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Abstract. In this paper, we present simple and genetic forms of an
evolutionary paradigm known as a society of hill-climbers (SoHC). We
compare these simple and genetic SoHCs on a test suite of 400 ran-
domly generated distributed constraint satisfaction problems (DisCSPs)
that are composed of asymmetric constraints (referred to as DisACSPs).
Our results show that all of the genetic SoHCs dramatically outperform
the simple SoHC even at the phase transition where the most difficult
DisACSPs reside.

1 Introduction

Evolutionary Computation (Bäck 1997; Fogel 2000) is the field of study devoted
towards the design, development, and analysis of problem solvers based on si-
mulated genetic and/or social evolution. Evolutionary computations (ECs) have
been successfully used to solve a wide variety of problems in the areas of robo-
tics, engineering, scheduling, planning, and machine learning, just to name a few
(Bäck 1997; Fogel 2000).

In the Evolutionary Constraint Satisfaction community, we have seen a mi-
gration away from pure evolutionary computations for constraint satisfaction
towards the hybridization of ECs with traditional CSP techniques and/or the
incorporation of heuristics and problem specific knowledge (Dozier, Bowen, and
Homaifar 1998) in an effort to solve CSPs more efficiently. To date, much of this
research has focused on centralized CSPs. Little research has been conducted
by the evolutionary constraint satisfaction community on the development of
ECs for solving distributed constraint satisfaction problems (DisCSPs) (Dozier
2002).

A DisCSP (Yokoo 2001) can be viewed as a 4-tuple (X, D, C, A), where X
is a set of n variables, D is a set of n domains (one domain for each of the n
variables), C is a set of constraints that constrain the values that can be assigned
to the n variables, and A is a set of agents for which the variables and constraints
are distributed. Constraints between variables belonging to the same agent are
referred to as intra-agent constraints while constraints between the variables of
more than one agent are referred to as inter-agent constraints. The objective in
solving a DisCSP is to allow the agents in A to develop a consistent distributed
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solution by means of message passing. The constraints are considered private and
are not allowed to be communicated to fellow agents due to privacy, security,
or representational reasons (Yokoo 2001). When comparing the effectiveness of
DisCSP-solvers the number of communication cycles (through the distributed
algorithm) needed to solve the DisCSP at hand is more important than the
number of constraint checks (Yokoo 2001) .

Many real world problems have been modeled and solved using DisCSPs
(Bejar et al. 2001; Calisti and Faltings 2001; Freuder, Minca, and Wallace 2001;
Silaghi et al. 2001; Zhang 2002); however, many of these approaches use mirro-
red (symmetric) inter-agent constraints. Since these inter-agent constraints are
known by the agents involved in the constraint, they can not be regarded as pri-
vate. If these constraints were truly private then the inter-agent constraints of one
agent would be unknown to the other agents involved in those constraints. In this
case the DisCSP would be composed of asymmetric constraints. To date, with
the exception of (Freuder, Minca, and Wallace 2001) and (Silaghi et al. 2001),
little research has been done on distributed asymmetric CSPs (DisACSPs).

In this paper, we demonstrate how distributed restricted forms of uniform
crossover can be used to improve the effectiveness of a previously developed EC
for solving DisACSPs known as a society of hill-climbers (SoHC) (Dozier 2002).
We refer to these new algorithms as a genetic SoHCs (GSoHCs). Our results
show that the GSoHCs dramatically outperform the simple SoHC even at the
phase transition where the hardest DisACSPs reside.

2 Constraint Networks, Asymmetric Constraints, and
the Phase Transition

Constraint satisfaction problems (CSPs) are based on constraint networks (Bo-
wen and Dozier, 1996; Mackworth 1997). A constraint network is a triple
〈X, D, C〉 where X is set of variables, D is set of domains where each xi ∈ X
takes its value from the corresponding domain di ∈ D, and where C is a set of
r constraints. Consider a binary constraint network (one where each constraint
constrains the value of exactly two variables)1

Constraint networks possess two additional attributes: tightness and density.
The tightness of a constraint is the ratio of the number of tuples disallowed by
the constraint to the total number of tuples in di × dj . The average constraint
tightness of a binary constraint network is the sum of the tightness of each
constraint divided by the number of constraints in the network. The density of
a constraint network is the ratio of the number of constraints in the network to
the total number of constraints possible.

1 In this paper, we only consider binary constraint networks because any constraint
involve more than one varible can be transformed into a set of binary constraints.
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2.1 Asymmetric Constraints

Constraints in a binary constraint network may also be represented as two di-
rectional constraints referred to as arcs (Mackworth 1977; Tsang 1993). For ex-
ample, the symmetric constraint cEF can be represented as cEF = {c ⇀

EF
, c ↼

EF
},

where c ⇀

EF
= c ↼

EF
= {〈 e1,f2 〉, 〈 e1,f3 〉, 〈 e2,f2 〉, 〈 e3,f2 〉 }, where

c ⇀

EF
represents the directional constraint imposed on variable F by variable E,

and where c ↼

EF
represents the directional constraint imposed on variable E by

variable F. This view of a symmetric binary constraint admits the possibility
of an asymmetric binary constraint between variables E and F as one where
c ⇀

EF
�= c ↼

EF
.

2.2 Predicting the Phase Transition

Classes of randomly generated CSPs can be represent as a 4-tuple (n,m,p1,p2)
(Smith 1994) where n is the number of variables in X, m is the number of values
in each domain, di ∈ D, p1 represents the constraint density, the probability that
a constraint exists between any two variables, and p2 represents the tightness of
each constraint.

Smith (Smith 1994) developed a formula for determining where the most
difficult symmetric randomly generated CSPs can be found. This equation is as
follows, where p̂2critS

is the critical tightness at the phase transition for n, m,
p1.

p̂2critS
= 1 − m

−2
p1(n−1) (1)

Randomly generated symmetric CSPs of the form (n,m,p1,p̂2critS
) have been

shown to be the most difficult because they have on average only one solution.
Problems of this type are at the border (phase transition) between those classes
of CSPs that have solutions and those that have no solution. Classes of randomly
generated symmetric CSPs for which p2 is relatively small compared to p̂2critS

are easy to solve because they contain a large number of solutions. Similarly,
classes of CSPs where p2 is relatively large compared to p̂2critS

, are easy to
solve because the constraints are so tight that simple backtrack-based CSP-
solvers (Smith 1994) can quickly determine that no solution exists. Thus, for
randomly generated CSPs, one will observe an easy-hard-easy transition as p2
is increased from 0 to 1.

Smith’s equation can be modified (Dozier 2002) to predict the phase transi-
tion in randomly generated asymmetric CSPs as well. This equation is as follows
where p1α represents the probability that an arc exits between two variables and
where p̂2critA

is the critical tightness at the phase transition for n, m, and p1α.

p̂2critA
= 1 − m

−1
p1α(n−1) . (2)
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3 Society of Hill-Climbers

A society of hill-climbers (SoHC) (Dozier 2002; Sebag and Schoenauer 1997) is
a collection of hill-climbers that communicate promising (or futile) directions
of search to one another through some type of external collective structure. In
the society of hill-climbers that we present in this paper, the external collec-
tive structure which records futile directions of search comes in the form of a
distributed list of breakout elements, where each breakout element corresponds
to a previously discovered nogood2 of a local minimum (Morris 1993). Before
presenting our society of hill-climbers, we must first discuss the hill-climber that
makes up the algorithm. In this section, we first introduce a modified version
of Yokoo’s distributed breakout algorithm with broadcasting (DBA+BC) (Yo-
koo 2001) which is based on Morris’ Breakout Algorithm (Morris 1993). After
introducing the modified DBA+BC algorithm (mDBA) we will describe the fra-
mework of a SoHC.

For the mDBA, each agent ai ∈ A is responsible for the value assignment of
exactly one variable. Therefore agent ai is responsible for variable xi ∈ X, can
assign variable xi one value from domain di ∈ D, and has as constraints C ⇀

xixj

where i �= j. The objective of agent ai is to satisfy all of its constraints C ⇀
xixj

.
Each agent also maintains a breakout management mechanism (BMM) that
records and updates the weights of all of the breakout elements corresponding
to the nogoods of discovered local minima. This distributed hill-climber seeks
to minimize the number of conflicts plus the sum of all of the weights of the
violated breakout elements.

3.1 The mDBA

The mDBA used in our SoHCs is very similar to Yokoo’s DBA+BC with the
major exception being that each agent broadcasts to every other agent the num-
ber of conflicts that its current value assignment is involved in. This allows the
agents to calculate the total number of conflicts (fitness) of the current best dis-
tributed candidate solution (dCS) and to know when a solution has been found
(when the fitness is equal to zero). The mDBA, as outlined in Figure 1, is as
follows.

Initially, each agent, ai, randomly generates a value vi ∈ di and assigns it to
variable xi. Next, each agent broadcasts its assignment, xi = vi, to its neighbors
ak ∈ Neighbori where Neighbori

3 is the set of agents that ai is connected with
via some constraint. Each agent then receives the value assignments of every
neighbor. This collection of value assignments is known as the agent view of
an agent ai (Yokoo 2001). Given the agent view, agent ai computes the number
of conflicts that the assignment (xi = vi) is involved in. This value is denoted as
γi.
2 A nogood is a tuple that causes a conflict.
3 In this paper, Neighbori = A − {ai}.
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Once the number of conflicts, γi, has been calculated, each agent ai randomly
searches through its domain, di, for a value bi ∈ di that resolves the greatest
number of conflicts (ties broken randomly). The number of conflicts that an
agent can resolve by assigning xi = bi is denoted as ri. Once γi and ri have been
computed, agent ai broadcasts these values to each of its neighbors.

When an agent receives the γj and rj values from each of its neighbors, it
sums up all γj including γi and assigns this sum to fi where fi represents the
fitness of the current dCS. If agent ai has the highest ri value of its neighborhood
then agent ai sets vi = bi, otherwise agent ai leaves vi unchanged. Ties are broken
randomly using the commonly seeded tie-breaker4 that works as follows: if t(i)
> t(j) then ai is allowed to change otherwise aj is allowed to change where t(k)
= (k+rnd()) mod |A|, and where rnd() is a commonly seeded random number
generator used exclusively for breaking ties.

If ri for each agent is equal to zero, i.e. if none of the agents can resolve
any of their conflicts, then the current best solution is a local minimum and all
agents ai send the nogoods that violate their constraints to their BMMi. An
agent’s BMM will create a breakout element for all nogoods that are sent to it.
If a nogood has been encountered before in a previous local minimum then the
weight of its corresponding breakout element is incremented by one. All weights
of newly created breakout elements are assigned an initial value of one. Therefore
the task for mDBA is to reduce the total number of conflicts plus the sum of all
breakout elements violated.

After the agents have decided who will be allowed to change their value and
invoked their BMMs (if necessary), the agents check their fi value. If fi > 0 the
agents begin a new cycle by broadcasting their value assignments to each other.
If fi = 0 the algorithm terminates with a distributed solution.

3.2 The Simple and Genetic SoHCs

The SoHCs reported in this paper are based on mDBA. Each simple SoHC runs
ρ mDBA hill-climbers in parallel, where ρ represents the society size. Each of
the ρ hill-climbers communicate with each other indirectly through a distributed
BMM. In a SoHC, each agent, ai assigns values variables xi1, xi2, · · · , xiρ where
each variable xij represents the ith variable for the jth dCS. Each agent, ai, has
a local BMM (BMMi) which manages the breakout elements that correspond
to the nogoods of its constraints.

There are a total of 4 genetic SoHCs (GSoHCs) reported in this paper. They
differ only in the type of recombination operator used. They are as follows.
GSoHCspx is similar to the simple SoHC (SoHC) except that it uses a distributed
restricted single-point crossover operator (dSPX-µ), where µ is the mutation
rate. The dSPX-µ operator works as follows. On each cycle, each dCSj that has
an above average number of conflicts is replaced with an offspring by recombining
4 In case of a tie between two agents ai and aj , Yokoo’s DBA+BC will allow the agent

with the lower agent address number is allowed change its current value assignment.
We refer to this as the deterministic tie-breaker (DTB) method
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procedure mDBA(Agent ai)
{

Step 0: randomly assign vi ∈ di to xi;
do

{
Step 1: broadcast (xi = vi) to other agents;
Step 2: receive assignments from other agents, agent viewi;
Step 3: assign conflictsi the number conflicts that (xi = vi)

is involved in;
Step 4: randomly search di for a value bi that minimizes the number

of conflicts of xi (ties broken randomly),
Step 5: let ri equal the number of conflicts resolved by (xi = bi);
Step 6: broadcast conflictsi and ri to other agents;
Step 7: receive conflictsj and rj from other agents,

let f =
∑

conflictsk;
Step 8: if (max(rk) == 0)

for each conflict, (xi = v, xj = w)
update breakout elements(BMMi,(xi = v, xj = w));

Step 9: if (ri == max(rk))
† vi = bi;

} while (f > 0)
}

† Ties are broken with randomly with a synchronized tie-breaker.

Fig. 1. mDBA Agent Protocol

dCSj with dCSq, which is created as follows. With probability µ, agent ai will
randomly assign vij a value from di. With probability 1-µ, a cut point, cp, is
selected using a commonly seeded random number generator from 1 to N-1,
where N is the number of agents of an individual. All agents ai where i ¡ cp will
assign vij the value viq. This takes place with probability 1−µ

2 . With probability
1−µ

2 , All agents ai where i ≥ cp will assign vij the value viq. In this fashion, the
new dCSj will have values up to cp from dCSq and values from cp to N from
dCSj or it will have have values up to cp from dCSj and values from cp to N
from dCSq which is the way single-point crossover works on centralized CSs.

GSoHCtpx uses a distributed restricted two-point crossover operator (dTPX-
µ) that is based on two-point crossover, while GSoHCmtpx uses a modified dTPX-
µ (referred to as dMTPX-µ) where the first and third segments of dCSj are
assigned values from dCSq.

GSoHCux works exactly like a the other GSoHCs except that on each cycle
a distributed restricted uniform crossover operator is applied as follows. Each
distributed candidate solution that has an above average number of conflicts,
dCSj , is replaced with an offspring that is a recombination of the best indivi-
dual, dCSq, and dCSj as follows. An agent ai will assign vij the value from viq

with probability 1−µ
2 and will leave vij unchanged with probability 1−µ

2 . With
probability µ agent ai will randomly assign vij a value from di the domain of
values for variable xi. We refer to this form of recombination as distributed
restricted uniform crossover (dRUC-µ).
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The simple and genetic SoHCs compared in this paper all use a society size
of 32. The GSoHCs all use µ = 0.065.

4 Results

4.1 Experiment I

In our first experiment, our test suite consisted of 400 instances of randomly
generated DisACSPs of the form <30,6,1.0,p2>. In this experiment, p2 took on
values from the set {0.03, 0.04, 0.05, 0.06} for the 400 instances (100 instances
for each class of DisACSP) of <30,6,1.0,p2>, where p̂2critA

≈ 0.06. Each of the
30 agents randomly generated 29 arcs where each arc contained approximately
1.08, 1.44, 1.88, and 2.16 nogoods respectively for p2 values of 0.03, 0.04, 0.05,
and 0.06. The arcs were generated according to a hybrid between Models A & B
in (Macintyre et al. 1998). This method of constraint generation is as follows. If
each arc was to have 1.08 nogoods (which is the case when p2 = 0.03) then every
arc received at least 1 nogood and was randomly assigned an additional nogood
with probability 0.08. Similarly, if the average number of nogoods needed for each
constraint was 2.16, (which is the case when p2 = 0.06) then every constraint
received at least 2 nogoods and was randomly assigned and additional nogood
with probability 0.16. The probability that an arc existed was determined with
probability p1α.

In this section, we compare SoHC and the GSoHCs on the 400 randomly
generated DisACSPs described earlier. Table 1 presents the performance results
of these four SoHCs. In Tables 1a-1d, the first column represents the algorithm,
the second column represents the success rate of an algorithm when given a
maximum of 2000 cycles to solve each of the 100 problems within a class, and
the third column represents the average number of cycles needed to solve the
problems within a class.

