Skip to main content

Experimental Evaluation of Discretization Schemes for Rule Induction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Abstract

This paper proposes an experimental evaluation of various discretization schemes in three different evolutionary systems for inductive concept learning. The various discretization methods are used in order to obtain a number of discretization intervals, which represent the basis for the methods adopted by the systems for dealing with numerical values. Basically, for each rule and attribute, one or many intervals are evolved, by means of ad–hoc operators. These operators, depending on the system, can add/subtract intervals found by a discretization method to/from the intervals described by the rule, or split/merge these intervals. In this way the discretization intervals are evolved along with the rules. The aim of this experimental evaluation is to determine for an evolutionary–based system the discretization method that allows the system to obtain the best results. Moreover we want to verify if there is a discretization scheme that can be considered as generally good for evolutionary–based systems. If such a discretization method exists, it could be adopted by all the systems for inductive concept learning using a similar strategy for dealing with numerical values. Otherwise, it would be interesting to extract relationships between the performance of a system and the discretizer used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: International Conference on Machine Learning, pp. 194–202 (1995)

    Google Scholar 

  2. Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: An enabling technique. Journal of Data Mining and Knowledge Discovery 6, 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bacardit, J., Garrel, J.M.: Evolution of adaptive discretization intervals for a rulebased genetic learning system. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 677. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  4. Bacardit, J., Garrel, J.M.: Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based genetic learning classifier system. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1818–1831. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Giráldez, R., Aguilar-Ruiz, J., Riquelme, J.: Natural coding: A more efficient representation for evolutionary learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 979–990. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Divina, F., Keijzer, M., Marchiori, E.: A method for handling numerical attributes in GA-based inductive concept learners. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 898–908. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Divina, F., Marchiori, E.: Evolutionary concept learning. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, pp. 343–350. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  8. Quinlan, J.R.: Induction of decision trees. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, Morgan Kaufmann, San Francisco (1986); Originally published in Machine Learning 1, 81–106 (1986)

    Google Scholar 

  9. Giraldez, R., Aguilar-Ruiz, J., Riquelme, J., Ferrer-Troyano, F., Rodriguez, D.: Discretization oriented to decision rules generation. Frontiers in Artificial Intelligence and Applications 82, 275–279 (2002)

    Google Scholar 

  10. Fayyad, U., Irani, K.: Multi-interval discretization of continuos attributes as preprocessing for classification learning. In: Proceedings of the 13th International Join Conference on Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  11. Rissanen, J.: Stochastic Complexity in Statistical Inquiry. World Scientific, River Edge (1989)

    MATH  Google Scholar 

  12. Aguilar-Ruiz, J., Riquelme, J., Toro, M.: Evolutionary learning of hierarchical decision rules. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(2), 324–331 (2003)

    Article  Google Scholar 

  13. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 651–656 (1991)

    Google Scholar 

  14. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Proceedings of the 6th International Workshop on Learning Classifier Systems. LNCS (LNAI), Springer, Heidelberg (2003) (in press)

    Google Scholar 

  15. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  16. Langdon, W.B.: Fitness causes bloat in variable size representations. Technical Report CSRP-97-14, University of Birmingham, School of Computer Science (1997) Position paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA 1997 (1997)

    Google Scholar 

  17. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 461–468. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  18. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 54–68 (2003)

    Article  Google Scholar 

  19. Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary Computation Journal 11, 298–336 (2003)

    Article  Google Scholar 

  20. De Mántaras, R.L.: A distance-based attribute selection measure for decision tree induction. Machine Learning 6, 81–92 (1991)

    Article  Google Scholar 

  21. Kerber, R.: Chimerge: Discretization of numeric attributes. In: Proc. of AAAI 1992, San Jose, CA, pp. 123–128 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguilar-Ruiz, J., Bacardit, J., Divina, F. (2004). Experimental Evaluation of Discretization Schemes for Rule Induction. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics