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Abstract. This work compares different metaheuristics techniques ap-
plied to an important problem in natural language: tagging. Tagging
amounts to assigning to each word in a text one of its possible lexical
categories (tags) according to the context in which the word is used (thus
it is a disambiguation task). Specifically, we have applied a classic genetic
algorithm (GA), a CHC algorithm, and a Simulated Annealing (SA). The
aim of the work is to determine which one is the most accurate algorithm
(GA, CHC or SA), which one is the most appropriate encoding for the
problem (integer or binary) and also to study the impact of parallelism
on each considered method. The work has been highly simplified by the
use of MALLBA, a library of search techniques which provides generic
optimization software skeletons able to run in sequential, LAN and WAN
environments. Experiments show that the GA with the integer encoding
provides the more accurate results. For the CHC algorithm, the best re-
sults are obtained with binary coding and a parallel implementation. SA
provides less accurate results than any of the evolutionary algorithms.

1 Introduction

Part of speech tagging is one of the basic tasks in natural language processing.
Tagging amounts to assigning to each word of a sentence one of its possible
lexical categories according to the context in which the word is used. For ins-
tance, the word can can be a noun, an auxiliary verb or a transitive verb. The
category assigned to the word will determine the structure of the sentence in
which it appears and thus its meaning. In fact, tagging is a necessary step for
parsing, for information retrieval systems, for speech recognition, etc. Moreover,
tagging is a difficult problem since, many words belong to more than one lexical
class. To give an idea, according to [7], over 40% of the words appearing in the
hand-tagged Brown corpus [11] are ambiguous.

Because of the importance and difficulty of this task, a lot of work has been
carried out to produce automatic taggers. Automatic taggers [5, 10, 12], usually
based on Hidden Markov Models, rely on statistical information to establish the



probabilities of each scenario. The statistical data are extracted from previously
tagged texts, called corpus. These stochastic taggers neither require knowledge of
the rules of the language nor try to deduce them, and thus they can be applied
to texts in any language, provided they can be trained on a corpus for that
language previously.

The context in which the word appears helps to decide which is its more
appropriate tag, and this idea is the basis for most taggers. For instance, consider
the sentence in Figure 1, extracted from the Brown corpus. The word questioning
can be disambiguated as a common name if the preceding tag is disambiguated
as an adjective. But it might happen that the preceding word were ambiguous,
so there may be many dependencies which must be resolved simultaneously.

This the therapist may pursue in later questioning .
DT AT NN NNP VB RP RP VB .
QL MD VBP NNP RB NN

RB JJ JJ
NN JJR
FW
IN

Fig. 1. Tags for the words in a sentence extracted from the Brown corpus. Underlined
tags are the correct ones, according to the Brown corpus. Tags correspond to the tag
set defined in the Brown corpus: DT stands for determiner/pronoun, AT for article, NN
for common noun, MD for modal auxiliary, VB for uninflected verb, IN for preposition,
JJR for comparative adjective, etc.

The statistical model considered in this work amounts to maximize a global
measure of the probability of the set of contexts (a tag and its neighboring tags)
corresponding to a given tagging of the sentence. Then, we need a method to
perform the search of the tagging which optimizes this measure of probability.

The aim of this work is to check and compare two different variants of evo-
lutionary algorithms to perform such a search: a classic genetic algorithm (GA)
and a CHC algorithm. Genetic algorithms have been previously applied to the
problem [3, 4], obtaining accuracies as good of those of typical algorithms used
for stochastic tagging (such as the widely used of Viterbi [5]) or even better
[4]. CHC is a non-traditional genetic algorithm, which presents some particular
features. CHC guarantees the survival of the best individuals found by putting
the children and parents together and applying selection among them. Similar
individuals are not allowed to mate in order to improve diversity. Crossover
also differs in such a way that two parents exchange exactly half of the differ-
ing parental genes and instead of traditional mutation, CHC re-initializes the
population when stagnation is detected.

