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Abstract. This paper is concerned with a dynamic vehicle routing pro-
blem. The problem is dynamic in the sense that the time it will take to
traverse each edge is uncertain. The problem is expressed as a bi-criterion
optimisation with the mutually exclusive aims of minimising both the to-
tal mean transit time and the total variance in transit time. In this paper
we introduce a hybrid dynamic programming - ant colony optimisation
technique to solve this problem. The hybrid technique uses the principles
of dynamic programming to first solve simple problems using ACO (rou-
ting from each adjacent node to the end node), and then builds on this to
eventually provide solutions (i.e. Pareto fronts) for routing between each
node in the network and the destination node. However, the hybrid tech-
nique updates the pheromone concentrations only along the first edge
visited by each ant. As a result it is shown to provide the overall solution
in quicker time than an established bi-criterion ACO technique, that is
concerned only with routing between the start and destination nodes.
Moreover, we show that the new technique both determines more routes
on the Pareto front, and results in a 20% increase in solution quality
for both the total mean transit time and total variance in transit time
criteria. However the main advantage of the technique is that it provides
solutions in routing between each node to the destination node. Hence
it allows “instantaneous” re-routing subject to dynamic changes within
the road network. 1

1 Introduction

A requirement in the routing of a single vehicle through a road network from
a starting depot to a destination depot, is the ability to manoeuver quickly to
take into account events such as blocked roads or heavy traffic. Subsequently,
the problem becomes dynamic because the road conditions are not known with
certainty and are continuously changing. As a result, each road is characterised
by two indices. The first of these is the mean transit time, averaged over different
driving scenarios. The second is the variance in transit time on each road, which
gives an indication of how the transit time will fluctuate about this mean value
as the scenario changes.
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In an ideal world, one would wish to find routes that have both low mean
transit time and low variance in transit time. However, typically these prio-
rities have conflicting objectives. Routes that have the shortest overall travel
time may not have the smallest variance in travel time and vice-versa. In such
circumstances we must then trade-off between these two conflicting aims.

This is the basis of bi-criterion optimisation (see [1]). Instead of attemp-
ting to find a solution that satisfies the minimisation of each objective, we seek
out the set of non-dominated solutions that form the Pareto front in the two-
dimensional objective function space. Evolutionary techniques, which simulta-
neously create and evaluate a set of possible solutions, are a natural approach
to solving problems of this type (again, see [1]). Alternative techniques, such
as linear programming, have also been used for multi-objective optimisation in
which one objective is minimised with (worst acceptable) performance bounds
placed on each of the other objectives [2].

In this paper, we build on a technique known as Ant Colony Optimisation
[3], [4] to solve this bi-criterion routing problem. For a variety of reasons, Ant
Colony Optimisation is a natural approach. Firstly, its foundations lie in the way
in which real ant colonies find shortest path routes between different parts of
their natural habitat [5]. As a result, the technique has been successfully proved
to be particularly effective in solving networking problems.

Indeed, it has been successfully applied to the Travelling Salesman Problem
(TSP) [3], [4]; the Graph Colouring Problem [6]; and the Vehicle Routing Pro-
blem [7], [8]. The Vehicle Routing Problem considered in [7] and [8] is different
from the one analysed in this report in that these papers are concerned with
the routing of a fleet of vehicles to satisfy a number of customer requests. The
vehicles begin and end at a central depot, and once the customers are assigned to
vehicles the Vehicle Routing Problem is reduced to several Travelling Salesman
Problems.

In each of these cases, the model is deterministic, but Ant Colony Optimi-
sation has also been applied to several dynamic problems. It has been used for
routing in communication networks [9], [10] in which there is uncertain demand
on each node, with requests forming a dynamic and uncertain sequence. Moreo-
ver, ant techniques have also been applied successfully to a dynamic Travelling
Salesman Problem in which, at certain time instances, parts of the network are
’lost’ and re-routing is necessary [11]. The ability of the technique to cope with
problems of this type makes it a natural approach to both vehicle routing, and
more generally, to solving problems that are subject to dynamic and uncertain
change.

2 The Bi-criterion Optimisation Problem

Consider a road network repesented by G = (N, E), where N = (N1, ...Nn) is
the set of n nodes (i.e. junctions) and E is the set of (directed) edges (i.e. roads,
where a direction of travel may be specified). The aim is to route vehicles so
that they will reach their destination in the quickest time possible. However,
the problem is subject to uncertainty. Traffic congestion may cause delays, other
forms of disruption such as road works and/or driving accidents, may also affect
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transit times. As a result, we are unable to simply characterise each edge, Eij ,
in terms of the time it will take to traverse.

However, we can instead characterise Eij in terms of two indices; these being
the average time: Mij , and the variance in time: Vij , it will take to traverse each
edge. Mij , is averaged over the different driving scenarios. The variance, Vij ,
gives an indication of how the travel time will fluctuate about the mean value
as the scenario changes.

We will specify each route as R = (aij) where:

aij =
{

1 if node j is visited after node i
0 otherwise (1)

for i, j = 1, . . . , n.
It is assumed that the time taken to traverse edge Eij is independent of the

time taken to traverse each of the other edges. This assumption is not entirely
true, and indeed delays on certain edges may be expected to have a knock-on
effect on other edges within the network. However, provided the network is not
densely congested, these effects are likely to be small and make this assumption
a valid approximation. It then follows that the average total transit time, Tm(R),
and the variance in total transit time, Tv(R), are given by:

Tm(R) =
n∑

i=1

n∑
j=1

aijMij Tv(R) =
n∑

i=1

n∑
j=1

aijVij (2)

Clearly, if mean transit time is proportional to variance in transit time, i.e.

Mij ∝ V k
ij for some k > 0 (3)

then by determining a route, R, that minimises mean time (equation (2)) the
variance in time (equation (3)) is also minimised. In this case we have effectively
just a single objective function, and the optimum route can easily be found using
a Dynamic Programming technique such as Dijkstra’s algorithm [12].

However, in general we would not expect a relationship as simple as (4) to
hold. Indeed, with small average transit times may typically represent urban
routes, that can usually be traversed quickly, but can be easily disrupted by
traffic congestion. Conversely, edges with large mean transit times may represent
long motorway segments, which are designed to be less prone to traffic disruption.

With this in mind, a more suitable relationship between Mij and Vij is given
by:

Mij ∝ 1
V k

ij

for some k > 0 (4)

This is the relationship that we will assume in later examples. Clearly now if we
minimise Tm(R) we will maximise Tv(R) and, indeed the converse is also true.
We are therefore faced with a bi-criterion optimisation problem (again, see [1]).

The general structure of the solution space is shown in figure 1. Instead
of attempting to find a solution that simultaneously minimises each objective,
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which is clearly no longer possible, we seek the set of non-dominated solutions
that form the Pareto front in the multi-dimensional objective function space.
In figure 1 this Pareto front is represented by the solid thick black edge of the
solution space. Any solution not on the Pareto front (i.e. within the red region)
is ‘dominated’ by a solution on the Pareto front which has both lower mean and
variance (in transit time) and is clearly better in every respect. Solutions on the
Pareto front itself cannot dominate each other, and the solution that should be
utilised depends on the scenario and the operational requirements (i.e. we may
not accept a solution that has a variance Tv(R) > Vmax, say).

Fig. 1. The general structure of the solution space.

Techniques, such as Ant Colony Optimisation [3], [4], which simultaneously
create and evaluate a set of possible solutions are a natural approach to solving
problems of this type. Indeed, Ant Colony Optimisation has been used to solve
several multi-criterion problems (see [13] for an overview) and, furthermore [13]
introduces a general framework for solving bi-criterion optimisation problems
that is utilised in this report.

3 Ant Colony Optimisation

Ant Colony Optimisation (ACO) [3], [4] is an evolutionary approach that is
inspired by the way in which real ant colonies establish shortest path routes bet-
ween their nest and feeding sources. Real ants establish such paths by depositing
an aromatic essence known as pheromone along these paths [5]. The quantity
of pheromone is proportional to the length of the path, or the quality of the
feeding habitat. Ants are attracted to the pheromone and follow it. Hence, the
pheromone concentrations along better paths will be further enhanced which
will attract more ants. Eventually, the pheromone concentrations along better
paths will become so great that all ants will uses these routes.
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Like all evolutionary techniques, Ant Colony Optimisation provides a means
of exploring promising areas of the solution space in order to find optimal/near
optimal solutions. It does this by creating a trade-off between the conflicting
aims of exploitation and exploration, where

– exploration is defined to be the search through the space of possible solutions
in order to find the optimal/near optimal solution(s);

– exploitation is the fusion of information regarding the quality of solutions
found so far, in order to focus on promising areas of the search space.

In addition to the natural application of ant algorithms to networking problems,
they have been successfully applied to a host of other combinatorial optimisation
problems (see [10] for an overview), including the Quadratic Assignment Problem
[14] and the Job Shop Scheduling Problem [15]. Encouraging results have also
been obtained when using Ant Colony Optimisation to build up classification
rules for data mining [16].

A brief introduction to the technique follows, using an ant algorithm applied
to a single objective problem. We will then show how the pheromone matrix can
be adapted for a bi-criterion problem.

The basis of Ant Colony Optimisation is the pheromone matrix, M = τij .
The probability, pij that aij = 1 (see equation (3-1)) is a function of the amount
of pheromone τij on ‘edge’ Eij and information νij , relating to the quality of
this edge, i.e.

pij =
τα
ijν

β
ij∑

hεS

τα
ihνβ

ih

(5)

where α, β give the influence of the pheromone and heuristic information res-
pectively; and S is the set of nodes not already visited.

Referring once again to a single objective vehicle routing problem, if the ob-
jective is to minimise the mean total transit time, then the heuristic information
may be given as follows:

νij = 1/Mij for i, j = 1, . . . , n (6)

i.e. the preferred edges are those that have the smallest mean transit time.
The transition probabilities, pij , are then used to build candidate solutions,
which are referred to as ‘ants’. In turn, the quality of each solution determines
the way in which the pheromone matrix is updated. ‘Paths’ that form part of
high quality solutions have their pheromone levels reinforced and this enables
promising areas of the search space to be identified and explored in subsequent
iterations (generations). This is the analogy with real ant systems that reinforce
pheromone concentrations along the better paths, leading the subsequent ants
towards optimal or near optimal routes.
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Pheromone update typically has an evaporation rate, ρ, and a deposit rate
∆ij , i.e.

τij → (1 − ρ)τij + ∆ij (7)

The value of ∆ij is dependent on whether the ant(s) used edge Eij , i.e. whether
aij = 1 or aji = 1 and how optimal the overall solution(s) were that used edge
Eij . Hence, in the case of attempting to minimise total mean time, if we define:

dr
ij =

{
1 if edge Eij is used by ant r (i.e. ar

ij=1 or ar
ji=1)

0 otherwise (8)

then we may take (as in [4]):

∆ij =
M∑

r=1

dr
ij

Tm(r)
(= ∆ji) (9)

where (to remind the reader), Tm(r) is the total mean transit time of the route,
ar

ij taken by the ant r and M is the total number of ants in each generation.
Other pheromone update rules have also been proposed. For example, in

some cases good results have been obtained by having an additional contribution
from the highest quality solutions found so far (so called ‘elitist’) ants (see [8]
and references therein).

The initial pheromone concentrations are usually set at some arbitrarily small
value. The stopping criterion is typically either to terminate the ant algorithm
if there has been no improvement in the best solution for a fixed number of
generations; or we have reached the maximum number of generations permitted.

Clearly, the pheromone evaporation rate, p, provides one means by which the
ant algorithm can control the trade-off between exploration and exploitation. If
p has a large value (i.e. close to 1) then in each generation of ants, the pheromone
matrix is highly dependent on the good solutions from the previous generation,
which leads to high degree of search around these good solutions. The smaller the
value of p, the greater the contribution of good solutions from all the previous
generations and the greater the diversity of search through the solution space.

4 A Standard Bi-criterion Ant Model

We follow the approach of [13] and use two types of pheromone, one relating to
the first objective of minimising the total mean transit time (Mm = (τm

ij )) and
the second matrix relating to the second objective of minimising the variance
in the transit time, (Mv = (τv

ij)). Each ant then uses the following transition
probabilities:

pij =
(τm

ij )λ(τν
ij)

(1−λ)∑
hεS

(τm
ih )λ(τν

ih)(1−λ)
(10)



54 D.M. Chitty and M.L. Hernandez

λ ∈ [0, 1] is the importance of objective one in relation to objective two. If λ = 1,
then the single objective is to minimise the mean transit time, if λ = 0, the single
objective is to minimise the variance in transit time. For value of λ between these
two extreme values we must trade off between these two conflicting objectives.

Pheromone update is again as follows:

τm
ij → (1 − ρ)τm

ij +
M∑

r=1

dr
ij

Tm(r)
τν
ij → (1 − ρ)τν

ij +
M∑

r=1

dr
ij

Tv(r)
(11)

where dr
ij is given by equation (9). Only ants that reach the destination node

update the pheromone matrix.

5 The Hybrid Ant Colony Optimisation Technique

5.1 Background

The standard ACO technique of the previous section can give good results for
routing vehicles between a start node and a destination node. However, the time
taken to produce a solution can be in excess of one minute2, even for just a 100
node problem instance.

In addition, the technique determines a Pareto front of solutions only for the
focal problem of routing from the start node to the destination node. If, for any
unforeseen reason, a vehicle has to divert to another node not on the prescribed
route (i.e. to avoid a road blocked as a result of an accident), it would no longer
have any information that could be used to navigate it to its final destination. A
new method is proposed which will lead to a quicker build up of the pheromone
on edges that are important and will result in every node in the network having
a Pareto front of non-dominated solutions. Hence, instantaneous re-routing can
be performed if the target has to deviate from the original plan.

5.2 Features

The key features of this new technique are as follows:

– There are again two types of pheromone (Mm = (τm
ij ) and Mv = (τv

ij)).

– We use two kinds of ants, one for each criterion.

– Ants optimising the mean transit time criterion use the following transition
probabilities:

pij =
τm
ij∑

hεS

τm
ih

(12)

with a similar expression giving the transition probabilities of ants optimising
the variance in transit time criterion.

2 When using C++ Version 6.0 run on a 600 MHz Athlon processor.
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– Under each criterion, M ants travel to the destination node from each and
every node in the network.

– Each ant travelling from node i updates a Pareto front, Pi of solutions (routes
to the destination node) from that start location.

5.3 Pheromone Update

In each generation, pheromone evaporation occurs at a constant rate ρ. Hence,
for the two pheromone matrices:

τm
ij → (1 − ρ)τm

ij τν
ij → (1 − ρ)τν

ij (13)

Pheromone update is performed in the following way.

– Ants only update their own type of pheromone.

– Only solutions on the global Pareto front, Pi (at each node, i) update the
pheromone matrices.

– Pheromone update is performed only on the very first path taken by each
ant.

Hence, for the rth (r = 1, . . . , M) ant starting from node i and optimising mean
transit time, pheromone update is then given by:

τm
ij → τm

ij +
d̂r

ij

Tmim
(r)

(14)

where

d̂r
ij =




1 if:




edge Eij is used by ant r
node j is adjacent to node i
(Tmim

(r), Tνim
(r)) ∈ Pi

0 otherwise

Tmim
(r) and Tνim

(r)) are the total mean transit time and total variance in transit
time respectively of the rth ant optimising mean transit time and travelling
from node i to the destination node. (Tmim

(r), Tνim
(r)) ∈ Pi denotes that the

rth route (minimising mean transit time) from node i is on the Pareto front.
A similar equation (to (14)) then gives the variance in transit time pheromone
update.

5.4 Comment

The technique has a dynamic-programming basis [17] in which initially simple
problems are considered and through an iterative process complete solutions to
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more challenging scenarios are built. The basis of the technique is to allow ants
to travel from every single node in the network to the destination node, but only
the first edge the ant takes being updated by its pheromone.

