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Abstract.  A method for evolving programs that construct multicellular struc-
tures (organisms) is described. The paper concentrates on the difficult problem
of evolving a cell program that constructs a fixed size French flag. We obtain
and analyze an organism that shows a remarkable ability to repair itself when
subjected to severe damage. Its behaviour resembles the regenerative power of
some living organisms.

1  Introduction

The development of a fully formed adult from the zygote has to rank as one of the
most remarkable feats of molecular engineering in the universe. From a single set of
instructions inside one cell, an organism can grow to contain 1013 cells (for a human
being) containing many hundreds of specialized cells performing distinct functions.
How does nature achieve this feat of engineering?  In his book biologist Frank M.
Harold explains [9]:

“Genes specify the cell’s building blocks; they supply raw materials, help regulate
their availability and grant the cell independence of its environment. But the
higher levels of order, form and function are not spelled out in the genome. They
arise by the collective self-organization of genetically determined elements, af-
fected by cellular mechanisms that remain poorly understood.”

The genotype-phenotype mapping employed by nature is highly complex and many-
to-one. Despite this, in many branches of evolutionary algorithms genetic representa-
tions make no distinction between genotype and phenotype. This is a drawback if one
is interested in problems that involve phenotypes of arbitrary size and complexity [1].
If higher level organisms were really colonies of cells with different genotypes it
would have been much harder for evolution to evolve organisms of the complexity and
sophistication of many living creatures. The poor scalability of directly encoded sys-
tems (i.e. a one-to-one mapping from genotype to phenotype) is particularly evident in
the evolution of neural networks, where each link requires a floating-point weight that
must be determined. The work presented in this paper builds on the author’s previous
work in evolving multicellular organisms [13]. This paper is devoted to a particularly
difficult but interesting problem, that of the growth and regulation of a differentiated
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multicellular organism that looks like a French flag. We examine in particular two
evolved solutions that achieve growth regulation. One of the solutions appears to be
static but shows a remarkable ability for self-repair that is reminiscent of the regen-
erative ability of some living organisms. The other solution shows interesting internal
time dynamics.   It is not the aim of this work to model closely natural developmental
processes, but rather, to explore a simple idealization of biological development in the
hope that it will exhibit some of the advantages of biological systems. The long term
aim of this work is to investigate a new way of constructing software and hardware
systems that are self-repairing and can achieve levels of complex and intelligent be-
haviour that top-down design methods are unable to attain.

The plan for the paper is as follows: A review of related work is given in section 2.
Section 3 describes how the cells and their environment are represented, and the cell
program’s inputs and outputs. Section 4 describes the form of genetic programming
used to evolve the cell program. Section 5 describes the experiments and the results
obtained. In section 6, a solution is analyzed in detail. Section 7 examines the organ-
ism’s behaviour under various kinds of damage. The paper concludes and discusses
future work.

2  Related Work

Fleischer and Barr created a sophisticated multicellular developmental test bed and
included realistic models of chemical diffusion, cell collision, adhesion and recogni-
tion [6]. Their purpose was to investigate cell pattern generation. They noted that the
design of an artificial genotype that develops into a specific pattern is very difficult.
They also noted that size regulation is critical and non-trivial and that developmental
models tend to be robust to perturbations. Eggenberger suggests that the complex
genotype-phenotype mappings typically employed in developmental models allow the
reduction of genetic information without losing the complex behaviour. He stresses
the importance of the fact that the genotype will not necessarily grow as the number of
cells, thus he feels that developmental approaches will scale better on complex prob-
lems [5]. Bongard and Pfeifer have evolved genotypes that encode a gene expression
method to develop the morphology and neural control of multi-articulated simulated
agents [3]. Bentley and Kumar examined a number of genotype-phenotype mappings
on a problem of creating a tessellating tile pattern [2]. They found that the indirect
developmental mapping (that they refer to as an implicit embryogeny) could evolve
the tiling patterns much quicker, and further, that they could be subsequently grown to
(iterated) much larger sized patterns. One drawback that they reported was that the
implicit embryogeny tended to produce the same types of patterns. Other researchers
are more motivated by fundamental biological aspects of cell behaviour. Furusawa and
Kaneko modeled cell internal dynamics and its relationship to the emergence of cell
multicellularity[7]. Hogeweg has carried out impressive work in computer models of
development and constructed a sophisticated model of cells (biotic) by modeling the
internal dynamics by groups of cells in a cellular automaton that are subject to energy
minimization [10][11]. The energy minimization leads to cell movement and sorting
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by differential cell adhesion. The cell genome was modeled as 24 node Boolean net-
work that defined cell signaling and adhesion. She used a fitness criterion that was
related to the difference in the gene expression in all the cells. She evolved organisms
that exhibited many behaviours that are observed in living systems: cell migration and
engulfing, budding and elongation, and cell death and re-differentiation. Streichert et
al. have investigated the problems of growth regulation and self-repair in artificial
embryos with a single cell type using Random Boolean Networks and S-Systems  [15].
Recently, many of the research contributions in computational development have been
presented in a single volume [12].