One of the aims of this work is to investigate if the particular mechanism
of CHC for diversity can improve the selection of different sets of tags. From
previous work, it has been observed that words incorrectly tagged are usually
those which require one of their more rare tags, or which appear in an infre-



quent context. The fitness function is based on the probability of the contexts
of a sequence of tags assigned to a sentence. Therefore, it is difficult for the GA
to change tags within high probability contexts. CHC allows changing simulta-
neously several tags of the sequence, which can lead to explore combinations of
tags very different from those of the ancestors. Thus, it is interesting to study
what is more advantageous, the quiet exploration of the GA or the more dis-
ruptive one of CHC. We have also compared the results of the GAs with those
obtained from Simulated Annealing (SA), in order to ascertain the suitability of
the evolutionary approach compared with other optimization methods.

For most tagging applications, the whole process of search is time consuming,
what made us to include in the study a parallel version of the algorithms.

The work has been highly simplified by the use of MALLBA [1], a library of
search techniques, which provides generic optimization software skeletons that
run in sequential, LAN and WAN environments.

The rest of the paper proceeds as follows: Section 2 is devoted to present the
MALLBA system, under which the algorithms have been implemented. Sections
3, 4 and 5 describe the GA, CHC, and SA algorithms, and Section 6 discusses
the parallel version of these algorithms. Section 7 presents the details of the
algorithms as applied to tagging, including the genetic operators. Section 8 de-
scribes and discusses the experimental results, and Section 9 draws the main
conclusions of this work.

2 MALLBA System

The MALLBA project [1] provides, in an integrated way, a library of skeletons
for combinatorial optimization (including exact, heuristic and hybrid methods)
which can deal with parallelism in a user-friendly and, at the same time, efficient
manner. Its three target environments are sequential computers, LANs of work-
stations and WANs. Skeletons are generic templates which must be instantiated
with the features of the problem to solve. The features related to the selected
generic resolution method and its interaction with the particular problem are
implemented by the skeleton.

Skeletons are implemented by a set of required and provided C++ classes
that represent an abstraction of the entities participating in the solver method.
The provided classes implement internal aspects of the skeleton in a problem-
independent way. The required classes specify information and behavior related
to the problem. This conceptual separation allows us to define required classes
with a fixed interface but without any implementation, so that provided classes
can use required classes in a generic way. MALLBA is publicly available at
http://neo.lcc.uma.es/mallba/easy-mallba/index.html.

3 Genetic Algorithm

Genetic Algorithms (GAs) [6] are stochastic search methods that have been
successfully applied in many real applications of high complexity. A GA is an



iterative technique that applies stochastic operators on a pool of individuals
(tentative solutions). An evaluation function associates a value to every individ-
ual indicating its suitability to the problem. Traditionally, GAs are associated
to the use of a binary representation, but nowadays you can find GAs that use
other types of representations. A GA usually applies a recombination operator
on two solutions, plus a mutation operator that randomly modifies the individual
contents to promote diversity.

1 t = 0
2 initialize P(t)
3 evaluate structures in P(t)
4 while not end do
5 t = t + 1
6 select: C(t) = P(t-1)
7 for each pair (p1,p2) in C(t)
8 if ‘incest prevention condition’
9 add to C’(t) HUX(p1,p2)
10 evaluate structures in C’(t)
11 replace P(t) from C”(t) and P(t-1)
12 if convergence(P(t))
13 re-start P(t)

Fig. 2. Scheme of the CHC algorithm

4 CHC Algorithm

CHC [8] is a variant of genetic algorithm with a particular way of promoting
diversity. It uses a highly disruptive crossover operator to produce new individ-
uals maximally different from their parents. It is combined with a conservative
selection strategy which introduces a kind of inherent elitism. Figure 2 shows a
scheme of the CHC algorithm, whose main features are:

– The mating is not restricted to the best individuals, but parents are randomly
paired in a mating pool C(t) (line 6 of Figure 2). However, recombination is
only applied if the Hamming distance between the parents is above a certain
threshold, a mechanism of incest prevention (line 8 of Figure 2).

– CHC uses a half-uniform crossover (HUX), which exchanges exactly half of
the differing parental genes (line 9 of Figure 2).

– Traditional selection methods do not guarantee the survival of best individu-
als, though they have a higher probability to survive. On the contrary, CHC
guarantees survival of the best individuals selected from the set of parents
(P (t− 1)) and offsprings (C ′(t)) put together (line 11 of Figure 2).

– Mutation is not applied directly as an operator.
– CHC applies a re-start mechanism if the population remains unchanged for

some number of generations (lines 12-13 of Figure 2). The new population
includes one copy of the best individual, while the rest of the population is
generated by mutating some percentage of bits of such best individual.



5 Simulated Annealing

Simulated Annealing (SA) [9] is a stochastic optimization technique, which has
its origin in statistical mechanics. It is based upon a cooling procedure used in
industry. This procedure heats the material to a high temperature so that it
becomes a liquid and the atoms can move relatively freely. The temperature is
then slowly lowered so that at each temperature the atoms can move enough
to begin adopting the most stable configuration. In principle, if the material is
cooled slowly enough, the atoms are able to reach the most stable (optimum)
configuration. This smooth cooling process is known as annealing. Figure 3 shows
a scheme of SA. First at all, the parameter T , called the temperature, and the
solution, are initialized (lines 2-4). The solution s1 is accepted as the new current
solution if δ = f(s1) − f(s0) < 0. Stagnations in local optimum are prevented
by accepting also solutions which increase the objective function value with
a probability exp(−δ/T ) if δ > 0. This process is repeated several times to
obtain good sampling statistics for the current temperature. The number of
such iterations is given by the parameter Markov Chain length, whose name
alludes the fact that the sequence of accepted solutions is a Markov chain (a
sequence of states in which each state only depends on the previous one). Then
the temperature is decremented (line 14) and the entire process repeated until
a frozen state is achieved at Tmin (line 15). The value of T usually varies from
a relatively large value to a small value close to zero.

1 t = 0
2 initialize(T)
3 s0 = Initial Solution()
4 v0 = Evaluate(s0)
5 repeat
6 repeat
7 t = t + 1
8 s1 = Generate(s0,T)
9 v1 = Evaluate(s0,T)
10 if Accept(v0,v1,T)
11 s0 = s1
12 v0 = v1
13 until t mod Markov Chain length == 0
14 T = Update(T)
15 until ’loop stop criterion’ satisfied

Fig. 3. Scheme of the Simulated Annealing (SA) algorithm

6 Parallel Heuristics

A parallel EA (PEA) is an algorithm having multiple component EAs, regard-
less of their population structure. Each component (usually a traditional EA)



subalgorithm includes an additional phase of communication with a set of sub-
algorithms [2]. In this work, we have chosen a distributed EA (dEA) because of
its popularity and because it can be easily implemented in clusters of machines.
In distributed EAs (also known as Island Model) there exists a small number of
islands performing separate EAs, and periodically exchanging individuals after
a number of isolated steps (migration frequency). Concretely, we use a static
ring topology in which the best individual is migrated, and asynchronously in-
cluded in the target populations only if it is better than the local worst-existing
solutions.

For the parallel SA (PSA) there also exist multiple asynchronous component
SAs. Each component SA, start off from a different random solution, exchanges
the best solution found (cooperation phase) with its neighbor SA in the ring.

7 The Model for Tagging

The generated tagger must be able to learn from a training corpus so as to
produce a table of rules (contexts) called training table. Evaluation of tentative
solutions is done according to the training table. This table records the different
contexts of each tag. The table can be computed by going through the training
text and recording the different contexts and the number of occurrences of each
of them for every tag in the training text. For example, if we consider contexts
with two tags on the left and two tags on the right, the entry in the table for
tag JJ could have the form:

JJ 4557 9519

VBD AT JJ NN IN 37

IN PP$ JJ NNS NULL 20

PPS BEZ JJ TO VB 18

NN IN JJ NN WDT 3

...

denoting that JJ has 4557 different contexts and appears 9519 times in the
text, and that in one of those contexts, which appears 37 times, JJ is preceded
by tags VBD and AT and followed by NN and IN, and so on until all the 4557
different contexts have been listed.

The search process is run for each sentence in the text to be tagged. Improve-
ment steps aim to maximize the total probability of the tagging of the sentences
in the test corpus. The process finishes either if the fitness deviation lies below
a threshold value (convergence) or if the evolutionary process has been running
for a maximum number of generations.

7.1 Individuals

Tentative solutions are sequences of genes which correspond to each word in the
sentence to be tagged. Figure 4 shows some possible individuals for the sentence
in Figure 1. Each gene represents a tag and additional information useful in the



Sentence This the therapist may pursue in later questioning .

Ind. 1: DT AT NN NNP VBP IN JJ VB .

Ind. 2: DT AT NN MD VB RB RB NN .

Ind. 3: QL AT NN NNP VB FW JJ JJ .

Fig. 4. Potential individuals for the sentence in Figure 1

evaluation of the chromosome, such as counts of contexts for this tag according
to the training table. Each gene’s tag is represented by an index to a vector
which contains the possible tags of the corresponding word. The composition
of the genes depends on the chosen coding, as Figure 5 shows. In the integer
coding the gene is just the integer value of the index. In the binary coding the
gene is the binary representation of the index. As in the texts we have used for
experiments the maximum number of tags per word is 6, we have used both a
binary code of 7 and another one of 4 bits.

word tag index integer binary(7) binary(4)

0 1 2 3 4 5 · · ·
This DT QL 0 0000000 0000
the AT 0 0000000 0000
therapist NN 0 0000000 0000
may NNP MD 1 0000001 0001
pursue VB VBP 0 0000000 0000
in RP NNP RB NN FW IN 5 0000101 0101
later RP RB JJ JJR 3 0000011 0011
questioning VB NN JJ 1 0000001 0001

Fig. 5. Integer and binary codings (7 and 4 bits) of a possible selection of tags chosen
for the words of a sentence extracted from the Brown corpus. The selected tags appear
underlined.

Initial Population For a given sentence of the test corpus, the chromosomes
forming the initial population are created by randomly selecting from a dictio-
nary one of the valid tags for each word, with a bias to the most probable tag.
Words not appearing in the dictionary are assigned the most probable for its
corresponding context, according to the training text.

7.2 Fitness Evaluation

The fitness of an individual is a measure of the total probability of its sequence
of tags, according to the data from the training table. It is computed as the sum
of the fitness of its genes,

∑
i f(gi). The fitness of a gene is defined as

f(g) = log P (T |LC, RC)

where P (T |LC, RC) is the probability that the tag of gene g is T , given that
its context is formed by the sequence of tags LC to the left and the sequence



RC to the right (the logarithm is taken in order to make fitness additive). This
probability is estimated from the training table as

P (T |LC, RC) ≈ occ(LC, T, RC)∑
T ′∈T occ(LC, T ′, RC)

where occ(LC, T, RC) is the number of occurrences of the list of tags LC, T, RC
in the training table, and T is the set of all possible tags of gi. For example, if
we are evaluating the individual 1 of Figure 4 and we are considering contexts
composed of one tag on the left and one tag on the right of the position evaluated,
the fourth gene (word may), for which there are two possible tags, NNP (the
one chosen in this individual) and MD, will be evaluated as

#(NN NNP VBP)

[#(NN NNP VBP) + #(NN MD VBP)]

where # represents the number of occurrences of the context.
A particular sequence LC, T, RC may not be listed in the training table,

either because its probability is strictly zero (if the sequence of tags is forbidden
for some reason) or, most likely, because there is insufficient statistics. In these
cases we proceed by successively reducing the size of the context, alternatively
ignoring the rightmost and then the leftmost tag of the remaining sequence
(skipping the corresponding step whenever either RC or LC are empty) until
one of these shorter sequences matches at least one of the training table entries
or until we are left simply with T . In this latter case we take as fitness the
logarithm of the frequency with which T appears in the corpus (also contained
in the training table).

7.3 Genetic Operators

For the GA, we use a one point crossover, i.e. a crossover point is randomly
selected and the first part of each parent is combined with the second part
of the other parent thus producing two offsprings. Then, a mutation point is
randomly selected and the tag of this point is replaced by another of the valid
tags of the corresponding word. The new tag is randomly chosen according to
its probability (the frequency it appears in the corpus).

The CHC algorithm applies HUX crossover, randomly taking from each par-
ent half of the tags in which they differ and exchanging them.

Individuals resulting from the application of genetic operators along with the
old population are used to create the new one.

8 Experiments

We have used as the set of training texts for our taggers the Brown corpus
[11], one of the most widespread in linguistics. The tag set of this corpus is not
too large, what favours the accuracy of the system. Moreover, this tag set has
been reduced by grouping some related tags under a unique name tag, what



improves statistics. For instance, different kinds of adjectives (JJ , JJ + JJ ,
JJR, JJR + CS, JJS, JJT ) distinguished in the corpus have been grouped
under the common tag JJ .

The CHC algorithm has been run with a crossover rate of 50%, without mu-
tation. Whenever convergence is achieved, 90% of population is renewed. The
GA applies the recombination operator with a rate of 50%, and the mutation
operator with a rate of 5%. In the parallel version, the migration occurs ev-
ery 10 generations. We made several tests with different parameter settings for
determining the best values for each algorithms. The analysis of other specific
operators is defered for a future work.

Table 1. Tagging accuracy obtained with the CHC algorithm for a test text of 2500
words. PS stands for Population Size.

CHC-Int CHC-Bin(7) CHC-Bin(4)
Context PS = 20 PS = 56 PS = 20 PS = 56 PS = 20 PS = 56

Seq. Par. Seq. Par. Seq. Par. Seq. Par. Seq. Par. Seq. Par.

1-0 89.96 90.15 89.34 89.34 92.08 92.17 91.04 90.95 91.94 92.53 91.18 91.35
2-0 91.41 91.68 90.91 91.32 93.34 93.43 92.35 91.90 93.38 93.52 92.04 92.40
3-0 92.58 92.89 91.68 91.72 93.74 93.97 92.98 93.07 93.92 93.97 93.16 93.25
1-1 93.12 93.48 92.39 92.58 94.78 94.97 93.88 94.06 95.14 94.82 94.06 94.10
2-1 93.56 93.70 93.07 93.21 94.51 94.51 93.83 94.06 94.47 94.65 93.83 94.15
2-2 94.51 94.11 94.29 93.98 94.61 94.73 94.78 94.78 95.01 95.23 94.06 94.87

Tables 1 and 2 show the results obtained with the CHC and GA algorithms,
using both, integer and binary codings. In order to study the impact of the
length of the code for the binary representation, we have used 7 bits and a 4
bits codes (which are enough, because the maximum number of possible tags
of a word is 6). Each row in tables corresponds to a kind of context: 1-0 is a
context which considers only the tag of the preceding word, 1-1 considers the
tag of the preceding and succeeding words, etc. Figures represent the best result
out of twenty independent runs. The globally best result for each row appears
in boldface. Int stands for the integer representation, Bin(7) for the binary
representation with a code of 7 bits, and Bin(4) for binary with a code of
4 bits. Measures have been taken for different population sizes. Furthermore,
sequential and parallel versions with 4 islands are analyzed. The population size
of each island is the global population size divided by the number of islands.

Looking at Table 1, the first conclusion is that the binary coding always
achieves a higher accuracy than the integer one. Moreover, the shorter the binary
code to represent the tag, the better. This suggests that the integer representa-
tion is not appropriate for CHC, probably because the low number of genes of
the latter limits the CHC mechanism to avoid crossover between similar individ-
uals. Regarding the parallel executions, we can observe that the parallel version
usually provides more accurate results, particularly for the population of 20 in-
dividuals, because for such a small population the higher diversity introduced
by parallelism is beneficial.



Table 2. Accuracy obtained with the GA for a test text of 2500 words. PS stands for
Population Size.

GA-Int GA-Bin(7) GA-Bin(4)
Context PS = 20 PS = 56 PS = 20 PS = 56 PS = 20 PS = 56

Seq. Par. Seq. Par. Seq. Par. Seq. Par. Seq. Par. Seq. Par.

1-0 93.30 93.12 92.94 92.67 92.84 92.48 92.53 92.39 93.07 92.44 92.35 92.21
2-0 93.97 93.70 93.43 93.88 93.83 93.56 93.61 93.16 93.43 92.89 93.61 93.07
3-0 94.47 94.38 93.88 93.79 94.19 94.01 94.28 93.65 93.97 93.52 93.83 93.70
1-1 94.78 94.87 94.92 94.42 95.14 94.37 94.64 94.42 94.64 94.01 94.64 94.06
2-1 94.69 95.19 94.69 94.87 94.87 94.69 94.55 94.78 94.64 94.37 94.69 94.28
2-2 95.19 95.23 95.14 94.83 95.54 94.91 94.96 95.14 95.41 94.64 94.73 95.00

Table 2 shows the results obtained with the GA. In this case, the integer
representation provides the best results. The parallel version for a population
size of 20 individuals is not able to improve the sequential results, because of
the small size of the islands. However, for the population size of 56 individuals
the parallel results improve the sequential ones for some contexts.

Comparing both tables, 1 and 2, we can observe that the GA has reached
the globally best results for most kinds of contexts (1-0, 2-0, 3-0, 2-1 and 2-2),
though the differences are small. This shows that the exploration of the search
space given by the classical crossover and mutation operators are enough for this
specific problem.

Table 3. Accuracy obtained with the SA algorithm for a test text of 2500 words (best
result out of twenty independent runs)

Context type
1-0 2-0 3-0 1-1 2-1 2-2

Seq. 91.32 92.40 92.98 94.24 94.06 94.60
Par. 91.00 92.53 92.67 93.47 94.15 94.33

Table 3 presents the data obtained with the SA algorithm. The SA algorithm
performs 5656 iterations using a Markov chain of length 800 and with a decreas-
ing factor of 0.99. In the parallel version, each SA component exchanges the best
solution found with its neighbor SA in the ring, every 100 iterations. We can
observe that SA provides worse results than any of the evolutionary algorithms,
thus proving the advantages of the evolutionary approach.

Table 4 presents the average and standard deviation for the codings which
provide the best results of each algorithm (integer for GA and binary of 4 bits for
CHC), in both the sequential and the parallel implementations. We can observe
that fluctuations in the accuracy of different runs are within a 1% interval, so
we can claim that the algorithm is very robust.

Another feature of the results that is worth mentioning is that the accuracy
obtained, around 95%, is a very good result [5] according to the statistical model
used. To our knowledge, the results reported here outperforms in accuracy and
efficiency to any existing work on tagging English texts with heuristics methods.



Table 4. Average and standard deviation of the accuracy for a population of 20 indi-
viduals and a test text of 2500 words

Context GA-Int CHC-Bin(4)
Seq. Par. Seq. Par.

1-0 93.07± 0.24 92.81± 0.23 91.79± 0.16 91.96± 0.30
2-0 93.68± 0.23 93.37± 0.18 92.91± 0.28 93.31± 0.16
3-0 94.15± 0.32 94.07± 0.20 93.66± 0.16 93.76± 0.18
1-1 94.54± 0.13 94.41± 0.23 94.61± 0.31 94.49± 0.24
2-1 94.31± 0.26 94.27± 0.25 94.23± 0.21 94.44± 0.17
2-2 94.91± 0.26 94.72± 0.35 94.76± 0.15 94.82± 0.32 90

91

92

93

94

95

1--0 2--0 3--0 1--1 2--1 2--2

GA-Seq
GA-Lan
CHC-Seq
CHC-Lan

%

We must take into account that the accuracy is limited by the statistical data
provided to the search algorithm. Moreover, the goal of the model is to maximize
the probability of the context composed by the tags assigned to a sentence, but it
is only an approximate model. The correct tag for a word is not always (though
most times) the most probable one, and the algorithm captures this fact, but
sometimes it is not the one which provides the most probable context either,
and it is just in these cases when the tagger fails.

Table 5. Ratios of the execution times of the different versions of the algorithms with
respect to the execution time of the sequential GA with integer representation and 1-0
context (17.2805 s.)

Context GA-Int GA-Bin(4) CHC-Int CHC-Bin(4)
Seq Par. Seq Par. Seq Par. Seq Par.

1-0 1 0.899 1.999 1.349 1.002 0.603 1.849 1.308
2-0 4.085 2.160 11.043 6.258 3.749 1.832 10.027 5.436
3-0 18.695 6.138 55.394 18.998 17.003 5.384 47.328 16.490
1-1 4.493 1.866 13.152 5.502 4.450 1.857 11.850 5.480
2-1 21.250 7.206 67.692 23.467 21.014 5.566 60.878 20.655
2-2 96.434 25.344 268.559 52.860 95.742 26.349 247.645 68.255

Table 5 shows the average execution time for the integer and binary (4 bits)
codings of the GA and CHC algorithms, which respectively provided the best
results for each of them. We can observe that the execution time increases with
the size of the context. We can also observe that CHC is slightly faster than
GA when using the same codification. Probably, the lack of mutation in CHC
compensates its additional computations. Binary codings are slower than integer
ones, because they require a decodification step to apply the fitness function. The
table also shows that the parallel implementation reduces the execution time,
and this reduction is increasingly beneficial with the size of the context.

9 Conclusions

This work compares different optimization methods to solve an important na-
tural language task: the selection for each word in a text of one of its possible
lexical categories. The optimization methods considered here have been a classic
genetic algorithm (GA), a CHC algorithm and a simulated annealing (SA). The
implementation of each of them has been carried out with MALLBA.



Results obtained allow extracting a number of conclusions, such as that the
integer coding performs better than the binary one for the GA, while the binary
one is the best for the CHC algorithm. Furthermore, the shorter the binary code
for the tag of each word, the better the performance. Parallelism has also proven
useful, allowing to obtain the best results even with small populations in the
case of the CHC, and to reduce the execution time in any algorithm. The GA
has been found to be slightly better than CHC, indicating that the exploration
of the search space achieved by the classical genetic operators is enough for this
problem. The two evolutionary algorithms have outperformed SA.

For the future, we plan to extend this study to additional corpus such as the
Susanne and Penn Treebank.
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Gabarró, C. León, J. Luna, L. M. Moreno, C. Pablos, J. Petit, A. Rojas, and
F. Xhafa. MALLBA: A library of skeletons for combinatorial optimisation. In
Euro-Par, pages 927–932. Springer, 2002.

2. E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Trans-
actions on Evolutionary Computation, 6(5):443–462, 2002.

3. L. Araujo. Part-of-speech tagging with evolutionary algorithms. In Proc. of the
Int. Conf. on Intelligent Text Processing and Computational Linguistics (CICLing-
2002), LNCS 2276, pages 230–239. Springer-Verlag, 2002.

4. L. Araujo. Studying the advantages of a messy evolutionary algorithm for natural
language tagging. In Proc. of the Int. Genetic and Evolutionary Computation
Conference (GECCO), LNCS 2724, pages 1951–1962. Springer-Verlag, 2003.

5. E. Charniak. Statistical Language Learning. MIT press, 1993.
6. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,1991.
7. S. J. DeRose. Grammatical category disambiguation by statistical optimization.

Computational Linguistics, 14:31–39, 1988.
8. L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search

when engaging in nontraditional genetic recombination. In Proceedings of the First
Workshop on FOGA, pages 265–283, San Mateo, CA, 1991. Morgan Kauffman.

9. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

10. B. Merialdo. Tagging English text with a probabilistic model. Computational
Linguistics, 20(2):155–172, 1994.

11. F. W. Nelson and H. Kucera. Manual of information to accompany a standard
corpus of present-day edited American English, for use with digital computers.
Technical report, Department of Linguistics, Brown University., 1979.

12. H. Schutze and Y. Singer. Part of speech tagging using a variable memory Markov
model. In Proc. of the 1994 of the Association for Computational Linguistics.
Association for Computational Linguistics, 1994.