By building a Pareto front of solutions from each node in the network to
the destination node it is the first decision of which node to go to that is of
critical importance, because the solution space at/from that node is being simul-
taneously built. At nodes close to the destination node the number of potential
routes decreases and more complete solution spaces (Pareto fronts) will exist.
Iterating backwards, applying the fundamental principles of dynamic program-
ming, we can build complete solution spaces for routing between each node in
the network and the final destination.

We would expect the added complexity of this new (hybrid) technique to
result in a huge increase in computation time/complexity when compared to the
standard ant algorithm (of section 4). However, in updating the two pheromone
matrices only the first edge selected by the ant is updated, and as a result it will
be shown that the speed of the new technique far exceeds that of its predecessor.

6 Results

We shall now compare the capability of the two algorithms (the hybrid ant algo-
rithm and the standard bi-criterion ant algorithm) to find high quality solutions.
The two techniques were tested on randomly created networks of various sizes
from 25 to 250 nodes with each node connected to its six nearest neighbors.

Figure 2(a) gives the lowest mean transit time determined under each al-
gorithm for a range of networks of different sizes. Figure 2(b) gives the lowest
variance in transit time in each case. These represent the two extreme edges of
the Pareto front. We observe that in both cases the new technique outperforms
the standard ant algorithm, the margin increasing with the size of the network.

These results may suggest that the new technique concentrates solely on
finding the optimal mean transit time route and the optimal variance in transit
time route, in which case an approach based solely on dynamic programming
would be much better/quicker. Moreover, in comparing the two algorithms, it is
insufficient simply to analyze each of the two objectives in isolation, because for
the bi-criterion problem it is the combination of the mean and variance of each
route that is important.

However, figure 3 clearly demonstrates that the new technique maintains a
large number of non-dominated routes both at the start node (figure 3(a)) and
at all nodes (figure 3(b)) across the network. We note that the average number of
solutions on the Pareto front is lower when we average across the whole network
because nodes near or adjacent to the destination node will obviously have few
non-dominated solutions.

Furthermore, the reduced computational complexity of the new technique
(hybrid) when compared to the standard technique is clearly demonstrated in
figure 4(a). It can be seen that the hybrid technique typically finds the opti-
mal solution in less than 15 seconds, whereas the standard technique did not
find an optimal solution in less than 1 minute for any of the problem instances
considered.
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Fig. 2. (a): The lowest mean transit time, and (b): the lowest variance in transit
time, for different network sizes.

Fig. 3. (a): Number of non-dominated routes found by the algorithm at the start
node, (b): number of non-dominated routes found, averaged over all the nodes in the
network. In each case results are averaged over 150 runs on 100 node network problems.

With a set of non-dominated solutions held at every node the system is now
also allowed to be dynamic. For example, consider a vehicle that is following
the lowest mean transit route. If enroute it finds its path blocked it will have
to divert. Using the new technique a new route is easily found by examining
all the adjacent nodes for the route that most readily satisfies the operational
requirements.

This is demonstrated by figure 4(b). The minimum mean transit time route
(from the start node to the destination node) is shown by the green line. At
several points the vehicle following the green route finds its path blocked by
an obstacle (blue nodes) which was not there when the original route was de-
termined. With this new technique, information is held at all the nodes in the
network. Hence the adjacent nodes can be examined and the best route (here in
terms of minimum mean transit time) across all the adjacent nodes is selected.
This alternative route is shown by the red lines in figure 4(b).
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Fig. 4. (a): Time taken by the new ant algorithm to find the best routes in terms of
mean transit time and variance in mean transit time. Results are averaged over 150
runs on 100 node network problems. (b): Route of minimum mean with diversions to
avoid blocked vertices.

7 Conclusions

The hybrid ant algorithm presented in this report has been shown to be suc-
cessful in solving bi-criterion Vehicle Routing Problems. The hybrid technique
comprehensively outperformed the standard algorithm by:

– always finding the lowest mean transit and lowest variance transit time rou-
tes;

– finding considerably more routes along the Pareto front;

– running in much quicker time;

– finding a Pareto front of solutions at every single node, allowing instanta-
neous re-routing subsequent to network change.
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