3  Cell and Chemical Representation

The cell’s genotype is a representation of a feed-forward Boolean circuit (that imple-
ments the cell program). This maps the cell’s input conditions to output behaviour. A
cell is a square in a non-toroidal two-dimensional cellular automaton. The inputs to
each live cell program are bits defining the cells states and the chemicals in the Moore
neighbourhood. Using this information, the cell’s program decides on the amounts of
each chemical that it will produce (as binary bits), whether it will live, die, or change
to a different cell type at the next time step, and how it will grow over the Moore
neighbourhood. It also decides a single bit that represents whether it will obey the
grow bits or not. This output was introduced to make it easier for a cell program to
decide not to grow.

Fig. 1. The cell program’s binary inputs and outputs

Unlike real biology, when a cell replicates itself, it is allowed to grow in any or all of
the eight neighbouring cells simultaneously (this is done to speed up growth, mainly
for reasons of efficiency). In all the experiments reported in this paper the amount of
each chemical is represented by an eight-bit binary number. The cell types are repre-
sented by binary codes with zero reserved for the absence of a cell (or dead) and are
synonymous with cell colour (1 - blue, 2-red, 3-white). In general, the user can decide
how many cell types there are (a power of two), in the experiments reported here, only
four cell types were required and also how many chemicals there are. Only live cells
have their programs executed. Initially a single cell is placed in the grid (the zygote).
If two or more cells decide to grow into the same location at the next time step, the
last such cell in the scan path overwrites all previous growths. This was chosen as it
greatly simplified the process of constructing the newly grown organism, though of
course, it introduces a bias that isn’t present in a truly parallel system. The process of
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constructing the new organism at time t+1 from the organism at time t is the following:
Every live cell from the top-left to the bottom-right has its program run (all cells run
the same program). A new map (initially empty) is created and filled with cells that
have either grown, or not died, in the map at time t. After all the programs inside the
living cells have been run, the map at time t+1 replaces the map at time t. For each
chemical there is a rectangular array of the same dimensions and type as the cellular
map. Chemicals obey a diffusion rule defined as follows: let N denote the neighbour-
hood with neighbouring position k,l, the chemical at position i,j at the new time step is
given by (1).

∑
∈

+=
Nlk

oldkloldijnewij ccc
,

)(
16
1

)(2/1)( . (1)

This ensures that over time, chemicals diffuse away from their point of origin. The
rule was designed so that diffusing chemical would be conserved (apart from the loss
when the level falls below a level of one). Note that, since cells can determine their
own new level of chemical there is no strict conservation of chemical in the entire
system (i.e. a cell with its chemicals overwrite those at the location that they grow
into). The chemical map is scanned and updated in a similar manner to the cellular
map.  A depiction of the cell’s inputs and outputs is shown in Fig. 1.

4   Cartesian Genetic Programming and the Cell Program

Cartesian Genetic Programming was developed from methods developed for the
automatic evolution of digital circuits [14]. CGP represents a program or circuit as a
list of integers that encode the connections and functions. The representation is readily
understood from a small example. Consider the one bit binary adder circuit (Fig. 2).
This has three inputs that represent the two bits to be summed and the carry-in bit. It
has two outputs: sum and carry-out. CGP employs an indexed list of functions that
represent in this example, various two input logic gates and three input multiplexers.
Suppose that in a function lookup table AND is function 6, XOR is function 10 and
MUX is function 16. The three inputs A, B, Cin are labeled 0, 1, 2. The output of the
left (right) XOR gate is labeled 3 (6). The output of the MUX gate is labeled 5. The
AND output is labeled 4. In Fig. 2, a genotype is shown and how it is decoded to a
phenotype (the one-bit binary adder). The integers in italics represent the functions,
and the others represent the connections between gates, however, if it happens to be a
two input gate then the third input is ignored. It is assumed that the circuit outputs are
taken from the last two nodes. The second group of four integers (shown in grey)
represent an AND gate (with output 4) that is not part of the circuit phenotype. Since
only feed-forward circuits are being considered, it is important to note that the con-
nections to any gate can only refer to gates that appear on its left.
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Fig. 2. The Cartesian genotype and corresponding phenotype for a one-bit adder circuit

Typically, CGP uses point mutation (that is constrained to respect the feed-forward
nature of the circuit). Suppose that the first input of the MUX gate (0) was changed to
4. This would connect the AND gate into the circuit (defined by the four grey genes).
Similarly, a point mutation might disconnect gates. Thus, CGP uses a many to one
genotype-phenotype mapping, as redundant nodes may be changed in any way and the
genotypes would still be decoded to the same phenotype.  The (1+4)-ES evolutionary
algorithm uses characteristics of this genotype-phenotype mapping to great advantage
(i.e. genetic drift):

1. Generate 5 chromosomes randomly to form the population
2. Evaluate the fitness of all the chromosomes in the population
3. Determine the best chromosome (called it current_best)
4. Generate 4 more chromosomes (offspring) by mutating the current_best
5. The current_best and the four offspring become the new population
6. Unless stopping criterion reached return to 2

Step 3 is a crucial step in this algorithm: if more than one chromosome is equally good
then the algorithm always chooses the chromosome that is not the current_best (i.e.
equally fit but genetically different). This step allows a genetic drift process that turns
out be of great benefit [16][18]. The mutation rate is defined to be the percentage of
each chromosome that is mutated in step 4. In all the experiments described in this
paper only four kinds of MUX logic gates were employed defined by the expression
f(A,B,C)=AND(A, NOT(C)) OR AND(B, C). The four types correspond to cases
where inputs A and B are either  inverted or not. Program outputs are taken from con-
secutive nodes at the end of the phenotype with the leftmost of these being the
grow/no grow output.

5   Evolutionary Experiments and Results

In the biological development of organisms, cells have to behave differently according
to their position within the organism. Lewis Wolpert [17] proposed that this positional
information arises from a combination of intercellular interactions and cellular re-
sponses to chemical gradients that form relative to organism boundaries. In the model,
cells respond differently according to threshold concentrations of chemicals. He lik-
ened the problem to one of growing a French Flag; the developmental method of con-
struction would be able to produce a recognizable flag of arbitrary size. This illus-
trates an important property of developmental systems in that they are scale free (i.e.
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there is no relationship between the genotype size and the size of the phenotype).
Wolpert’s model was the inspiration for the task the maps of cells were to achieve. In
this paper we describe experimental results for evolving organisms whose task is to
grow from a single zygote into the 63 cell organism that looks like a French flag by a
certain time (i.e. achieve maturity). This is a very difficult task as initially the cell
program must replicate to grow to the desired size but must also somehow recognize
that it has reached the appropriate size and no longer continue to replicate. It must also
output the desired cell state signal (represented by colour) in the correct spatial region
of the flag. The cell program (as with real embryos) is not given coordinates but must
decide how to act by local interactions only.  This is shown in Fig 3.

