Abstract
This paper presents a parameter-less optimization framework that uses the extended compact genetic algorithm (ECGA) and iterated local search (ILS), but is not restricted to these algorithms. The presented optimization algorithm (ILS+ECGA) comes as an extension of the parameter-less genetic algorithm (GA), where the parameters of a selecto-recombinative GA are eliminated. The approach that we propose is tested on several well known problems. In the absence of domain knowledge, it is shown that ILS+ECGA is a robust and easy-to-use optimization method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (1999)
Pelikan, M., Goldberg, D.E., Cant Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 525–532. Morgan Kaufmann, San Francisco (1999)
Spears, W.M.: Crossover or mutation? In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 221–237. Morgan Kaufmann, San Francisco (1993)
De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, Ann Arbor (1975)
Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. In: Sage, A.P. (ed.) IEEE Transactions on Systems, Man, and Cybernetics. 122–128, vol. 16(1), pp. 122–128. IEEE, New York (1986)
Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 51–60. Morgan Kaufman, San Mateo (1989)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms, vol. 1, pp. 69–93 (1991) (also TCGA Report 90007)
Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of populations. Complex Systems 6, 333–362 (1992)
Harik, G., Cant Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin problem, genetic algorithms, and the sizing of populations. In: Proceedings of the International Conference on Evolutionary Computation 1997 (ICEC 1997), pp. 7–12. IEEE Press, Piscataway (1997)
Mühlenbein, H.: How genetic algorithms really work: I.Mutation and Hillclimbing. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2, pp. 15–25. Elsevier Science, Amsterdam (1992)
Bäck, T.: Optimal mutation rates in genetic search. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 2–8 (1993)
Goldberg, D.E., Deb, K., Thierens, D.: Toward a better understanding of mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers 32, 10–16 (1993)
Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 38–45 (1993)
Eiben, A.E., Hintering, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)
Davis, L.: Adapting operator probabilities in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 61–69. Morgan Kaufmann, San Mateo (1989)
Julstrom, B.A.: What have you done for me lately? Adapting operator probabilities in a steady-state genetic algorithm. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 81–87. Morgan Kaufmann, San Francisco (1995)
Smith, R.E., Smuda, E.: Adaptively resizing populations: Algorithm, analysis, and first results. Complex Systems 9, 47–72 (1995)
Bäck, T., Schwefel, H.P.: Evolution strategies I: Variants and their computational implementation. In: Winter, et al. (eds.) Genetic Algorithms in Engineering and Computer Science, pp. 111–126. John Wiley and Sons, Chichester (1995)
Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 258–265. Morgan Kaufmann, San Francisco (1999)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Loureno̧, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, MA (2002)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA (1989)
Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. In: Banzhaf, W., Reeves, C. (eds.) Foundations of Genetic Algorithms 5 (FOGA 1998), vol. 1999, pp. 265–286. Morgan Kaufmann, Amsterdam (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lima, C.F., Lobo, F.G. (2004). Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_127
Download citation
DOI: https://doi.org/10.1007/978-3-540-24854-5_127
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22344-3
Online ISBN: 978-3-540-24854-5
eBook Packages: Springer Book Archive