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Abstract. Recent theoretical work helped explain certain optimization-
related pathologies in cooperative coevolutionary algorithms (CCEAs).
Such explanations have led to adopting specific and constructive strate-
gies for improving CCEA optimization performance by biasing the algo-
rithm toward ideal collaboration. This paper investigates how sensitivity
to the degree of bias (set in advance) is affected by certain algorithmic
and problem properties. We discover that the previous static biasing
approach is quite sensitive to a number of problem properties, and we
propose a stochastic alternative which alleviates this problem. We be-
lieve that finding appropriate biasing rates is more feasible with this
new biasing technique.

1 Introduction

Coevolutionary algorithms (CEAs) are popular augmentations of traditional evo-
lutionary algorithms (EAs). The basic elements of these augmentations lay in
the adaptive nature of fitness evaluation in coevolutionary systems: individuals
are assigned fitness values based on direct interactions with other individuals.
Of particular interest to us are cooperative coevolutionary algorithms (CCEAs),
in which interacting individuals are rewarded when they perform well together
as a team, and punished when they perform poorly.

At first blush, it would seem that CCEAs may do well on large domain
spaces with certain structural properties among interacting components. The
intuition behind this advantage is that the algorithm searches only projections
of the space at any given time, thus presenting a narrower search domain in a
particular generation. Unfortunately, though CCEAs search only a projection
of the problem at a time, that projection is constantly changing. The result is
that it is easy for the algorithm to get tricked by misleading information provided
by poor samples of the projected space. This leads to algorithms that tend to
prefer strategies in one population that will do well against many strategies in
the other population(s) (so-called robust resting balance), whether or not the
strategy is globally optimal.

Understanding this particular weakness of CCEAs has led to a very obvious
mechanism for correcting it: bias the algorithm to seek ideal collaborations rather



than robust resting balance. Early investigation into this idea has proved fruitful
[1], but this study left at least two things unexplored. First, applying any kind
of bias toward ideal collaboration would require learning that bias as the run
proceeds, and it is unclear how best to do this. Second and specifically pertinent
to this paper, it is not clear how sensitive the degree of bias is to various settings.
Large amounts of bias may be unwise if ideal-partnership estimates are poor.
But depending on problem sensitivity, small amounts of bias may have almost
no effect. A smooth, relatively insensitive biasing procedure would then be a
useful part of a successful cooperative coevolution technique.

The paper continues with a brief introduction to cooperative coevolution and
to pathologies that may prevent it from achieving optimal results, followed by
a description of our previous approach to improving coevolutionary search. We
then perform a sensitivity study on a simplified version of the method, and show
that results are greatly affected by problem domain properties. Next, we propose
an alternative approach to biasing the coevolutionary search, and show that it
is less sensitive to algorithm and problem features.

2 Background

In the Potter model of cooperative coevolution [2], which we use in this paper,
each population contains individuals that represent a particular component of
the problem, so that one member from each population is needed in order to
assemble a complete solution. Evaluation of an individual from a particular pop-
ulation is performed by assembling the individual with collaborating partners
from other populations. To combat noise in the evaluation process due to choice
of partners, multiple evaluations are usually performed. An individual’s fitness
could be the maximum over such evaluations, or the mean, among other ap-
proaches [3]. Aside from evaluation, the populations are evolved independently.
Applications of this method include optimization of inventory control systems
[4], learning constructive neural networks [5], and rule learning [6, 7].

Suppose we are optimizing a three argument function f(x, y, z). One might
assign individuals in the first population to represent the x argument, the second
to represent y, and the third to represent z. Each population is evolved sepa-
rately, except that when evaluating an individual in some population (e.g., x),
collaborating representatives must be chosen from the other populations (e.g.,
y and z) in order to obtain an objective function value with a complete solu-
tion, f(x, y, z). A simple example collaboration method is to choose representing
members by using the most fit individual from those populations as determined
by the previous round of evaluations. Another approach is to pick partners at
random from the other population. Once a complete solution is formed, it can
be evaluated and the resulting score can be assigned to the individual.