           

Fig. 3. Task definition: a single cell program beginning from a white state, at time 0, must
replicate itself and differentiate itself into other cells,  so that at iteration 6, it becomes a 63 cell
French flag, and remains like that indefinitely. Initially, at the same location as the single start
cell, there can be chemicals having values 0 or 255

The evolved organism and target organism were compared at iterations 6, 7, 8, 9, cell
by cell, and a cumulative score of correctness (fitness) was calculated. By presenting
exactly the same target at these four test points, we hoped to steer the evolution of the
cell program towards growing into a fixed size French flag organism. The cell’s Carte-
sian program was allowed 300 nodes and 20 runs of 30,000 generations were carried
out (with 1% mutation) for five chemical scenarios: no chemicals up to four allowed
chemicals. The amount of chemical initially present at the location of the zygote was
initialized as follows: the first chemical is given 255, the second given 0, the third
given 255, and the fourth given 0. The maximum fitness value is 1024, which occurs
when all four 16 by 16 cell maps for the organism match perfectly with the target
organism. A table of results for the five chemical scenarios is shown in Table 1. All
solutions with fitness above 975 were iterated over 20 iterations to ascertain whether
any of them stopped growing. Only two solutions were found with this property. The
first was the solution with the highest overall fitness with two defined chemicals. The
temporal behavior of this is shown in Fig. 4.

Fig. 4. Growth of fittest cell program from a white seed cell to a mature French flag (two
chemicals)
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The other solution that stopped growing occurred in the three chemical scenario, how-
ever, surprisingly it had fitness 988 (fourth best). This is shown in Fig. 5. Unlike the
best overall solution this shows complex time dependent behaviour indefinitely (it was
iterated over 50 iterations and did not grow). The results shown in Table 1. show that
having chemicals makes it easier to find fitter organisms, and the results indicate that
having either none or one chemical make it unlikely, if not impossible, to achieve
solutions that grow and then stop growing that meet the target objective.

Table 1. Performance statistics for French flag problem. The maximum fitness is 1024

#chemicals Average
final best
fitness
(20 runs)

Standard
deviation

Best
fitness

Worst
fitness

Average
number
of cell
program
nodes

#nodes
in fittest
program

0 875.85 16.41 909 855 155.05 153
1 924.80 30.48 975 862 153.90 165
2 938.65 31.00 1012 894 145.75 139
3 948.80 27.87 1008 907 146.45 144
4 941.50 20.35 988 918 142.95 139

The fourth fittest solution moves through a repeating cycle of activity indefinitely (as
far as can be determined) always remaining bounded within a small region and with
the majority of cells remaining the same.

Fig.  5. Growth of fourth fittest cell program from a white seed cell (three chemicals)

6   Analysis

It is instructive to examine how the fittest French flag organism achieves apparent
stasis at iteration 8 and subsequently. The cell program itself is too large and compli-
cated to be shown in this paper: from Table 1 we see that it uses 139 binary IF state-
ments (multiplexers).  In addition the program cannot be understood without referring
to the current state of the organism. However, in the compass of this paper we can
illuminate aspects of the developmental program by showing (Fig. 6) the decisions
being made by each cell in the organism. On the left, we see the organism itself at
iteration 8 and on the right the cell growth and replication fate map. To clarify its
interpretation, consider the line of four grey cells in the fate map that are live cells in
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the organism. These cells will obey the growth instructions at the next iteration (see
Table 2) but will then die immediately afterward. Clearly as the organism remains
unchanged, the cells around them grow over them, thus reconstructing the line of cells
as if nothing had happened.

   

Fig.  6. Cell growth/replication fate map for the French flag organism at iteration 8.

Table 2. Cell growth instructions for actively growing cells in fittest French flag at iteration 8.

N  E  S  W  NE  SE  SW  NW
01101111 01001101 01001101 01001101 11011100
01101111 01101100 01101100 01101100 01010100 01010101 11010101
01101111 01101100 01101100 01101100 01110100 01110101 11010101
01101111 01101100 01101100 01101100 01110100 01110101 11010101
01101101 01101100 01101100 01101100 01110100 01110101 11010101
01101101 01101100 01101100 01101100 01110100 01110101 11010101

To clarify the interpretation of the cell growth instructions in Table 2, consider the
bottom right actively growing red cell, this has growth instructions 11010101. Ac-
cording to Fig. 6, it replicates its own colour in the directions: N, E, W, SE and NW.
All the interior cells of the flag (within one cell inside) are actively growing and over-
writing each other (according the top-left, bottom-right scan path), while most of the
border cells will remain as they are. Note that none of the second column of blue cells
in the flag overwrite their blue left neighbours, as they do not replicate to the west.
The French flag is clearly being actively reconstructed even though it appears to be
static.

