For 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ A, compute Xi and ui,j ;
2. Set Y =

∑n−1
i=0 ui,AXi;

3. For j = A − 1 down to 0
4. Y = 2Y ; Y = Y +

∑n−1
i=0 ui,jXi

5. return Y .

Proposition 1. In the above algorithm, the average numbers of additions and
doublings needed to compute mX are n(A + 1)/2 and A respectively.

484 P. Sarkar, P.K. Mishra, and R. Barua

3 Basic Table Look-Up Methods

We describe a new table look-up method to compute mX from (3). We observe
that the right hand side of (3) has the structure of a matrix. Algorithm 1 performs
a column by column computation. Our first observation is the fact that the
number of rows in (3) is equal to n (the extension degree of Fqn over Fq) and
is independent of both m and X. Given a point X, we define a table TabX in
the following manner: There are 3n entries in TabX which are indexed by the
elements of {0, ±1}n. For any (b0, . . . , bn−1) ∈ {0, ±1}n, we define

TabX [b0, . . . , bn−1] = b0X0 + · · · + bn−1Xn−1 (4)
= b0X + b1φ(X) + · · · + bn−1φ

n−1(X).

Hence the look-up table TabX stores 3n points. If this table is available, then
computing mX becomes quite easy and is described by the following algorithm.
Algorithm 2.
Input : m =

∑n−1
i=0 uiφ

i and point X .
Output : mX.

1. Set Y = TabX [u0,A, . . . , un−1,A]
2. For j = A − 1 down to 0
3. Y = 2Y ;
4. Y = Y + TabX [u0,j , . . . , un−1,j];
5. return Y .

Proposition 2. Algorithm 2 computes mX using A additions and A doublings.
The table TabX stores 3n points.

3.1 Using Smaller Look-Up Tables

In Algorithm 2 we use a table of 3n points, where n is the extension degree of
Fqn over Fq. If n is relatively small (≤ 4), then the table is of moderate size.
However, if n is larger, then the required storage space may be prohibitively
high. In this section, we show how to tackle this problem.

Let h (1 ≤ h ≤ n) be a small positive integer which is the column window
size. Write n = s × h + r, where r is a unique integer from {1, . . . , h}. Then for
(a0, . . . , an−1) ∈ {0, ±1}n we can write

a0X0 + a1X1 + · · · + an−1Xn−1 = a0X0 + a1X1 + · · · + ah−1Xh−1

+ahXh + ah+1Xh+1 + · · · + a2h−1X2h−1

...
+a(s−1)hX(s−1)h + · · · + ash−1Xsh−1

+ashXsh + · · · + ash+r−1Xsh+r−1.

For 0 ≤ i ≤ s, we define a set of tables Tab(i)
X in the following manner: Define

ρ = (s + 1)h and set Xn = · · · = Xρ−1 = 0. Each table Tab(i)
X stores 3h points

New Table Look-Up Methods 485

indexed by elements of {0, ±1}h. For (b0, . . . , bh−1) ∈ {0, ±1}h, define

Tab(i)
X (b0, . . . , bh−1) = b0Xhi + b1Xhi+1 + · · · + bh−1Xhi+h−1. (5)

Note that Xn = · · · = Xρ−1 = 0 and hence Tab(s)
X stores only 3r points. The

following algorithm can now be used to compute mX.
Algorithm 3.
Input : m =

∑n−1
i=0 uiφ

i, n = s × h + r and point X.
Output : mX.

1. Set Y = Tab(s)
X [ush,A, ush+1,A, . . . , ush+r−1,A, 0, · · · , 0];

2. For i = s − 1 down to 0 set Y = Y + Tab(i)
X [uih,A, uih+1,A, . . . , u(i+1)h−1,A];

3. For j = A − 1 down to 0
4. Y = 2Y ;
5. Y = Y + Tab(s)

X [ush,j , ush+1,j , . . . , ush+r−1,j , 0, · · · , 0];
6. For i = s − 1 down to 0 set Y = Y + Tab(i)

X [uih,j , uih+1,j , . . . , u(i+1)h−1,j];
7. End for;
8. return Y .

Proposition 3. Algorithm 3 correctly computes mX using (s + 1)A additions
and A doublings. For 0 ≤ i ≤ s − 1, table Tab(i)

X stores 3h points and Tab(s)
X

stores 3r points. Thus the total number of points stored is s × 3h + 3r.

The storage requirement decreases from 3n = 3sh+r points to s3h + 3r points.
The trade-off is an increase in the number of additions. In the situation where
the field Fqn is represented using a normal basis, the storage requirement can be
further reduced. This is based on the following observation.

Proposition 4. For any (b0, . . . , bh−1) ∈ {0, ±1}h and i > 0 we have,

Tab(i)
X [b0, . . . , bh−1] = φhi(Tab(0)

X [b0, . . . , bh−1]).

Proof: We compute

Tab(i)
X [b0, . . . , bh−1] = b0Xhi + b1Xhi+1 + · · · + bh−1Xhi+h−1

= b0φ
hi(X) + b1φ

hi+1(X) + · · · + φhi+h−1(X)
= φhi(b0X + b1φ(X) + · · · + bh−1φ

h−1(X))

= φhi(Tab(0)
X [b0, b1, . . . , bh−1]).

This completes the proof. 	

Since the field is represented using a normal basis, the map φ can be computed

simply by a circular shift (see Section 2.3). Thus instead of storing the (s + 1)
tables Tab(0)

X , . . . ,Tab(s)
X we simply store the table Tab(0)

X and for i > 0 we use
Proposition 4 to compute any entry of Tab(i)

X as and when required. Using this
idea we obtain the following improvement.

Proposition 5. Suppose the field Fqn is represented using a normal basis. Then
Algorithm 3 requires to store 3h points. The numbers of additions and doublings
remain the same as Proposition 3.

486 P. Sarkar, P.K. Mishra, and R. Barua

4 General Table Look-Up Methods

In this section, we present our general table look-up algorithm. Let w (1 ≤ w ≤
A+1) be a positive integer which is the row window size and set k = �(A+1)/w�.
We express all ui occurring in the base-φ expansion of m in the base 2w. In such
an expansion we will use the elements of the set Ωw = {0, ±1, ±2, · · · , ±2w−1} as
digits. Note that since {0, ±1, ±2, . . . ,±(2w−1−1), 2w−1} is a complete system of
residues modulo 2w, any integer m can be represented uniquely in base 2w using
these numbers as digits. The set Ωw has one extra digit which ensures that the
set is closed under negation. Thus, if u =

∑t
i=0 ai2wi then a representation of

−m over Ωw can be obtained by simply negating all the ai’s. For 0 ≤ i ≤ n − 1,
write

ui = ci,0 + ci,12w + · · · + ci,k2wk, (6)

where ci,j ∈ Ωw. Then

u0X0 = (c0,0 + c0,12w + ... + c0,k2wk)X0
u1X1 = (c1,0 + c1,12w + ... + c1,k2wk)X1
...

...
...

un−1Xn−1 = (cn−1,0 + cn−1,12w + ... + cn−1,k2wk)Xn−1.

(7)

We have to compute mX = u0X0+· · ·+un−1Xn−1. Let h (1 ≤ h ≤ n) be a small
integer (which is the column window size) and write n = s × h + r where r is a
unique integer in the set {1, . . . , h}. We define (s + 1) tables Tab(0)

X , . . . ,Tab(s)
X ,

where each Tab(i)
X stores (2w + 1)h points. The entries of Tab(i)

X are indexed by
elements of Ωh

w = Ωw × · · · × Ωw︸ ︷︷ ︸
h

. For (a0, . . . , ah−1) ∈ Ωh
w we define

Tab(i)
X [a0, . . . , ah−1] = a0Xih + a1Xih+1 + · · · + ah−1X(i+1)h−1. (8)

Let κ = (s + 1)h and set Xn = · · · = Xκ−1 = 0. Hence Tab(s)
X stores only

(2w + 1)r points. With this set of tables at our disposal we can compute mX
using Algorithm 4.
Algorithm 4.
Input : m =

∑n−1
i=0 uiφ

i and point X .
Output : mX.

1. Set Y = Tab(s)
X [csh,k, csh+1,k, . . . , cn−1,k, 0, . . . , 0];

2. For i = s − 1 down to 0
3. Y = Y + Tab(i)

X [cih,k, cih+1,k, . . . , c(i+1)h−1,k];
4. For j = k − 1 down to 0
5. Y = 2wY ;
6. Y = Y + Tab(s)

X [csh,j , csh+1,j , . . . , cn−1,j , 0, . . . , 0];
7. For i = s − 1 down to 0
8. Y = Y + Tab(i)

X [cih,j , cih+1,j , . . . , c(i+1)h−1,j];
9. return Y .

