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Abstract. In many real-world applications of evolutionary computa-
tion, it is essential to reduce the number of fitness evaluations. To this
end, computationally efficient models can be constructed for fitness eval-
uations to assist the evolutionary algorithms. When approximate mod-
els are involved in evolution, it is very important to determine which
individuals should be re-evaluated using the original fitness function to
guarantee a faster and correct convergence of the evolutionary algorithm.

In this paper, the k-nearest-neighbor method is applied to group the
individuals of a population into a number of clusters. For each cluster,
only the individual that is closest to the cluster center will be evalu-
ated using the expensive original fitness function. The fitness of other
individuals are estimated using a neural network ensemble, which is also
used to detect possible serious prediction errors. Simulation results from
three test functions show that the proposed method exhibits better per-
formance than the strategy where only the best individuals according to
the approximate model are re-evaluated.

1 Introduction

Many difficulties may arise in applying evolutionary algorithms to solving com-
plex real-world optimization problems. One of the main concerns is that evolu-
tionary algorithms usually need a large number of fitness evaluations to obtain
a good solution. Unfortunately, fitness evaluations are often very expensive or
highly time-consuming. Take aerodynamic design optimization as an example,
one evaluation of a given design based on the 3-Dimensional computational fluid
dynamics (CFD) Simulation will take hours on a high-performance computer.

To alleviate this problem, computationally efficient models can be constructed
to approximate the fitness function. Such models are often known as approxi-
mate models, meta-models or surrogates, refer to [8] for an overview of this topic.
It would be ideal if an approximate model can fully replace the original fitness
function, however, researchers have come to realize that it is in general necessary
to combine the approximate model with the original fitness function to ensure
the evolutionary algorithm to converge correctly. To this end, re-evaluation of
some individuals using the original fitness function, also termed as evolution

control in [6], is essential.
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Generation-based or individual-based evolution control can be implemented.
In the generation-based approach [14, 2, 6, 7], some generations are evaluated
using the approximate model and the rest using the original fitness function. In
individual-based evolution control, part of the individuals of each generation are
evaluated using the approximation model and the rest using the original fitness
function [6, 3, 17, 1]. Generally speaking, the generation-based approach is more
suitable when the individuals are evaluated in parallel, where the duration of
the optimization process depends to a large degree on the number of generations
needed. By contrast, the individual-based approach is more desirable when the
number of evaluations is limited, for example, when an experiment needs to be
done for a fitness evaluation.
On the other hand, individual-based evolution control provides more flexibil-

ity in choosing which individuals need to be re-evaluated. In [6], it is suggested
that we should choose the best individuals according to the approximate model
rather than choosing the individuals randomly. In [3], not only the estimated
function value but also the estimation error are taken into account. The basic
idea is that individuals having a larger estimation error are more likely to be
chosen for re-evaluation. Other uncertainty measures have also been proposed
in [1].
In [9], the population of a genetic algorithm is grouped into a number of

clusters and only one representative individual of each cluster is evaluated using
the fitness function. Other individuals in the same cluster are estimated accord-
ing to their Euclidian distance to the representative individuals. Obviously, this
kind of estimation is very rough and the local feature of the fitness landscape is
completely ignored. In this paper, we also group the population into a number of
clusters, and only the individual that is closest to the cluster center is evaluated
using the original fitness function. In contrast to the distance-based estimation
method [9], we use the evaluated individuals (centers of the clusters) to create
a neural network ensemble, which is used for estimating the fitness values of
the remaining individuals. Both the structure and the parameters of the neu-
ral networks are optimized using an evolutionary algorithm with Lamarckian
inheritance.
The remainder of the paper is organized as follows. Section 2 presents popula-

tion clustering using the k-means algorithm. The construction of neural network
ensembles using an evolutionary algorithm is described in Section 3. The pro-
posed algorithm is applied to the optimization of three test functions in Section
4. A summary of the paper is provided in Section 5.

2 Population Clustering

A variety of clustering techniques have been proposed for grouping similar pat-
terns (data items) [4]. Generally, they can be divided into hierarchical clustering
algorithms and partitional clustering algorithms. A hierarchical algorithm yields
a tree structure representing a nested grouping of patterns, whereas a parti-
tional clustering algorithm generates a single partition of the patterns. Among



1. Choose k patterns randomly as the cluster centers

    

2. Assign each pattern to its closest cluster center

3. Recompute the cluster center using the current cluster members

4. If the convergence criterion is not met, go to step 2; otherwise stop

Fig. 1. The k-means algorithm.

the partitional clustering methods, the k-means is the simplest and the most
commonly used clustering algorithm. It employs the squared error criterion and
its computational complexity is O(n), where n is the number of patterns. A stan-
dard k-means algorithm is given in Fig.1. A typical stopping criterion is that the
decrease in the squared error is minimized.

A major problem of the k-means clustering algorithm is that it may converge
to a local minimum if the initial partition is not properly chosen. Besides, the
number of clusters needs to be specified beforehand, which is a general problem
for partitional clustering algorithms [4].

To assess the validity of a given cluster, the silhouette method [16] can be
used. For a given cluster, Xj , j = 1, ..., k, the silhouette technique assigns the
i-th member (xij , i = 1, ..., nj) of cluster Xj a quality measure (silhouette width):

sij =
bi − ai

max{ai, bi}
, (1)

where ai is the average distance between xij and all other members in Xj and
bi denotes the minimum of ai, i = 1, 2, ..., nj , where nj is the number of patterns
in cluster Xj and naturally, n1+ ...+nk equals n if each pattern belongs to one
and only one cluster, n is the number of patterns to be clustered. It can be seen
that sij has a value between −1 and 1. If sij equals 1, it means that sij is in
the proper cluster. If sij is 0, it indicates that xij may also be grouped in the
nearest neighboring cluster and if xij is −1, it suggests that xij is very likely in
the wrong cluster. Thus, a global silhouette width can be obtained by summing
up the silhouette width of all patterns:

S =
1

k

k
∑

j=1

nj
∑

i=1

sij . (2)

Consequently, this value can be used to determine the proper number of clusters.



3 Construction of Local Neural Network Ensemble

After the population is grouped into a number of clusters, only the individual
that is closest to each cluster center will be evaluated using the original fitness
function. In [9], the fitness value of all other individuals are estimated based on
their Euclidian distance to the cluster center. Obviously, this simplified estima-
tion ignores the local feature of the fitness landscape which can be extracted
from the evaluated cluster centers.
In our previous work [6, 7], a standard neural network has been constructed

using the data generated during optimization. The neural network model is
trained off-line and further updated when new data are available. One prob-
lem that may occur is that as the number of samples increases, the learning
efficiency may decrease. To improve the learning efficiency, weighted learning [7]
and off-line structure optimization of the neural networks have been shown to be
promising. In this work, we attempt to further improve the approximation qual-
ity in two aspects. First, structure optimization of the neural network is carried
out on-line and only the data generated in the most recent two generations are
used. This makes it possible to have an approximate model that reflects the local
feature of the landscape. Second, an ensemble instead of a single neural network
will be used to improve the generalization property of the neural networks.
The benefit of using a neural network ensemble originates from the diversity

of the behavior of the ensemble members on unseen data. Generally, diverse
behavior on unseen data can be obtained via the following approaches:

– Using various initial random weights.
– Varying the network architecture.
– Employing different training algorithms.
– Supplying different training data by manipulating the given training data.
– Generating data from different sources.
– Encouraging diversity [12], decorrelation [15] or negative correlation [10, 11]
between the ensemble members.

In this work, a genetic algorithm has been used to generate the neural network
ensemble, which can provide two sources of diversity: both the architecture and
the final weights of the neural networks are different. Since the goal of the neural
networks is to learn the local fitness landscape, we only use the data generated
in the two most recent generations instead of using all data.
Assume that the λ individuals in the population are grouped into ξ clusters,

thus ξ new data will be generated in each generation. Accordingly, the fitness
function for evolutionary neural network generation can be expressed as follows:

F =
1

ξ

{

α ·

ξ
∑

i=1

(yi − ydi (t))
2 + (1− α) ·

ξ
∑

i=1

(yi − ydi (t− 1))
2

}

, (3)

where 0.5 ≤ α ≤ 1 is a coefficient giving more importance to the newest data,
ydi (t), i = 1, ..., ξ are the data generated in the current generation and ydi (t− 1),



i = 1, ..., ξ are those generated in the last generation and yi is the network output
for the i-th data set.
Given N neural networks, the final output of the ensemble can be obtained

by averaging the weighted outputs of the ensemble members:

yEN =

N
∑

k=1

w(k)y(k), (4)

where y(k) and w(k) are the output and its weight of the k-th neural network in
the ensemble. In this case, the expected error of the ensemble is given by:

EEN =

N
∑

i=1

N
∑

j=1

w(i)w(j)Cij , (5)

where Cij is the error correlation matrix between network i and network j in
the ensemble:

Cij = E[(yi − ydi )(yj − ydj )], (6)

where E(·) denotes the mathematical expectation.
It has been shown [13] that there exists an optimal set of weights that mini-

mizes the expected prediction error of the ensemble:

w(k) =

∑N

j=1(Ckj)
−1

∑N

i=1

∑N

j=1(Cij)−1
, (7)

where 1 ≤ i, j, k ≤ N .
However, a reliable estimation of the error correlation matrix is not straight-

forward because the prediction errors of different networks in an ensemble are
often strongly correlated. A few methods have been proposed to solve this prob-
lem [5, 18, 19]. Genetic programming is applied to the search for an optimal
ensemble size in [19] whereas the recursive least-square method is adopted to
optimize the weights in [18]. In [18], a GA is also used to search for an optimal
subset of the neural networks in the final population as ensemble members.
To reduce the computational complexity, only a small number of networks

(three to five) has been tried in this work. A canonical evolution strategy is
employed to find the optimal weights to minimize the expected error in Equation
5.
The algorithm for constructing the neural network ensemble and the entire

evolutionary optimization algorithm are sketched in Fig.2 and Fig.3, respectively.

4 Empirical Results

4.1 Experimental Setup

In the simulations, optimization runs are carried out on three well known test
functions, the Ackley function, the Rosenbrock function and the Sphere function.



1. Prepare the training and test data 

       

2. Generate N (ensemble size) neural networks using GA

 
4. Determine the optimal weight for each network by using ES

3. Calculate the error correlation between the ensemble members       

Fig. 2. Algorithm for constructing neural network ensemble.

λ − ξ      − calculate the fitness of the rest             individuals using the        

µ

4. Stop

3. Go to step 2 if the termination condition is not met

                   neural network ensemble

       − construct the neural network ensemble      
            using the original fitness function

ξ      − evaluate the     individuals closest to the cluster centers 
λ         − clustering the        invividuals using the k−mean algorithm

c) evaluate
λ   b) generate     offspring individuals by recombination and mutation

a) select the best      individuals 

2. For each generation 

    original fitness function
λ   1. Initialize      individuals, evaluate all individuals using the 

Fig. 3. The proposed evolutionary optimization algorithm.

The dimension of the test functions are set to 30. A standard (5, 30) evolution
strategy (ES) is used in all simulations.

Before we implement the evolutionary optimization with approximate fitness
models, we need to determine a few important parameters, such as the number
of clusters and the number of neural networks in the ensemble.

The first issue is the number of clusters. This number is relevant to perfor-
mance of the clustering algorithm, the quality of the approximate model, and
eventually the convergence property of the evolutionary algorithm.

A few preliminary optimization runs are carried out with only a single neural
network being used for fitness approximation on the 30-dimensional Ackley func-
tion. It is found that with the clustering algorithm, the evolutionary algorithm is
able to converge correctly when about one third of the population is re-evaluated
using the original fitness function. When the number of the re-evaluated indi-
viduals is much fewer than one third of the population, the performance of the
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Fig. 4. Global silhouette width when the number of cluster is set to 10 and the popu-
lation size is 30 on the 30-dimensional Ackley function.

evolutionary algorithm becomes unpredictable, that is, the evolutionary algo-
rithm may converge to a false minimum.
We then evaluate the clustering performance when the number of clusters is

set to be one third of the population. Fig. 4 shows the global silhouette width
when the cluster number is 10 and the population size is 30 on the 30-dimensional
Ackley function. It can be seen that the clustering performance is acceptable
according to the discussions in Section 2.
Next, simulations are conducted to investigate the ensemble size. So far, the

ensemble size has been determined heuristically in most applications. In [19], the
optimal size turns out to be between 5 and 7. Considering the fact that a large
ensemble size will increase computational cost, we compare two cases where the
ensemble size is 3 and 5 on 200 samples collected in the first 20 generations
of an optimization run on the 30-dimensional Ackley function. The ensemble
output versus that of a single network is plotted in Fig. 5, where in Fig. 5(a) the
ensemble size is 3 and in Fig. 5(b) the ensemble size is 5. Note that the more
points locate in the right lower part of the figure the more effective the ensemble.
It can be seen from the figure that no significant performance improvement has
been achieved when the ensemble size is changed from 3 to 5. Thus, we fix the
ensemble size to 3.
It seems that the use of an ensemble has not improved the prediction accuracy

significantly. Thus, the motivation to employ an ensemble becomes questionable.
In the following, we will show that an ensemble is important not only in that
it is able to improve prediction. In this work, the equally important reason for
introducing the ensemble is to estimate the prediction accuracy based on the
different behaviors of the ensemble members, i.e., the variance of the members
in the ensemble. To demonstrate this, Fig. 6(a) shows the relationship between
the standard deviation of the predictions of the ensemble members and the
estimation error of the ensemble. These data are also collected in the first 20
generations of an evolutionary run of the Ackley function. Additional function
evaluations are carried out to get the prediction error. Of course, they are neither
used in neural network training nor in optimization. It can be seen that a large
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Fig. 5. (a) Ensemble size equals 3. (b) Ensemble size equals 5.

standard deviation most probably indicates a large prediction error, although a
small standard deviation does not guarantee a small prediction error. Encouraged
by this close correlation between a large deviation and a large prediction error,
we try to predict the model error. When the standard deviation is larger than a
threshold (1 in this example), we replace the model prediction with the fitness
of the individual closest to the cluster center, which is a very rough but feasible
approximation.
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Fig. 6. (a) Prediction error versus the standard deviation. (b) Prediction error of the
BEM versus that of the GEM.

Finally, we use a standard evolution strategy with a population size of (3,15)
to optimize the weights of the ensemble members. The predictions of the gener-
alized ensemble method (GEM), where the weights are optimized, and that of a
basic ensemble method (BEM) are shown in Fig. 6(b). It can be seen that the
prediction accuracy has been improved using the GEM.
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Fig. 7. Boxplot of the results for the 30-dimensional Ackley function. (a) The proposed
algorithm. (b) Plain ES. Notice that the scales in (a) and (b) are not the same.

4.2 Optimization Results

The maximal number of fitness evaluations is set to 2000 in all simulations. The
box plots of the ten runs on the three test functions are shown in Figures 7, 8 and
9. For clarity, only 20 data points are shown in the figures, which are uniformly
sampled from the original data. From these figures, it can clearly be seen that on
average, the optimization results using the proposed algorithm are much better
than those from the plain evolution strategy on all test function. Meanwhile,
they are also much better than the results reported in [6], where no clustering
of the population has been implemented. As we mentioned, without clustering,
the evolutionary algorithm does not converge correctly if only one third of the
population is re-evaluated using the original fitness function. Nevertheless, we
also notice that for the Ackley function, the result from one of the 10 runs using
the proposed method is much worse than the average performance, even a little
worse than the average result when the plain ES is used, refer to Fig. 7(a).
To show the benefit of using the neural network ensemble, the box plots of

results using only a single neural network (where no remedy of large prediction
errors is included) on the three test functions are provided in Figures 10, 11 and
12. Similarly, only 20 data points are presented for the clarity of the figures.
Compared with the results shown in Figures 7, 8 and 9, they are much worse. In
the Rosenbrock function, some runs even have diverged, mainly due to the bad
performance of the model prediction.

5 Conclusions

A new method for reducing fitness evaluations in evolutionary computation has
been proposed. In each generation, the population is clustered into a number
of groups and only the individuals closest to each cluster center will be evalu-
ated. Then a neural network ensemble is constructed using the data from the
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Fig. 8. Boxplot of the results for the 30-dimensional Rosenbrock function. (a) The
proposed algorithm. (b) Plain ES.
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Fig. 9. Boxplot of the results for the 30-dimensional Sphere function. (a) The proposed
algorithm. (b) Plain ES. Notice that the scales in (a) and (b) are not the same.

evaluated individuals. To further improve the prediction quality, the weights of
the ensemble are optimized using a standard ES. We further exploit informa-
tion contained in the ensemble by taking advantage of the standard deviation
of the output of the ensemble members. When the ensemble members disagree
significantly, the prediction error is very likely to be large and thus the ensemble
prediction is replaced by the fitness value of the cluster center of the individual.
Simulation results on the test functions suggest that the proposed algorithm is
very promising.

Currently, the number of individuals to be controlled is fixed. As suggested
in [7], an adaptation of the control frequency could provide more performance
improvement. One possibility is to determine the number of individuals to op-
timize the performance of the clustering algorithm using the global silhouette
width.
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Fig. 10. Results for the 30-dimensional Ackley function with a single network.
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Fig. 11. Results for the 30-dimensional Rosenbrock function with a single network.
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assisted evolution strategies. In Parallel Problem Solving from Nature, number
2439 in Lecture Notes in Computer Science, pages 371–380. Springer, 2002.

4. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Com-

puting Surveys, 31(3):264–323, September 1999.

5. D. Jimenez. Dynamically weighted ensemble neural networks for classification. In
Proceedings of International Joint Conference on Neural Networks, pages 753–756,
Anchorage, 1998. IEEE Press.

6. Y. Jin, M. Olhofer, and B. Sendhoff. On evolutionary optimization with approxi-
mate fitness functions. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference, pages 786–792. Morgan Kaufmann, 2000.



1 500 1000 1500 2000

10
−4

10
−3

10
−2

10
−1

10
0

F
itn

es
s

Exact Evaluations

Fig. 12. Results for the 30-dimensional SPH function with a single network.

7. Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization
with approximate fitness functions. IEEE Transactions on Evolutionary Compu-

tation, 6(5):481–494, 2002.
8. Y. Jin and B. Sendhoff. Fitness approximation in evolutionary computation - A

survey. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1105–1112, 2002.

9. H.-S. Kim and S.-B. Cho. An efficient genetic algorithms with less fitness evaluation
by clustering. In Proceedings of IEEE Congress on Evolutionary Computation,
pages 887–894. IEEE, 2001.

10. Y. Liu and X. Yao. Negatively correlated neural networks can produce best ensem-
ble. Australian Journal of Intelligent Information Processing System, 4(3–4):176–
185, 1997.

11. Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation, 4(4):380–387, 2000.

12. D.W. Opitz and J. W. Shavlik. Generating accurate and diverse members of a
neural network ensemble. In Advances in Neural Information Processing Systems,
volume 8, pages 535–541, Cambridge, MA, 1996. MIT Press.

13. M.P. Perrone and L.N. Cooper. When networks disgree: Ensemble methods for
hybrid neural networks. In R. J. Mammone, editor, Artificial Neural Networks for
Speech and Vision, pages 126–142. Chapman & Hall, London, 1993.

14. A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness land-
scape approximation. In A. Eiben, Th. Bäck, M. Schoenauer, and H.-P. Schwefel,
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