
An Island-Based GA Implementation for VLSI
Standard-Cell Placement

Guangfa Lu and Shawki Areibi

School of Engineering
University of Guelph

Ontario, Canada, N1G 2W1
Tel: (519) 824-4120, X53819

Fax:(519) 836-0227
sareibi@uoguelph.ca

Abstract. Genetic algorithms require relatively large computation time
to solve optimization problems, especially in VLSI CAD such as module
placement. Therefore, island-based parallel GAs are used to speed up
this procedure. The migration schemes that most researchers proposed
in the past have migration near or after the demes converged [1,2]. How-
ever, for the placement of medium or large standard-cell circuits, the
time required for convergence is extremely long, which makes the above
migration schemes non practical. In this paper, we propose a novel migra-
tion scheme for synchronous island-based GA. Compared to the widely
used ring topology that usually produces worse solutions at the begin-
ning of the search but better solutions at later generations, the proposed
migration scheme enables a parallel GA to outperform its serial version
most of the time. Near linear speedup is obtained. We also implemented
an asynchronous model that can achieve super-linear speedup.

1 Introduction

Physical design of VLSI circuits is a process of determining the location and
connection of devices inside a chip. The main stages of the physical design phase
include partitioning, placement, and routing [3]. Our work focuses on the place-
ment of standard-cell in the physical design phase.

Given a circuit consisting of a set of modules, the standard-cell placement
problem attempts to find a layout indicating the positions of the modules in
parallel rows such that the total interconnection length, placement area, or some
other placement metrics (eg. congestion, circuit delay) are minimized. As shown
in Figure 1, a standard cell is a small block of predefined sub-circuit. Cells are
restricted to having equal height, but variable width, and are placed in parallel
rows that are separated by routing channels, as illustrated in Figure 2.

The VLSI standard cell placement is an NP-hard problem [4]. Various heuris-
tic optimization techniques have been applied to this problem in the past. Ge-
netic algorithms are proved to be able to produce high quality placement solu-
tions for standard-cell circuits as competitive as that of other sophisticated algo-
rithms such as Simulated Annealing and force-directed algorithms [5]. However,

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1138–1150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1139

Channels
Routing

Cell
Pins

Standard Cells

D

Q’

Q

Fig. 1. Standard Cells

Variable
Height

Channels

Pads Feedthrough cell

Variable
Width Cells

Variable
Length
Rows

Fig. 2. Standard Cell Placement

the runtime of genetic algorithms are relatively longer than other algorithms [6,
7] and are becoming less competitive in the real world. Therefore, researchers
are seeking parallel GA implementation for better performance.

Island-based GAs are coarse grain parallel models, and can be easily mapped
to existing distributed parallel systems like a cluster of networked workstations.
Since a fairly good speedup can be easily achieved, the Island-based GA is be-
coming the most popular parallel method. In this method the whole population is
divided into subpopulations (also known as demes) and distributed among mul-
tiprocessors. These semi-isolated subpopulations are executed as normal genetic
algorithms, except that they would swap a few strings occasionally. By introduc-
ing migration, parallel island models have often been reported to display better
search quality than that of a serial GA [8,9].

Migration is very important to search quality and parallel efficiency. Usually
considered to be a good migration scheme, ”Delay” migration schemes are al-
gorithms where migration occurs after the demes are near convergence or com-
pletely converged. However, in standard-cell placement, this approach is not
suitable since large circuits require extremely long time to converge. We pro-
pose a practical migration scheme for placement in this paper, and describe
the successful synchronous implementation. Besides the novel migration scheme,
our contribution also includes an implementation of an asynchronous model for
placement that can achieve super-linear speedup.

The rest of the paper is organized as follows: Section 2 presents a brief
overview of previous work on evolutionary based placement algorithms and the
challenge of parallel genetic algorithms for standard-cell placement. In section 3,
we present a novel migration scheme to meet the challenge and describe the suc-
cessful synchronous parallel GA implementation for placement. In section 4, we
describe an asynchronous parallel implementation that can achieve super-linear
speedup. The experimental results are presented in section 5, and the paper
concludes in section 6.

1140 G. Lu and S. Areibi

2 Background

In this section, we describe a serial genetic algorithm implementation for
standard-cell placement and highlight the challenge of parallelizing GAs for such
a problem.

There are three primary objectives in the placement problem: minimizing
chip area, achieving routable designs, and improving circuit performance. Our
work in this paper mainly focuses on the objective of minimizing chip area. Since
minimizing the wire-length is approximately equivalent to minimizing the total
chip area for the standard-cell layout style [10], the total cost of a placement
layout can be estimated by the sum of wire length over all nets:

φ(x, y) =
∑

1≤i<j≤N

wij [(xi − xj)2 + (yi − yj)2] (1)

(xi, yi) denotes the location of cell i; wij is a non-negative weight of the edge
connecting cell i and cell j. Equation (1) can be rewritten in matrix form as:

φ(x, y) =
1
2
xT Cx + dT

x x +
1
2
yT Cy + dT

y y + t (2)

Vectors x and y denote the coordinates of the N movable cells; matrix C is
the Hessian matrix; vectors dT

x and dT
y and the constant term t result from

the contributions of the fixed cells. In the placement stage, this Semi-perimeter
method is commonly used to approximately estimate the total wire-length.

Previously, [11] has developed a standard-cell placer called SC3 for aca-
demic research, using various optimization techniques. A steady-state genetic
algorithm(Figure 3) is one of the selectable algorithms that can be used to op-
timize initial placement solutions. In this algorithm, a standard-cell placement
solution string was represented by a set of alleles (the number of alleles equal to
the number of cells). Each allele indicates the cell index, the X- coordinates and
row number of the cell. Figure 4a illustrates the string encoding of the standard-
cell placement given in Figure 4b. Individuals are evaluated to determine their
fitness through a scoring function F, using the Semi-perimeter method:

F =
1∑n

i=1 HPWLi
(3)

where HPWLi is the estimated wire-length of net i, and n is the number of nets.
Thus

∑n
i=1 HPWLi is the sum of the half perimeter of the smallest bounding

rectangle for each net. In the implementation, cell overlaps are removed and row
lengths are adjusted before evaluating the chromosome. Initial solutions can be
constructed randomly, or by Cluster-Seed method. The GA starts its evolution
by applying stochastic operators such as selection, crossover, and mutation to the
individuals in each generations. The main drawback of genetic algorithms is the
high computational demand, therefore we apply island-based genetic algorithms
to speedup this procedure.

For island-based GAs, an appropriate migration scheme is critical. The meth-
ods of migration schemes determined by convergence are very popular. [12] pro-
posed algorithms where migration begins only after the subpopulations are near

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1141

Iteration_count yes

Output the best

Initial population

Selection
Randomly select two individuals without
repetition, according to their fitness values.

if the offspring are better, then replace them
Compared to the two worst individuals,

Replacement:

yes

no mating_count
>= popsize/2 ?

no

Crossover

Mutation

Evaluation

> = All_iterations ?

Fig. 3. A steady-state genetic algorithm for placement

2

7 4

3 5

1

8 6

 0

 2

 3

 1

row number cell

(a) String Encoding (b) Placement

allele

 0 20 50 30 0 50 40 30

row_number 0 3 0 2 1 2 3 1

x−coordinate

 cell_index 2 3 1 8 7 6 5 4

1 2 3 4 5 6 7 8

Fig. 4. String Encoding

convergence. In [1], migration occurs after the subpopulations completely con-
verged. The study claimed that if migration is introduced too early before search
converged, good original schemata in the demes may be destroyed by incoming
migrants and thus the demes may lose their diversity.

However, previous studies show that large circuits require extremely long
time to converge. Our experimental work shows that for small circuits conver-
gence takes several hours even if we parallelize the GA using 7 processors. Since
using convergence to trigger migration is not practical for placement, we pro-
posed a better migration scheme, and successfully implemented a synchronous
island-based GA for standard-cell placement. Besides, we also implemented an

1142 G. Lu and S. Areibi

asynchronous model that can achieve super-linear speedup. The two island-based
models are described in the next two sections.

3 Synchronous Island-Based GA

In the synchronous island-based GA, the total population is divided equally into
several subpopulations, and each processor is assigned a single subpopulation
to form an island. As depicted in Figure 5, the sub-algorithm in each island is
simply a regular serial steady-state GA plus migration.

Migration

>= subpopsize/2 ?
mating_count

> = Migration interval ?
generation_count

Selection
Crossover

Mutation

Evaluation

Replacement

Migration

>= subpopsize/2 ?
mating_count

> = Migration interval ?
generation_count

Selection
Crossover

Mutation

Evaluation

Replacement

Migration

>= subpopsize/2 ?
mating_count

> = Migration interval ?
generation_count

stop stop

processor 1

of all subpopulations
Output the best

Selection
Crossover

Mutation

Evaluation

Replacement

Synchronous Synchronous

processor 0 processor 2

> = All_iterations ?
Iteration_count

Initial population

yes

yes
no

no

yes

> = All_iterations ?
Iteration_count

Initial population

yes

yes
no

no

yes

> = All_iterations ?
Iteration_count

Initial population

yes

yes
no

no

yes

no no no

Fig. 5. A synchronous model with 3 processors

Each sub-algorithm includes an extra phase of periodicly exchange of some
of their individuals. More specifically, for every certain number of generations
(known as migration interval), all islands exchange a candidate of good indi-
viduals (migrants) with each other, based on the communication topology. For
each island, if an incoming migrant is better than the worst existing individual,
this migrant is then inserted into the subpopulation. All islands perform their
migrations at the same time.

The mechanism of island models is complex, since many parameters affect
the quality of search as well as efficiency of parallelism. Besides the basic GA
parameters, other parameters are involved such as deme size, migrants selec-
tion method, migration interval, migration rate, communication topology, and
replacement rules.

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1143

3.1 The Deme Size and the Number of Islands

For a specified population size, the deme (subpopulation) size is determined
by the number of processors used. We can imagine that, the more processors
we throw into the parallel system, the smaller the size of subpopulations, and
the shorter the computation time. However, this is not always the case. The
execution time of a parallel GA includes computation time and communication
time. As more processors are used, the average available bandwidth for each
processor decreases, but more communication is required for each processor.
The latter grows especially fast in a low bandwidth parallel system. On the
other hand, a very small subpopulation might prematurely converge and leads
to poor solutions. Therefore, when we scale up a parallel GA system to pursue
better performance, the parallel efficiency usually diminishes.

3.2 Migration

Migration is the process where subpopulations occasionally exchange some in-
dividuals. It is a very important parameter that determines the quality of the
search as well as the efficiency of the parallelism. If the migration is low, the
sub-algorithms on different small subpopulations work independently and the
final result may be worse than a serial GA. If the migration is high, the parallel
GA behaves very similarily to a serial GA [8,9]. There are many ingredient of
migration, and they all affect the behaviors of the parallel genetic search:

– Migrants Selection Methods: Among the chromosomes in an island, high
quality individuals are chosen to be sent out as migrants. There are several
techniques that can be used to select such individuals. One way is just sim-
ply picking the best individuals. Other techniques involve selecting the best
individuals probabilistically, such as Roulette-wheel selection, Stochastic uni-
versal selection, and Binary tournament selection. The higher the pressure,
the faster the algorithm reaches equilibrium while sacrificing more genetic di-
versity of those migrants [13]. In our implementation, the outgoing migrants
are from the best individuals, with the restriction that each individual being
sent once. In addition, our algorithm restricts an incoming immigrant to be
sent out directly but allows such a mechanism for children. In the ’to-all’
communication scheme, only the best unsent individual of a deme can be
sent out as migrant in each migration.

– Migration Interval: Migration intervals specify the migration plan. Most
island-based GAs start migrations after subpopulations are converged. But
for standard-cell placement, we use a fixed epoch in our synchronous model,
and start migrations at very early generations. The reasons are: (i) Without
extra computation, it’s simple; (ii) A string encodes a placement solution of a
VLSI chip, for medium or large circuits, the time of waiting for convergence
could be too long in practice. We also believe that if we use such a fixed
migration interval and migration scheme we could make distributed demes
behave like a single panmictic population (serial GA) that would outperform
the serial GA in all generations.

1144 G. Lu and S. Areibi

– Communication Topologies: The communication topology determines
the pattern of communications, or the connections between subpopulations.
The ring topology is especially popular, since it has the longest diameter
and demes are more isolated than other topologies. With a ring topology,
the parallel search may find a better solution than that of a serial GA in
late generations. However, because the demes are very much isolated, the
small deme size usually produces solutions worse than that of a serial GA
with a single population in early generations. To solve this problem, we use
a complete graph topology called ’to-all’ topology. With such a topology,
all demes are fully connected. During migration, each island contributes the
best individual to the global migrant pool. Since the connection between
demes is very strong in this topology, the frequency of migration must be
controlled in some way and the number of migrants must be carefully set,
such that the strength of migration will not be excessive. As shown in Figure
6, only a portion of the best individuals in the pool are merged back into
the subpopulations. With this migration scheme, a global superfit individual
can move across the overall population in every migration interval, while
some degree of diversity between the subpopulations are maintained. There-
fore, the parallel GA may have the chance to outperform its serial version
in a very short time. Also, due to the high connectivity among islands, this
synchronous model would search in a trajectory similar to a serial GA.

processor 4

subpopulation

migration pool

send one migrant to all other processor

replace the worse individuals in the
subpopulations with migrants

processor 1

migration pool

subpopulation subpopulation

migration pool

migration pool

subpopulation

processor 3

processor 2

Fig. 6. The migration scheme of the ’to-all’ topology

– Migration Rate: In our algorithm, if the ring topology is used, the migra-
tion rate is defined as the percentage of the individuals in a subpopulation

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1145

that need to be sent out as migrants; If the ’to-all’ topology is used, the mi-
gration rate specifies the percentage of migrants in the migration pool that
will spread to all subpopulations. A very high migration rate often leads to
two problems: first, high communication costs; secondly, superfit migrants
may take over the receiving subpopulation too soon. Search quality usually
benefits from an appropriate migration rate.

– Migrants Replacement Rule: After an island receives some migrants, it
replaces the worst individuals with these incoming migrants. For the ’to-all’
migration scheme, although each island sends out only one migrant, it may
receive more than one incoming individual to replace the worst members in
its subpopulation.

The main disadvantage of synchronous models is that the migration of all
islands occurs at the same time and the faster processors have to wait for the
slower ones.

4 Asynchronous Island-Based GA

Since our goal aims at performance related issues, an asynchronous island-
based GA was also implemented for standard-cell placement. In an asynchronous
model, islands are free to evolve and to migrate their individuals without waiting
for others. As illustrated in Figure 7, the workstations involved are configured
as a master/slaves style, where each slave is a processor holding a subpopulation
and the only acting master is a central controller.

4.1 The Master

The master brings two functions to the asynchronous model:

1. Migration controller: Controls the overall migration activities and dy-
namic load balancing including routing migrants, communication topology,
migration plan, and dynamic load balancing. Figure 7 illustrates that the
slaves report their current states to the master periodically and the master
sends control signals to command these slaves.

2. High speed communication router: In our current implementation,
there is no direct communication between slaves, and migration is performed
through the master. Since the master keeps listening to the communication
channels, it is able to respond to the requests from slaves almost immedi-
ately. After the master receives migrants sent from a slave, it buffers these
messages, and controls the migration scheme. Incorporating a master in the
system eliminates virtually all delay that might occur between processors.
The master can easily choose a communication topology. Since our ’to-all’
topology is synchronization in nature, we use an alternative topology in the
form of a ring.

1146 G. Lu and S. Areibi

4

A processor sends out migrants to the master

A processor receives migrants from the master

A processor reports its state to the master

A processor receives control signals from the master

master

processor
1

processorprocessor

processor

2

3

Fig. 7. The migration scheme of the asynchronous model with ring topology

4.2 Dynamic Load Balancing

Since subpopulations are free to evolve, some processors might finish their task
much earlier than others. This leads to two problems: (i) First, if a migration
occurs between an evolving island and an idle island, the migration becomes
meaningless; (ii) Secondly, the parallel system still has to wait for the slowest
processor to finish its work. Therefore, a load balancing mechanism is needed to
remove some load from slower processors and transfer it to faster processors.

In Matthem’s algorithm [14], if a processor completes its work early, it be-
comes idle and the algorithm reassigns some work to this processor from the
other processors. However, we suspect a possible problem in this algorithm: the
migration is now between two portions of the same subpopulation instead of two
different demes. Therefore, we use different strategies for dynamic load balanc-
ing. Instead of taking part of the work from a slower processor and replacing
the whole subpopulation of faster processor, we periodically detect the evolution
speed on varied demes, and dynamically change the sizes of the subpopulations
to match the speed.

4.3 Distributed Random Migration Plans

In the natural world, islands are independent and semi-isolated. Since subpop-
ulations are free to evolve in our asynchronous model, we have a chance to give
more independence to these subpopulations by (1)applying distributed random
migration plan created in each island; and (2)using random number of migrants
(with some control) for each migration. With such distributed random plans,
the subpopulations are allowed to evolve totally asynchronously. The strategy
attempts to simulate the fact that the number of migrants in each migration is
not constant in the real world.

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1147

5 Experimental Results

All of the test runs were conducted on a cluster of networked Sun workstations,
using the MPI (Message Passing Interface) v.1.2.5 based on the ’C’ programming
language. Many parameters affect an island-based parallel GA, thus we carried
out a large number of runs. Table 1 presents the benchmarks that were used in
our experiments. Two to seven islands were applied for the parallel algorithms
in the tests. Each test was conducted 20 times and the average values were
recorded.

Table 1. Benchmarks used as test cases

Circuit ckt1 52 fract struct prim2 avq large
Nodes 64 149 1952 3121 25178
Nets 55 147 1920 3136 25384
Pins 278 876 10814 22371 165374

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Number of Islands

S
pe

ed
 u

p

ideal linear speed up
actual speed up

Fig. 8. Synchronous model: ’to-all’
topology

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Number of Islands

S
pe

ed
 u

p

ideal linear speed up
actual speed up

Fig. 9. Synchronous model: ring topol-
ogy

1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

Number of Islands

Sp
ee

d
up

ideal linear speed up
actual speed up

Fig. 10. Asynchronous model: ring topology

1148 G. Lu and S. Areibi

5.1 Performance: Speedup Versus Processors

The performance of the two synchronous migration schemes is shown in Figure
8 and Figure 9 respectively. The parallel systems were configured from two to
seven processors, and circuit struct was tested. The experiment shows both the
ring migration scheme and the ’to-all’ migration scheme obtained near ideal
linear speed up. The latter is even slightly better than the former. As expected,
when the number of processors involved increased, the communication costs for
synchronization grew, and a decrease of the parallel efficiency was observed.

With asynchronous migration and dynamic load balancing, the asynchronous
model obtained super linear speedup (as seen in Figure 10). For example, 7
islands achieved a speedup of 7.6. [15] explains why super linear speedup is
possible for asynchronous models, and [16] acquired similar results with their
implementation.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

2

3

4

5

6

7

8

9
x 10

6

Generation

W
ire

 L
en

gt
h

Serial GA
Synchronous Island GA with Ring Migration Scheme
Synchronous Island GA with Toall Migration Scheme

Fig. 11. Placement quality: Serial GA, Ring PGA, and ’to-all’ PGA

5.2 Solution Quality

In order to compare the search quality of the proposed ’to-all’ migration scheme
with that of the ring migration scheme, we plotted their search for 40000 gen-
erations as seen in Figure 11 (a serial GA was also plotted as baseline). In this
experiment, seven processors were used. To assure the fairness, we maintain the
same basic GA parameters for all of them.

Like most implementations in the literature, the parallel search with ring
topology outperforms the serial GA in the medium (> 8000 generations, in this
case) and later generations. However, no implementation with ring topology
(including ours) is able to surpass its serial version in early generations. Usually,
to obtain a better solution than a serial GA, the ring topology parallel GA
requires a large enough number of generations. The proposed ’to-all’ migration
scheme, on the other hand, works better than a serial GA almost all the time!

An Island-Based GA Implementation for VLSI Standard-Cell Placement 1149

The advantage of the new migration scheme over ring topology is that, depending
on how much time available, we can run the parallel GA for 200 generations or
20000 generations, and still get better solution than that of a serial GA. It is
important to note that, other experiments show that the execution time for both
migration schemes are pretty much the same.

We also compared the search quality of a synchronous island-based GA (with
proposed ’to-all’ migration scheme) to a serial based implementation in the early
generations for different circuits, as shown in Table 2. The algorithms were run
for only 100 generations, and 7 processors were used for the PGA (parallel GA).
Each test was conducted 20 times, and we recorded the average values. The re-
sults show that the parallel implementation achieved speedups from 6.06 to 6.38
with 7 processors, and the proposed migration scheme yielded better solutions
than the serial GA from very early generations (the 100th generation).

Table 2. Search results in the 100th generation (7 processors were used for PGA)

Execution time Execution time
Benchmark (SGA) (PGA) Speedup
ckt1 52.yal 2.8844803 0.4522641 6.38
struct.yal 475.7 76.139 6.25
prim2.yal 1180.28 188.41 6.264

avq large.yal 94778.5 15631.4 6.063
Wire length Wire length

Benchmark (SGA) (PGA) Improvement
ckt1 52.yal 20177.6 19591.5 2.9%
struct.yal 7.5124 × 106 7.4958 × 106 0.22%
prim2.yal 6.800114 × 107 6.79839 × 107 0.024%

avq large.yal 1.57018 × 109 1.568035 × 109 0.1366%

6 Conclusion

This paper proposed a practical migration scheme for synchronous island-based
GA. Experimental results show that our algorithms can achieve near linear or
even super-linear speedup. In addition the proposed migration scheme yields
better quality of solutions than a serial GA from an early stage of evolution.
Although we carried out some experiments with a large number of generations,
we are especially interested in the search quality of initial phase of the search.
Running a circuit placement with a GA for 10000 generations is usually not prac-
tical. This emphasizes the advantage of the proposed migration scheme in the
application of standard-cell placement. The implemented asynchronous model
was able to achieve super-linear speedup as expected.

1150 G. Lu and S. Areibi

References

1. Braun, H.: On solving travelling salesman problems by genetic algorithm. In
Schwefel, H.P., Manner, R., eds.: Parallel Problem Solving from Nature, Springer-
Verlag (1990) 129–133

2. Horii, H., Kunifuji, S., Matsuzawa, T.: Asynchronous island parallel GA using
multiform subpopulations. Lecture Notes in Computer Science 1585 (1999) 122–
129

3. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer Aca-
demic Publishers, Intel Corporation, Hillsboro, OR, USA (1998)

4. Chang, H., Cooks, L., Hunt, M.: Surviving the SOC Revolution. Kluwer Academic
Publishers, London (1999)

5. Kling, R.M., Banerjee, P.: Optimization by simulated evolution with applications
to standard cell placement. In: Conference proceedings on 27th ACM/IEEE design
automation conference, ACM Press (1990) 20–25

6. Kilng, R., Banerjee, P.: Esp: Placement by simulated evolution. IEEE Trans. on
Computer Aided Design, 8(3) (1989) 245–256

7. Shahookar, K., Mazumder, P.: A genetic approach to standard cell placement using
metagenetic parameter optimization. IEEE Trans. on CAD , vol. 9 (1990) 500–511

8. Whitley, D., Rana, S.B., Heckendorn, R.B.: Island model genetic algorithms and
linearly separable problems. In: Evolutionary Computing, AISB Workshop. (1997)
109–125

9. Cantu-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: Theory and
practice (2000)

10. Shahookar, K., Mazumder, P.: VLSI Cell Placement Techniques. ACM Computing
Surveys 23 (1991) 143–220

11. Areibi, S.: Memetic algorithms for vlsi physical design: Implementation issues. In
Hart, W., Krasnogor, N., Smith, J., eds.: Second Workshop on Memetic Algorithms
(2nd WOMA). (July 2001) 140–145

12. Munetomo, M., Takai, Y., Sato, Y.: An efficient migration scheme for subpop-
ulation-based asynchronously parallel genetic algorithms. In: Proceedings of the
Fifth International Conference on Genetic Algorithms. (1993) 649

13. Cantu-Paz, E.: Migration policies, selection pressure, and parallel evolutionary
algorithms. In Brave, S., Wu, A.S., eds.: Late Breaking Papers at the 1999 Genetic
and Evolutionary Computation Conference, Orlando, Florida, USA (1999) 65–73

14. Mcmahon, M.T., Watson, L.T.: A distributed genetic algorithm with migration
for the design of composite laminate structures (1998)

15. Alba, E., Troya, J.M.: An analysis of synchronous and asynchronous parallel dis-
tributed genetic algorithms with structured and panmictic islands. In: IPPS/SPDP
Workshops. (1999) 248–256

16. Andre, D., Koza, J.R.: A parallel implementation of genetic programming that
achieves super-linear performance. In Arabnia, H.R., ed.: Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques and Appli-
cations. Volume III., Sunnyvale, CSREA (1996) 1163–1174

	Introduction
	Background
	Synchronous Island-Based GA
	The Deme Size and the Number of Islands
	Migration

	Asynchronous Island-Based GA
	The Master
	Dynamic Load Balancing
	Distributed Random Migration Plans

	Experimental Results
	Performance: Speedup Versus Processors
	Solution Quality

	Conclusion