Unfortunately, as is often the case for coevolution, complications in the dy-
namical behaviors of these algorithms often arise in application. The algorithms
frequently perform poorly on what seem to be relatively simple problems, falling
into wells of mediocrity or collapsing prematurely due to sudden asymmetric



losses in population diversities [8, 9]. These problems have led researchers to fo-
cus on more sophisticated collaboration methods to attempt to address these
pathologies [10–12].

Recent formal and empirical analysis of the CCEA has suggested a pathology
special to CCEAs: relative overgeneralization [8]. This research states that co-
operative coevolutionary systems are more attracted to points of robust resting
balance than to ideal collaboration. From a game-theoretic viewpoint, this ten-
dency can be described as an attraction to the Nash equilibria with the highest
joint reward distributions, and not necessarily to those equilibria associated with
the global optimum. In short, existing cooperative coevolutionary algorithms are
not necessarily well-suited for static, single-objective optimization. Though no
real analytical work exists for CCEAs on dynamic optimization problems, the
same pathology will very likely confound CCEAs on these tasks, as well.

One straightforward approach to dealing with some pathologies is to bias the
CCEA toward searching for ideal collaborations. This idea has been posited and
explored at cursory level, with very encouraging results [1]. This existing study
identifies bias rate sensitivity as a concern, but does not explore it.

In this paper we will perform this biasing by using the actual ideal collabo-
rator for a given individual: in the problem space being tested we can compute
this collaborator trivially. Of course, for most real-world problems this is hardly
the case, and in the worst case the actual ideal collaborator can only be found
via a full search over the individual’s collaboration space. Thus in most cases one
would need some approximation function for collaborators. In future work we
hope to examine a variety of methods for approximating the ideal collaborator:
for example, keeping histories of previous collaboration success, or performing
small hill-climbing searches for a collaborator. But for purposes of this paper we
concern ourselves with the theoretical bound: even if you knew the ideal collab-
orator, what problems in bias sensitivity still arise, and how might one go about
solving them?

3 Biasing the CCEA

The biasing method employed here is relatively simple: assess the objective func-
tion value is a weighted sum of two terms. The first term is the immediate reward
received when the individual component is teamed with partners from other pop-
ulations chosen using some collaboration scheme. The second term is the reward
that the individual would have received had it interacted with its ideal collabo-
rators1.

Our focus in this paper is on the fraction of reward due to each term and
the factors influencing how this fraction is determined. Panait et al [1] propose

1 Fitness for the individual involves teaming the individual with one or more partners,
computing the objective function value in each case, and assigning a single fitness
score in the manner stipulated by the collaboration scheme. The combination of the
biased and interactive pieces of the objective function is orthogonal to the issue of
combining objective function values when using multiple collaborators



a fitness assessment method that is a linear, weighted sum of these two compo-
nents. Equation 1 below describes this idea mathematically. Here the fitness of
argument xa is being assessed by combining the result of the objective function,
g, with an estimation of an ideal projection of that function, g′a. The parameter
δ controls the degree of emphasis the fitness places on the estimate of the ideal.

f(x1, . . . , xa, . . . , xk) = (1− δ) · g(x1, . . . , xa, . . . , xk) + δ · g′a(xa) (1)

The intuitive high-level picture for this tradeoff is clear. At one extreme,
when δ = 1, the algorithm will trust only the estimate, and the states of the
other populations are entirely irrelevant. It is no longer a coevolutionary system
at all; it is k EAs searching the k-projected component spaces independently in
parallel. This would be ideal if the estimate were completely trustworthy, though
this will not typically be the case. At the other extreme, δ = 0, the algorithm
trusts only the collaborative assessment of the objective function. This is the
traditional CCEA, with all the challenges that system faces.

Unfortunately, finding a good setting of δ is not an easy task. First of all, the
coevolutionary algorithm may have very poor estimates for the ideal partnership.
The result of high values of δ and such poor estimates could result in significantly
reduced performance. Second, even supposing that such estimates are appropri-
ately learned, it seems intuitive that different levels of δ may be appropriate at
different stages in the coevolutionary search. This may be accomplished by either
predefined or adaptive methods for setting it. Initially, the biased coevolutionary
system does not have much information about the search space. As δ reflects the
confidence in the accuracy of the estimated ideal partners, its initial values may
be set relatively low. However, as the search progresses, these estimations get
more and more accurate, and δ might be adaptively adjusted to higher values
to help guide the search process to promising areas.

In this paper we use a simple, static value for δ throughout a run and focus
our attention on how different static values affect final run-time performance.
Ideally, we would like changes in δ to result in a smooth change in performance.
Sadly, this is not guaranteed. The problem is that the effect of changing δ can
be highly sensitive to domain or other parameters in a nonlinear fashion. When
the transition in performance is very smooth and gradual, it should be easier
to find appropriate settings; however, when the transition is sharp and sudden,
setting δ appropriately may be quite difficult.

4 Problem and Algorithm Properties

We construct a class of problem domains designed to illustrate certain salient
properties of the EC algorithm: the Maximum of Two Quadratics (or MTQ)
can offer a range from simple to very difficult problem instances. Such problems
instances can resolve or exacerbate the relative overgeneralization pathology of
cooperative coevolution by adjusting the relative contributions of joint rewards
implicitly [8]. It does this by providing a class of maximization problems with
two peaks defined as
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Fig. 1. Example Maximum of Two Quadratics problems, illustrating
(S1 = 1.6, S2 = 0.5), and (S1 = 0.5, S2 = 0.5).

MTQ(x, y)← max

{

H1 ∗ (1−
16∗(x−X1)

2

S1

−
16∗(y−Y1)

2

S1

)

H2 ∗ (1−
16∗(x−X2)

2

S2

−
16∗(y−Y2)

2

S2

)
(2)

where x and y take values ranging between 0 and 1. Figure 1 illustrates some
example MTQ problem instances. Different settings for H1, H2, X1, Y1, X2, Y2,
S1 and S2 affect the difficulty of the problem domain in one of the following
aspects:

Peak height : H1 and H2 affect the heights of the two peaks. Higher peaks may
increase the chances that the algorithm converges there.

Peak coverage : S1 and S2 affect the area that the two peaks cover: higher values
for one of them result in a wider coverage of the specific peak. This makes it
more probable that the coevolutionary search algorithm will converge to this
peak, even though it may be suboptimal.

Peak relatedness : Different values for X1, Y1, X2 and Y2 result in changes in the
locations of the centers of the two quadratics, which also affect the relatedness
of the two peaks: similar values of the x or y coordinates for the two centers
imply higher overlaps of the projections along one or both axes.

Aside from the impact of the problem domain properties, our sensitivity
study targets three algorithmic settings:

Biasing rate : Altering the biasing rate allows us to study the result of CCEA
runs at various fixed rates of δ ∈ [0, 1]. We are interested in how performance
degrades during this transition.

Population size : The population size affects how much the coevolutionary al-
gorithm samples the search space. It is easy to show that coevolution using a



bias rate δ of 1.0, combined with infinite populations and perfect knowledge of
maximal projections, will converge to the unique optimum with probability 1.
We expect similar results for large populations as well.

Collaboration scheme : The CCEA algorithm tries to simplify the search process
by decomposing the candidate solutions into components and coevolving them
in separate populations. The only information such a population can get about
the overall progress of the search process is through collaborators – samples
usually representative of the status of the other populations. For some spaces,
an increased number of collaborators may better capture the intricacies of the
search space [10, 12].

5 Bias Sensitivity

All experiments used the MTQ class of problems. The coevolutionary search
process used two populations, one for each of the variables. Each such popu-
lation used a real-valued representation, with individuals constrained to values
between 0 and 1 inclusive. Non-adaptive Gaussian mutation (mean 0 and stan-
dard deviation 0.05) was the only variational operator. Each population used
tournament selection of size 2, and the best individual survived automatically
to the next generation. The search lasted for 50 generations, after which time
the best individuals in each population were at, or very near, one of the two
peaks. Each point in Figures 2-5 is computed over 250 independent runs. All
experiments were performed with the ECJ system [13].

Unless stated otherwise, each population consisted of 32 individuals. The
default collaboration scheme used two collaborators from each population: the
best individual in the previous generation was always selected, and the other
individual was chosen at random. The objective component of an individual’s
fitness was assessed as the better of its results when teamed with each of the
collaborators. The default values of the parameters for the first (suboptimal)
peak were H1=50, X1=

1
4 , Y1=

1
4 , and S1=1.6. The second (optimal) peak was

characterized by H2=150, X2=
3
4 , Y2=

3
4 , and S2=

1
32 . With these settings, the

two peaks are near at opposite corners of the search space.

5.1 Biasing and Domain Features

The first set of experiments investigated the relationship between the biasing
rate and the three problem domain features previously described: the relative
heights, coverages and locations of the peaks. There are 11 experimental groups
for each property, one for each value of δ ∈ [0, 1] in increments of 0.1. Figure 2
shows the mean final results of these 33 groups.

Peak height : We kept H1 constant at 50, and set H2 to 75, 150 and 300. The
results indicate that less than 10% of runs converge optimally when the rate
of biasing is low, while the ratio increases to more than 90% when using high
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Fig. 2. Convergence ratios for peak height (top), peak coverage (center) and peak
relatedness (bottom). x axis shows biasing rate δ, and y axis shows ratio of the 250
trials that converged to, or very near, the global optimum.

biasing rates. Unfortunately, there is no smooth transition between these two
extremes: rather, small modifications to the biasing rate may change the rate of
convergence to optimum by as much as 70–80%. Moreover, the relative difference
in peak height directly affects where these sudden jumps in performance appear.
This suggests that δ may not only be quite sensitive to relative differences in
peak height in the sense that small changes may have radical effects, but it may
even be quite difficult to find the transition range of δ values at all.

Peak coverage : S2 was set to 1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 , and

1
4 , while S1 was constantly

1.6. Here, the location of transition is more consistent among the various values,
but the transitions themselves are still relatively abrupt. It also appears that the
relative peak coverages cause more variation in results when the bias rate is small,
while the curves at the other extreme of the graph appear close together. The
results indicate that peak coverage may alleviate the sensitivity of the algorithm
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Fig. 3. Convergence ratios for population size (top) and collaboration scheme (bottom).
x axis shows biasing rate δ, and y axis shows ratio of the 250 trials that converged to,
or very near, the global optimum.

to the δ parameter: the wider the peak, the more gradual the transition when
varying the bias rate.

Peak relatedness : The bottom graph in Figure 2 shows the ratio of runs con-
verged to optimum when varying the relative location of the two peaks: the Y2

parameter was set to 1
4 ,

3
8 ,

1
2 ,

5
8 and 3

4 . These settings gradually transitioned the
relative peak positions from completely opposite locations to ones aligned along
one axis. Similar to peak height, the peak relatedness had a significant effect
on the ratio of runs converged to optimum: the more related the peaks, the less
biasing is required to assure good performance. However, the curves have an
abrupt transition between lower and higher rates of convergence to optimum.
Moreover, the location of this transition depends on the actual degree of peak
relatedness, which suggests that δ may be highly sensitive to this parameter.

5.2 Biasing and Algorithm Features

A second set of experiments investigated the relationship between the biasing
rate and the two other algorithm features previously described: the population
size and the collaboration scheme. Again, there are 11 groups for each of these
two parameters corresponding to each of the δ settings. The results are presented
in Figure 3.

Population size : We set the size of each of the two populations to 8, 16, 32,
64, 128, 256 and 512. As expected, extremely small populations have a smaller



chance of reaching the optimum even for high biasing rates. We observe the
same abrupt shift in performance as we saw in the previous experiments. The
results suggest that increasing the population size does not necessarily alleviate
δ sensitivity.

Collaboration scheme : The default setting in all previous experiments used two
collaborators to evaluate the fitness of each individual: the best performing indi-
vidual from the other population in the previous generation, and also a random
individual. To test sensitivity to this collaboration scheme, we varied the number
of random individuals from 0 to 4; the best individual from each population in
the previous generation was always used. The bottom graph in Figure 3 shows
that the collaboration scheme has some influence over the performance of the
algorithm at low biasing rates, but it has no effect when higher biasing rates are
used. Again, the abrupt change in performance indicates that the δ parameter
can be highly sensitive, regardless of the collaboration methodology.