7   Autonomous Behaviour after Damage

When the maturing French flag is damaged, it is often able to regenerate itself (or
produce another similar French flag) in some cases, though sometimes it can be put
into a state of continuous growth (further examples in Table 3). Fig. 7 shows the re-
generation of a French flag cellular map from the original white central region of the
original (fittest cell program). The cells replicate and then start to differentiate; even-
tually the growth of the organism slows and stops at iteration 20.

Key:

Black: cell will not grow
Grey: cell will grow and then die
Red/white/blue: cell will  replicate according
to colour
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Fig. 7. Autonomous recovery of badly damaged French flag organism conditions (blue and red
regions killed at iteration 8 - see Fig. 4). There is no further change after iteration 20

Fig. 8 shows what happens when the original cells of the fittest French flag are placed
in a random but contiguous arrangement  - chemical maps left intact - the phenotype
grows a little at first and rapidly re-organizes over a period of time, eventually reach-
ing stasis (by iteration 24).  This behaviour is reminiscent of autonomous regeneration
of the pond organism hydra, which can reform itself when its cells are dissociated and
then re-aggregated in a centrifuge [8].

Fig. 8. Autonomous recovery of French flag from randomly rearranged cells (French flag at
iteration 8 - see Fig. 4). There is no further change after iteration 24

In Table 3, we show the behaviour of the fittest French flag organism after it is dis-
rupted or damaged at iteration 8. In many cases it achieves stability again fairly rap-
idly and recovers the approximate appearance of the French flag, however when the
damage is too severe (as with a large hole or 25% cells disrupted randomly) the or-
ganism undergoes continuous growth and doesn’t appear to stabilize (even when run
for many more iterations). Such dynamic processes are hard to control in all circum-
stances and it illustrates the enormously difficult balancing act that living systems
have to carry out.

8   Conclusions and Further Work

We have presented and investigated an idealized model of development and studied in
detail the growth and regulation of an organism made of cells that can replicate, dif-
ferentiate, and read and produce chemicals through local interactions. There are many
avenues for further investigation such as, the roles of overwriting in self-repair and the
diffusion law of chemicals, complexity of evolvable structures, and the evolvability of
the representation. The software written also allows the possibility of cell movement
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(prior to growth) but as yet, this hasn’t been investigated. There are many ways that
the system can be made more sophisticated, for instance, by allowing cells to control
the flow of chemicals and to add the possibility of cell adhesion. However, since the
eventual aim of the work is toward technological applications it is important to try to
keep the model as simple as possible. The great robustness of the evolved organisms
to damage may be a consequence of the ability of cells to overwrite each other; this
remains for further investigation.

Work is already underway in examining the possibility of using the developing or-
ganisms for robot control, thus giving the organism a function. It will be interesting to
see if control programs can recover autonomously after damage. A detailed investiga-
tion also needs to be undertaken about the chemical information that is provided to the
cell’s program. It was discovered when the software was written to carry out this
work, that the author inadvertently only provided the most significant bit of each
chemical to the cell’s program (i.e. cell’s think chemicals are either high or low) and
all the other bits were read as zeros. It has been found that providing all chemical bits
or providing only the most significant bit made it very difficult, if not impossible, to
solve the tasks presented. This is such an interesting finding that it warrants lengthy
and detailed future investigation. This will be reported in due course.

Table 3. Behaviour of fittest French flag when damaged at iteration 8.

Initial condition Final condition (iterations to stability below)

      
 all blue     all red      all white

          
            5               3             2

               
     large hole        small hole

                     
     continued growth         9

               
          25%              12.5%
             Random damage

                    
     continued growth         9
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