New Table Look-Up Methods 487

Proposition 6. Algorithm 4 correctly computes mX using (k−1)+ks additions
and (k − 1)w doublings. For 0 ≤ i ≤ s − 1, table Tab(i)

X stores (2w + 1)h points
and table Tab(s)

X stores (2w + 1)r points. Thus a total of s(2w + 1)h + (2w + 1)r

points are required to be stored.

As in Section 3.1, the storage requirement can be further reduced if the field Fqn

is represented using a normal basis. This is based on the following observation.

Proposition 7. For any (a0, . . . , ah−1) ∈ Ωh
w, and i > 0, we have

Tab(i)
X [a0, . . . , ah−1] = φhi(Tab(0)

X [a0, . . . , ah−1]).

Since the field is represented using a normal basis, the map φ is easy to compute
online. Hence it is sufficient to store only Tab(0)

X and compute the required entry
of Tab(i)

X as and when required. This gives us the following result.

Proposition 8. If Fqn is represented using a normal basis, then Algorithm 5
requires to store only (2w + 1)h points. The numbers of additions and doublings
remain the same as in Proposition 6.

5 Unknown Point

The algorithms described so far use one or more look-up tables. These tables are
parametrized by a point X. If the point X is known in advance (as in signature
generation for ElGamal algorithms), then the tables can be precomputed and
stored. However, there are applications where the point is not known in advance
(for example in variants of Diffie-Hellman key agreement protocols). In such a
situation, the look-up tables have to be computed online. In this section, we
describe algorithms for this task.

We start by describing an algorithm to compute the tables used in Algorithm
3. For this it is sufficient to describe an algorithm to compute Tab(0)

X . The Frobe-
nius map can be used to compute the other tables from Tab(0)

X . Let X be a point
and we wish to compute the table Tab(0)

X having 3h entries and indexed by the
elements of the set {0, ±1}h. For any vector α ∈ {0, ±1}l, we define −α to be
the vector obtained from α by negating all the components of α. The following
algorithm computes Tab(0)

X .
Algorithm 5.
input : X.
output : Tab(0)

X used in Algorithm 3.

1. Compute X0, . . . , Xh−1.
2. Tab(0)

X [0, 0, . . . , 0] = 0; Tab(0)
X [1, 0, . . . , 0] = X; Tab(0)

X [−1, 0, . . . , 0] = −X;
3. For l = 1 to h − 2
4. For α ∈ {0, ±1}l set Tab(0)

X [α, 1, . . . , 0] = Xl+1 + TabX [α, 0, . . . , 0];
5. For α ∈ {0, ±1}l set Tab(0)

X [α,−1, . . . , 0] = −TabX [−α, 1, . . . , 0];
6. End.

488 P. Sarkar, P.K. Mishra, and R. Barua

Proposition 9. Algorithm 5 correctly computes Tab(0)
X used in Algorithm 3 us-

ing 1
2 (3h−3) point additions and (h−1) Frobenius map computations. The tables

Tab(1)
X , . . . ,Tab(s)

X used in Algorithm 3 can be computed from Tab(0)
X using sh3h

Frobenius map computations.

Proof: First we prove the correctness. Let β ∈ {0, ±1}. If β = (0, . . . , 0), then
clearly Algorithm 5 computes Tab(0)

X [β] = 0. So assume that β �= (0, . . . , 0) and
write β = (α, b, 0, . . . , 0), where b �= 0 and α ∈ {0, ±1}l for some l ≥ 0. We show
that Tab(0)

X [β] is computed correctly. If b = 1, we have by definition Tab(0)
X [β] =

〈α, (X0, . . . , Xl)〉+Xl+1 = Tab(0)
X [α, 0, . . . , 0]+Xl+1, where 〈〉 denotes the usual

inner product. On the other hand, if b = −1, then

Tab(0)
X [β] = 〈α, (X0, . . . , Xl)〉 − Xl+1

= −(−〈α, (X0, . . . , Xl)〉 + Xl+1)
= −(〈−α, (X0, . . . , Xl)〉 + Xl+1)

= −(Tab(0)
X [−α, 0, . . . , 0] + Xl+1)

= −Tab(0)
X [−α, 1, . . . , 0].

This completes the proof of correctness. Since Xi = φi(X), Step 1 of Algorithm 5
requires h−1 applications of the Frobenius map. The number of point additions
is clearly 3 + 32 + · · · + 3h−1 = 1

2 (3h − 3).
Note that for any β ∈ {0, ±1}h, and i ≥ 0, we have Tab(i+1)

X [β] =
φh(Tab(i)

X [β]). To compute Tab(i+1)
X from Tab(i)

X we need h3h computations of
the Frobenius map. Since s tables have to be computed, a total of sh3h compu-
tations of the Frobenius map is required. 	

Note that if the field Fqn is represented using normal basis, then for i > 0
the tables Tab(i)

X need not be stored. Also the Frobenius map computation is
essentially “for free”.

Now we turn to the problem of computing the set of tables used in Algorithm
4. For 0 ≤ i ≤ h − 1 and j ∈ Ωw, we use the variable Zi,j to store the value of
jXi.
Algorithm 6
input : X;
output : Tab(0)

X used in Algorithm 4.

1. For i = 0 to h − 1, set Zi,0 = 0; Z0,1 = X;
2. For j = 2 to 2w − 1
3. Z0,j = Z0,j−1 + X; Z0,−j = −Z0,j ;
4. End for;
5. For i = 1 to h − 1
6. For j = 1 to 2w − 1
7. Zi,j = φ(Zi−1,j); Zi,−j = −Zi,j ;
8. End for;
9. End For;
10. For j ∈ Ωw, set Tab(0)

X [j, 0, . . . , 0] = Z0,j ;

New Table Look-Up Methods 489

11. For l = 1 to h − 1
12. For α ∈ Ωl

w

13. For j = 1 to 2w − 1 set Tab(0)
X [α, j, 0, . . . , 0] = Zl+1,j + Tab(0)

X [α, 0, . . . , 0];
14. For j = 1 to 2w − 1 set Tab(0)

X [α, −j, 0, . . . , 0] = −Tab(0)
X [−α, j, 0, . . . , 0];

15. End for;
16. End for;
17. End.

The following result whose proof is similar to that of Proposition 9 states the
correctness and complexity of Algorithm 6.

Proposition 10. Algorithm 6 correctly computes Tab(0)
X used in Algorithm 4

using (

(2w − 2) +
22w − 1

2w
((2w + 1)h−1 − 1)

)

point additions and (h−1)(2w −1) computations of the Frobenius map. Further,
the tables
Tab(1)

X , . . . ,Tab(s)
X used in Algorithm 4 can be computed using an additional

sh(2w + 1)h computations of the Frobenius map.

6 Results and Comparison

In this section, we present detailed results and also compare our algorithm with
known scalar multiplication algorithms. At the outset, we would like to point
out that the Frobenius map based method (and hence our algorithm) is really
useful in the situation where the underlying field is a prime power field (rather
than a prime field). Hence all our comparisons are to algorithms which work
over prime power fields, in particular Optimial Extension Fields.

We recall the parameters of the algorithms (see Section 2.4): n is the field
extension degree; h and w are respectively the column and row window sizes;
k = �(A + 1)/w� and s, r are defined by the equation n = s × h + r, where r is a
unique integer from the set {1, . . . , h}. Table 1 summarizes the results for scalar
multiplication using Algorithm 4. Algorithm 3 is obtained from Algorithm 4 by
putting w = 1. Further, Algorithm 2 is obtained from Algorithm 4 by putting
w = 1 and h = n.

Table 1. Summary of Algorithm 4.

Additions Doublings Normal basis Standard basis
(k − 1) + ks (k − 1)w (2w + 1)h s(2w + 1)h + (2w + 1)r

The first two columns of Table 1 gives the numbers of additions and doublings
required. The third column gives the number of points required to be stored when
normal basis is used and the fourth column gives the number of points required

490 P. Sarkar, P.K. Mishra, and R. Barua

Table 2. Summary of Algorithm 6.

Tab(0)
X Tab(1)

X , . . . , Tab(s)
X

Additions Frobenius map Frobenius map

(2w − 2) + (22w−1)
2w

(
(2w + 1)h−1 − 1

)
(h − 1)(2w − 1) sh(2w + 1)h

Table 3. Comparison with other algorithms.

Algorithm additions doublings
Binary max (t − 1); avg (t/2) t

ω-NAF [6] t/(ω + 1) t

Algorithm 1 max (t − 1); avg (t/2) A

Algorithm 4 t/(wh) A

to be stored when standard (or polynomial) basis is used. Table 2 summarizes
the result for Algorithm 6. The first half of Table 2 gives the numbers of additions
and Frobenius map computations required to prepare the table Tab(0)

X and the
second half gives the additional number of Frobenius map computations required
to prepare the tables Tab(1)

X , . . . ,Tab(s)
X . Note that Algorithm 5 can be obtained

from Algorithm 6 by setting w = 1. Let us denote the numbers of point additions
and point doublings by A and D respectively. From Table 1, A = (k − 1) + ks
and D = (k − 1)w. Using the fact that k = �(A + 1)/w� and s � �n/h� we have
the A� (n(A+1))/wh and D� A. The parameters w and h are respectively the
row and column window sizes and hence wh is the size of the w × h submatrix
window.

Define t = n(A + 1). Then the total number of bits required to represent
the integer m in binary is � t. The usual binary add-and-double algorithm
requires t point doublings and on an average (t/2) add point additions. A more
efficient algorithm uses a non adjacent form (NAF) representation of m [23]. A
window method using NAF and look-up table requires t/(ω + 1) additions and
t doublings while storing 2ω−2 points, where ω is the window size (see [6]). The
basic Frobenius map based algorithm (Algorithm 1) requires A doublings and
t/2 additions. These results are summarized in Table 3 which clearly show the
superiority of Algorithm 4 over the other algorithms. Algorithm 4 achieves the
speed-up by using a look-up table. This look-up table can either be precomputed
or can be computed online. Further, depending on the basis representation of
the underlying field, the amount of storage space can vary.

In Table 4, we present results of storage and computational requirements
under various conditions. The values in Table 4 clearly shows that the storage
and computational requirements of the look-up tables can vary. For example, in
the situation n = 4, h = 2 and w = 1, it is sufficient to work with total storage
space for 18 points (9 if normal basis is used). Only 3 point additions and 19
Frobenius map computations are required to compute the tables. The number
of additions required for scalar multiplications is approximately (t/wh) = t/2
and the number of doublings is approximately A. This is better than the binary

New Table Look-Up Methods 491

method. On the other hand, for n = 12, h = 2 and w = 4, using normal
basis representation and storage for 289 points, the number of additions in the
scalar multiplication can be brought down to t/(wh) = t/8. A total of 269 point
additions are required to compute the tables in this situation. Thus Algorithm 4
provides a wide choice of trade-offs between storage space and efficiency of scalar
multiplication.

Table 4. Storage and computation requirements of the look-up tables.

Parameters storage requirements computational requirements
n h w normal basis standard basis Tab(0)

X Tab(i)
X for i > 0

Additions Frob Frob
4 4 1 81 81 39 3 0

2 625 625 467 9 0
2 1 9 18 3 1 18

2 25 50 17 3 50
3 81 162 69 7 162

8 4 1 81 162 39 3 324
2 625 1250 467 9 2500

2 1 9 36 3 1 54
2 25 100 17 3 150
3 81 324 69 7 486

12 4 1 81 243 39 3 648
2 625 1875 467 9 5000

2 1 9 54 3 1 90
2 25 150 17 3 250
3 81 486 69 7 810
4 289 1734 269 15 2890

7 Conclusion and Further Research

We have described a new table look-up algorithm for performing Frobenius map
based scalar multiplication for elliptic and hyperelliptic curve cryptosystems over
prime power fields. The algorithm compares favourably with previous Frobenius
map based algorithms and other scalar multiplication algorithms. Note that,
we have not used NAF representation of the multiplier in our algorithm. Us-
ing NAF will further increase the efficiency of the proposed algorithm. Also,
recently in [15], [19] more general techniques have been proposed for utilising
the Frobenius map. It is an interesting work to see how the algorithm proposed
in this work can be modified to suit the generalisation and how much of per-
formance enhancement can be achieved. In conclusion, it can be said that our
algorithm (or a version modified to suit the general scenario) is a serious con-
tender for implementing scalar multiplication for elliptic and hyperelliptic curve
cryptosystems.

492 P. Sarkar, P.K. Mishra, and R. Barua

References

1. K. Aoiki, F. Hoshino, T. Kobayashi A Cyclic Window Algorithm for ECC Defined
over Extension Fields ICICS 2001, LNCS 2229, pp 62–73, Springer Verlag 2001.

2. D. V. Bailey and C. Paar. Efficient Arithmetic in Finite Field Extensions with
Application in Elliptic Curve Cryptography In J. Cryptology 14, pages 153–176,
2001.

3. D. G. Cantor. Computing in the Jacobian of a Hyperelliptic curve. In Mathematics
of Computation,volume 48, pages 95–101, 1987.

4. Y. J. Choie and J. W. Lee. Speeding up the scalar multiplication in the Jacobian
of hyperelliptic curves using Frobenius map. Indocrypt 2002, LNCS 2551, Springer
Verlag 2002, pp 285–295.

5. M. Ciet, T. Lange, F. Sica and J.-J. Quisquater. Improved algorithms for efficient
arithmetic on elliptic curves using fast endomorphisms. Eurocrypt 2003.

6. K. Fong, D. Hankerson, J. Lopez and A. Menezes. Field inversion and point halving
revisited. Preprint.

7. R. P. Gallant, R. J. Lambert and S. A. Vanstone. Faster point multiplication
on elliptic curves using efficient endomorphisms. Crypto 2001, LNCS 2139, pp.
190–200, 2001.

8. C. Gunther, T. Lange and A. Stein. Speeding Up the Arithmetic on Koblitz Curves
of Genus Two, Selected Areas in Cryptography, SAC 2001, LNCS, pp. 106–117,
2001.

9. E. Knudsen. Elliptic scalar multiplication using point halving. Proceedings of
Asiacrypt 1999, LNCS 1716, pp 135-149, 1999.

10. T. Kobayashi, H. Morita, K. Kobayashi and F. Hoshino. Fast elliptic curve algo-
rithm combining Frobenius map and table reference to adapt to higher character-
istic. Eurocrypt 1999, LNCS 1592, pp 176–189, 1999.

11. N. Koblitz. Hyperelliptic Cryptosystems. Journal of Cryptology, 1(3), pp 139–150,
1989.

12. N. Koblitz. Algebraic Aspects of Cryptology. Algorithm and Computation in Math-
ematics. Springer Verlag, 1998.

13. N. Koblitz. CM Curves with Good Cryptographic Properties. Advances in Cryp-
tology - Crypo’91, LNCS 576, pp. 279–287,Springer Verlag 1992.

14. T. Lange. Efficient Arithmetic on Hyperelliptic Koblitz Curve. PhD thesis, Uni-
versity of Essen, 2001.

15. T. Park, E. Kim, K. Park, M. Lee. A General Expansion Method Using Efficient
Endomorphism. In Proceedings of ICISC, 2003, LNCS, Springer-Verlag 2003.

16. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, revised edition, 1994.

17. A. Menezes, Y. Wu and R. Zuccherato. An Elementary Introduction to Hyperellip-
tic Curve. Technical Report CORR 96–19, University of Waterloo (1996), Canada.
Available at http://www.cacr.math.uwaterloo.ca

18. V. Müller. Fast multiplication on elliptic curves over small fields of characteristic
two. Journal of Cryptology, 11(4):219–234, 1998.

19. T. Park, K. Park, M. Lee. Efficient Scalar Multiplication in Hyperelliptic Curves
using a new Frobenius Expansion. In Proceedings of ICISC, 2003, LNCS, Springer-
Verlag 2003.

20. R. Schroeppel. Elliptic curve point halving wins big. Proceedings of 2nd Midwest
Arithmetical Geometry in Cryptography Workshop. Urbana, Illinois, November
2000.

New Table Look-Up Methods 493

21. F. Sica, M. Ciet and J.-J. Quisquater. Analysis of the Gallant-Lambert-Vanstone
method based on efficient endomorphisms: elliptic and hyperelliptic curves. Selected
areas in cryptography., LNCS, 2002, to appear.

22. N. P. Smart. Elliptic curve cryptosystems over small fields of odd characteristic.
Journal of Cryptology, 12(2):141-151, 1999.

23. J. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryptog-
raphy, 19:195–249, 2000.

24. J. Solinas. An improved Algorithm on a Family of Elliptic Curves. In Advances in
Cryptology - Crpto’97, LNCS 1294, pp.357–371, Springer-Verlag.

	Introduction
	Preliminaries
	Prime Power Fields
	Normal Basis
	Frobenius Map
	Scalar Multiplication Using Frobenius Map

	Basic Table Look-Up Methods
	Using Smaller Look-Up Tables

	General Table Look-Up Methods
	Unknown Point
	Results and Comparison
	Conclusion and Further Research