6 A Probabilistic Biasing Alternative

In the previous section, we learned that the degree of bias rate, δ, can be very
sensitive to certain problem properties, such as differences in relative peak height,
while being less sensitive for others, such as peak coverage. Unfortunately, we
also learned that certain coevolutionary algorithmic parameters, such as the size
of the populations and the number of collaborators used during evaluation, may
not be very helpful in making the task of setting δ more feasible. What can be
done at the algorithm level to make δ more flexible?

To uncover a possible alternative, let’s look again at the results of the peak
height experiments. Recall that for larger differences in peak heights, a wider
range of biasing rates results in a high ratio of convergence; however, when one
peak is only slightly higher than the other, the range of high convergence ratios
is much smaller. The transition is abrupt, but the location of the transition shifts
depending on the peak height differences. Why might this be so?

Our hypothesis is that this extreme sensitivity of the biasing method to
the relative peak heights is caused by the linear combination of the two fitness
components: the fitness when teamed with collaborators, and the one when in
combination with the ideal teammates. The higher the optimal peak, the lower
the bias rate it needs to dominate the other term. However, if one peak is slightly
higher than the other, the algorithm requires more biasing to locate the optimum.

We propose a new alternative biased coevolutionary algorithm to deal with
this issue. The new algorithm does not combine the two components into a
unique fitness. Rather, each individual is assigned two fitnesses: the objective
one when combined with the collaborators from other populations, and another
one indicating the performance of the individual when in combination with its
ideal teammates. When comparing two individuals, with probability δ we will
compare based on the first “fitness”; else we will compare based on the second.

We performed the same sensitivity analysis for the new algorithm. The results
are presented in Figures 4 and 5. In all cases, the new algorithm does not exhibit
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Fig. 4. Convergence ratios for probabilistic biasing when varying peak height (top),
peak coverage (center) and peak relatedness (bottom). x axis shows biasing rate δ, and
y axis shows ratio of the 250 trials that converged to, or very near, the global optimum.

the sudden jumps in performance that the original one did. This suggests that
it is an improved algorithm that is significantly less sensitive to the settings we
have investigated.

7 Conclusions and Future Work

Cooperative coevolution remains a powerful tool for a wide variety of problems.
Unfortunately, it is fraught with difficulties, and understanding the reasons for
these difficulties may help to improve CCEA algorithms for optimization. Bias-
ing the CCEA toward optimal collaboration appears to be just such an improve-
ment: it directly addresses one of the fundamental dynamical problems with
cooperative coevolution. Still, it is important to understand how this augmenta-
tion works—what its benefits and drawbacks are. In particular, since the biasing
method relies on a parameter that specifies the degree to which the algorithm
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Fig. 5. Convergence ratios for probabilistic biasing when varying population size (top)
and collaboration scheme (bottom). x axis shows biasing rate δ, and y axis shows ratio
of the 250 trials that converged to, or very near, the global optimum.

trusts the bias over the collaborative interactions, understanding the nature and
impact of this parameter is of paramount concern.

This paper takes a sizable step towards understanding how this δ parame-
ter influences the biased CCEA by investigating its sensitivity. Starting with a
model that combines traditional collaborative interaction and an optimization
bias, we assume that the maximal projection of the problem is known and use
this for the bias. The MTQ problem class helps elicit information about the rela-
tionship between certain problem properties and algorithmic parameters. Using
this problem, we discovered that applying δ as a means to control the linear
combination of the two measures results in high sensitivity to a variety of prob-
lem parameters. For two of those parameters, the location of δ sensitivity varied
widely. This makes setting or adjusting δ a real challenge.

We offer a probabilistic alternative to the linear combination of bias and
collaborative fitness assessment that seems to allow for more flexibility in the δ

parameter. The result is an improved method that is much less sensitive to the
minor differences in the degree of bias.

Our next step is to investigate tractable methods for learning estimations of
ideal partners. In addition, we would like to study how δ might be dynamically
or adaptively altered during the run to help CCEAs search more efficiently. Our
hope is that a biased CCEA will help focus the power of cooperative coevolution
more appropriately for optimization tasks.
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