In Tables 1a-1d, one can see that the GSoHCs outperform the SoHC on
each of the four classes of DisACSPs. This suggests that using restricted distri-
buted crossover results in improved performance. For each of the GSoHCs, we
developed a ‘headless’ version (HSoHC) and the GSoHCs all had a statistically
significant better performance (Zhang, F. 2003). In the ‘headless’ form of the
distributed restricted recombination operators, the best dCS is crossed with a
randomly generated individual. The purpose of these ‘headless’ operators is to
validate the effectiveness of operator. If a HSoHC using ‘headless’ recombina-
tion outperforms a similar GSoHC that uses distributed restricted recombination
then one can conclude that the recombination operator is not an effective for
5 In (Zhang, F. 2003), GSoHCs using distributed restricted forms of single-point,

two-point, and uniform crossover were compared. The society sizes, ρ, and mu-
tation rates, µ, for the GSoHCs were taken from the sets {2,4,8,16,32} and
{0.0,0.03,0.06,0.12,0.25} respectively. The best overall society size and mutation rate
for the GSoHCs was ρ = 32 and µ = 0.06. Therefore we only show the results of the
GSoHCs where ρ = 32 and µ = 0.06.
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Table 1. Performances on the <30,6,1.0,0.03>, <30,6,1.0,0.04> <30,6,1.0,0.05> and
<30,6,1.0,0.06> DisACSPs

Alg. SR Cycles
SoHC 1.00 17.93

GSoHCspx 1.00 14.41
GSoHCtpx 1.00 14.00

GSoHCmtpx 1.00 13.15
GSoHCux 1.00 14.32

Alg. SR Cycles
SoHC 1.00 54.28

GSoHCspx 1.00 31.01
GSoHCtpx 1.00 30.35

GSoHCmtpx 1.00 28.32
GSoHCux 1.00 31.29

(a) On the <30,6,1.0,0.03> DisACSPs (b) On the <30,6,1.0,0.04> DisACSPs

Alg. SR Cycles
SoHC 0.52 1323.80

GSoHCspx 0.93 402.28
GSoHCtpx 0.94 359.4

GSoHCmtpx 0.98 273.62
GSoHCux 0.96 329.81

Alg. SR Cycles
SoHC 0.02 1981.06

GSoHCspx 0.12 1861.59
GSoHCtpx 0.10 1880.95

GSoHCmtpx 0.11 1901.72
GSoHCux 0.09 1881.65

(c) On the <30,6,1.0,0.05> DisACSPs (d) On the <30,6,1.0,0.06> DisACSPs

the types of problems within the test suite and that actually macromutation is
responsible for the performance improve over the simple SoHC (Jones 1995).

Notice also that GSoHCmtpx has the best performance in term of SR and
Cycles for all classes of DisACSPs except for when p2 = 0.06. It seems that by
taking 67% of the genes from the best individual in the population improves
search performance on the easier classes of DisACSPs. However, at the phase
transitions this performance improvement disappears. It would be interesting to
see how a biased uniform crossover operator would perform on this test suite.
Instead of taking values from the best individual for 50% of the genes, it would
be interesting to see if a bias of 67% would improve performance the way that
the modified two-point crossover did. It would also be interesting to see if a bias
of less than 50% (but not 0%) would improve the performance on the DisACSPs
located at the phase transition.

4.2 Discussion

The increased performance of the GSoHCs over SoHC is primarily due to the
way in which their operators intensify search around the current best individual
in the population. The basic assumption made by anyone applying an EC to
a problem is that optimal (or near optimal) solutions are surrounded by good
solutions. However, this assumption is not always true for constrained problems.
Even for problems where this is the case ECs typically employ local search in an
effort exploit promising regions. Thus, the EC will intensify search periodically
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in some region. Actually, the search behavior of the GSoHCs is no different. The
hill-climbers associated with individuals that are involved in a below average
number of conflicts are allowed to continue their search (via distributed hill-
climbing) while hill-climbers associated with individuals that are involved in an
above average number of conflicts have their associated individuals replaced by
offspring that more closely resemble the current best individual in the popula-
tion.

5 Conclusions

In this paper, we have introduced the concept of DisACSPs and have demon-
strated how distributed restricted operators can be used to improve the search
of a society of hill-climbers on easy and difficult DisACSPs. We also provided
a brief discussion of some of the reasons why the performances of the GSoHCs
were so dramatically superior to SoHC. We also showed that a modified version
of two-point crossover outperforms two-point crossover (and all other recombi-
nation operators) on DisACSPs that are near the phase transition. We discussed
how this result may lead to the development of a biased dRUC operator. Perhaps
the bias may be adapted to the problem type. For easy problems the bias should
be higher than 0.5 and for harder problems the bias should be lower than 0.5.
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