Skip to main content

Automating Genetic Network Inference with Minimal Physical Experimentation Using Coevolution

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

A major challenge in system biology is the automatic inference of gene regulation network topology—an instance of reverse engineering—based on limited local data whose collection is costly and slow. Reverse engineering implies the reconstruction of a hidden system based only on input and output data sets generated by the target system. Here we present a generalized evolutionary algorithm that can reverse engineer a hidden network based solely on input supplied to the network and the output obtained, using a minimal number of tests of the physical system. The algorithm has two stages: the first stage evolves a system hypothesis, and the second stage evolves a new experiment that should be carried out on the target system in order to extract the most information. We present the general algorithm, which we call the estimation-exploration algorithm, and demonstrate it both for the inference of gene regulatory networks without the need to perform expensive and disruptive knockout studies, and the inference of morphological properties of a robot without extensive physical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, A., Shen, P., Ross, J.: A test case for correlation metric construction of a reaction pathway from measurements. Science 277, 1275–1279 (1997)

    Article  Google Scholar 

  2. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  3. Bongard, J.C., Lipson, H.: Automated damage diagnosis and recovery for remote robotics. To appear in: Proceedings of the 2004 International Conference on Robotics and Automation (ICRA), New Orleans, USA (2004)

    Google Scholar 

  4. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in Artificial Ontogeny. In: Spector, L., Goodman, E.D. (eds.) Proceedings of The Genetic and Evolutionary Computation Conference, pp. 829–836 (2001)

    Google Scholar 

  5. Bradley, D.W., Tyrrell, A.M.: Immunotronics: novel finite-state-machine architectures with built-in self-test Using self-nonself differentiation. IEEETransactions on Evolutionary Computation 6(3), 227–238 (2002)

    Article  Google Scholar 

  6. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pacific Symposium on Biocomputing, vol. 4, pp. 29–40 (1999)

    Google Scholar 

  7. Davidson, J.W., Savic, D.A., Walters, G.A.: Symbolic and numerical regression: Experiments and applications. Information Sciences 150(1-2), 95–117 (2003)

    Article  MathSciNet  Google Scholar 

  8. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

    Article  Google Scholar 

  9. Hill, R.J., Sternberg, P.W.: Cell fate patterning during C. elegans vulval development. In: Development suppl., pp. 9–18 (1993)

    Google Scholar 

  10. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artificial Life 8(3), 223–246 (2002)

    Article  Google Scholar 

  11. Iba, H., Mimura, A.: Inference of a gene regulatory network by means of interactive evolutionary computing. Information Sciences 145, 225–236 (2002)

    Article  Google Scholar 

  12. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9(1), 69–105 (2002)

    Google Scholar 

  13. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  14. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  15. Kitano, H.: Foundations of Systems Biology. MIT Press, Cambridge (2001)

    Google Scholar 

  16. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Reverse engineering of metabolic pathways from observed data using genetic programming. In: Altman, R.B., et al. (eds.) Pacific Symposium on Biocomputing, pp. 434–445 (2001)

    Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Lewis, E.B.: Clusters of master control genes regulate the development of higher organisms. Journal of the American Medical Association 267, 1524–1531 (1992)

    Article  Google Scholar 

  19. Lipson, H., Pollack, J.B.: Automatic design and manufacture of artificial lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  20. Mahdavi, S.H., Bentley, P.J.: An evolutionary approach to damage recovery of robot motion with muscles. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 248–255. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits–Part I. Journal of Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)

    Google Scholar 

  22. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits–Part II. Journal of Genetic Programming and Evolvable Machines 3(2), 259–288 (2000)

    Article  Google Scholar 

  23. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J. Theor. Biol. 152, 429–454 (1991)

    Article  Google Scholar 

  24. Sakamoto, E., Iba, H.: Identifying gene regulatory network as differential equation by genetic programming. Genome Informatics, 281–283 (2000)

    Google Scholar 

  25. Sims, K.: Evolving 3D morphology and behaviour by competition. In: Artificial Life IV, pp. 28–39 (1994)

    Google Scholar 

  26. Tominaga, D., Okamoto, M., Kami, Y., Watanabe, S., Eguchi, Y.: Nonlinear numerical optimization technique based on a genetic algorithm, http://www.bioinfo.de/isb/gcb99/talks/tominaga

  27. Weaver, D.C.: Modeling regulatory networks with weight matrices. Proc. Pacific Symp. Bioinformatics 5, 251–258 (2000)

    MathSciNet  Google Scholar 

  28. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  29. Young, R.M.: Mind, Brain and Adaptation in the Nineteenth Century. Cerebral Localization and its Biological Context from Gall to Ferrier. Clarendon Press, Oxford (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bongard, J.C., Lipson, H. (2004). Automating Genetic Network Inference with Minimal Physical Experimentation Using Coevolution. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics