
The Edge-Set Encoding Revisited: On the Bias of a Direct

Representation for Trees

Carsten Tzoppe, Franz Rothlauf, and Hans-Josef Pesch

Working Paper 1/2004
January 2004

Working Papers in Information Systems

University of Mannheim

Department of Information Systems 1
D-68131 Mannheim/Germany

Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifo1@uni-mannheim.de

Internet: http://www.bwl.uni-mannheim.de/wifo1

The Edge-Set Encoding Revisited: On the Bias of a

Direct Representation for Trees

Carsten Tzoppe

Dept. of Information Systems 1

University of Mannheim

D-68131 Mannheim/Germany

carsten.tzschoppe@gmx.de

Franz Rothlauf

Dept. of Information Systems 1

University of Mannheim

D-68131 Mannheim/Germany

rothlauf@uni-mannheim.de

Hans-Josef Pesch

Department of Applied Mathematics

University of Bayreuth

95440 Bayreuth/Germany

hans-josef.pesch@uni-bayreuth.de

January 26, 2004

Abstract

The edge-set encoding is a direct tree representation which directly repre-
sents trees as sets of edges. There are two variants of the edge-set encoding:
the edge-set encoding without heuristics, and the edge-set encoding with
heuristics. An investigation into the bias of the edge-set encoding shows
that the crossover operator of the edge-set encoding without heuristics is
unbiased, that means it does not favor particular types of trees. In con-
trast, the crossover operator with heuristics is biased towards the simple
minimum spanning tree (MST) and generates more likely trees that are
MST-like. As a result, the performance of the edge-set encoding without
heuristics does not depend on the structure of the optimal solution. Using
the heuristic crossover operator results only in high GA performance if the
optimal solution of the problem is slightly different from the simple MST.
However, if the optimal solution is not very similar to the simple MST a
GA using the heuristic crossover operator fails and is not able to find the
optimal solution. Therefore, it is recommended that the edge-set encoding
with heuristics should only be used if it is known a priori that the optimal
solution is very similar to the simple MST. If this is not known a priori,
other unbiased search operators and representations should be used.

1 Introduction

A spanning tree of an undirected graph G is a subgraph that connects all vertices
of G and contains no cycles. Relevant constraint minimum spanning tree (MST)
problems are, for example, the optimal communication spanning tree (OCST)
problem, or the degree-constrained minimum spanning tree problem (Narula &
Ho, 1980; Fekete, Khuller, Klemmstein, Raghavachari, & Young, 1997; Raidl &

1

Julstrom, 2003). The NP-hard OCST problem (Hu, 1974) seeks a spanning tree
that connects all given nodes and satisfies their communication requirements
for a minimum total cost. Genetic algorithms (GAs) have been applied with
success to many constrained MST problems. As it is well known that the proper
design of operators and representations is crucial for GA performance (Rothlauf,
2002), a large variety of tree representations like NetKeys (Rothlauf, Goldberg,
& Heinzl, 2002), the link-and-node-biased encoding (Palmer & Kershenbaum,
1994), or Prüfer numbers (Prüfer, 1918; Gottlieb, Julstrom, Raidl, & Rothlauf,
2001) have been developed. Recently, Raidl and Julstrom (2003) proposed a
new direct representation of trees, the edge-set encoding, which has successfully
been used for the degree-constrained MST problem, and has outperformed other
representations such as Prüfer numbers or NetKeys.

The purpose of this paper is to investigate the properties of the edge-set
encoding. The paper focuses on the crossover operators, heuristic and non-
heuristic KruskalRST*, used for the edge-set encoding and examines whether
they are biased that means they overrepresent specific tree structures. Fur-
thermore, the performance of the crossover operators is compared for OCST
problems. The results show that the heuristic crossover operator is strongly
biased towards the simple MST, whereas the non-heuristic crossover operator
shows no bias. Consequently, GA performance increases when using the heuris-
tic crossover operator for OCST problems where the optimal solution is only
slightly different to the simple MST. In contrast, when applying the heuristic
crossover operator to OCST problems where the optimal solution is not similar
to the simple MST, GAs using the edge-set encoding fail.

The paper is structured as follows. The following section gives a short
definition of the OCST problem and describes the functionality of the edge-set
encoding with and without heuristics. Section 3 investigates the bias of the two
variants of the crossover operator of the edge-set encoding. After investigating
the bias, section 4 examines the influence of the crossover operator with and
without heuristics on the performance of GAs when solving the OCST problem.
The paper ends with concluding remarks.

2 Setting up the Stage: The OCST Problem and the

Edge-Set Encoding

2.1 The OCST Problem

The optimal communication spanning tree problem (also known as minimum
spanning tree problem or simple network design problem) was first introduced
in Hu (1974):
Definition 1: Optimal Communication Spanning Tree Problem

Let G = (V,E) be a complete undirected graph. n = |V | denotes the number
of nodes in the graph and m = |E| denotes the number of edges in the graph.
To every pair of nodes (i, j) a non-negative weight wij and a non-negative com-
munication requirement rij is associated. The communication cost c(T) of a

2

spanning tree T is defined as

c(T) =
∑

i,j∈V, i<j

rij · w(pT
i,j),

where w(pT
i,j) denotes the weight of the unique path from node i to node j in

the spanning tree T . The OCST Problem seeks the spanning tree with minimal
costs among all other spanning trees.
Definition 2: Minimum Spanning Tree Problem

The OCST problem becomes the minimum spanning tree (MST) problem if there
are no communication requirements rij and c(T) depends only on the weights
wij. Then, T is the simple minimum spanning tree if c(T) ≤ c(T ′) for all other
spanning trees T ′, where c(T) =

∑
(i,j)∈T wij.

The similarity between two spanning trees Ti and Tj can be measured using

the distance dij ∈ {0, 1, . . . , n − 1} as dij = 1
2

∑
u,v∈V, u<v |l

i
uv − ljuv|, where liuv

is 1 if a link from u to v exists in Ti and 0 if it does not exist in Ti.
Like many other constrained spanning tree problems, the OCST prob-

lem is NP-hard (Garey & Johnson, 1979). Even more, it was later shown
that the OCST problem is MAX SNP-hard (Papadimitriou & Yannakakis,
1991), that means it cannot be solved using a polynomial-time approximation-
scheme, unless P = NP . Nevertheless, the OCST problem has been studied
extensively in the literature and many researchers have tried to develop ef-
ficient approximation algorithms. The current best approximation algorithm
for the general OCST problem approximates the optimal solution with c(T) =
O(log n log log n)·c(G) (Charikar, Chekuri, Goel, Guha, & Plotkin, 1998), where
c(G) is the cost of the network when using G. c(G) is a lower bound for the
cost of a spanning tree c(T) as the weight of the unique path between node i
and j in a spanning tree T is greater or equal in comparison to the weight of
the path with minimal weight connecting the nodes i and j in G. As there are
no efficient approximation algorithms, many researchers used GAs for solving
the OCST problem (Palmer, 1994; Berry, Murtagh, & McMahon, 1995; Li &
Bouchebaba, 1999; Kim & Gen, 1999; Rothlauf, 2002; Chou, Premkumar, &
Chu, 2001).

It was shown in Rothlauf, Gerstacker, and Heinzl (2003) that the optimal
solution of a OCST problem is similar to the simple MST, that means the
average number of different edges between the OCST and the simple MST
is significantly lower than the average number of different edges between a
randomly generated tree and the simple MST. Therefore, as the optimal solution
of an OCST problem is biased towards the simple MST, representations as well
as operators that favor or overrepresent trees which are similar to the MST are
expected to solve the OCST problem more efficiently.

2.2 The Edge-Set Encoding without Heuristics

The edge-set encoding (Raidl & Julstrom, 2003) is a direct tree representa-
tion which means it directly represents trees as sets of edges. In the following
paragraphs we describe how initial populations are created and explain the

3

functionality of the crossover and mutation operator of the edge-set encoding
without heuristics.

Initialization: In order to create feasible solutions for the initial popula-
tion, the edge-set encoding uses the Kruskal random spanning tree (RST) al-
gorithm, a slightly modified version of the algorithm from Kruskal. In contrast
to Kruskals’ algorithm , KruskalRST chooses edges (i, j) not according to their
weight wij but randomly. Raidl and Julstrom (2003) have shown that this
algorithm, KruskalRST, for creating random spanning trees has a small bias
towards star-like trees.

procedure KruskalRST(V,E):
T ← ∅, A← E;
while |T | < |V | − 1 do

choose an edge {(u, v)} ∈ A at random;
A← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

Raidl and Julstrom (2003) also presented two other RST algorithms (PrimRST,
RandWalkRST) for generating the initial population, but RandWalkRST has
an unlimited worst-case running time, and PrimRST has a stronger bias in
comparison to KruskalRST.

Recombination: The functionality of the crossover operator is straightfor-
ward. To obtain an offspring Toff from two parental trees T1 and T2, KruskalRST
is applied to the graph Gcr = (V, T1 ∪ T2). Therefore, the resulting crossover
operator has high heritability as in the absence of constraints, only parental
edges are used to create the offspring. Crossover becomes more complicated for
constraint MST problems as it is possible that the RST algorithm can create no
feasible tree from Gcr = (V, T1 ∪ T2). Then, additional edges have to be chosen
randomly to complete an offspring. Based on KruskalRST, Raidl and Julstrom
(2003) distinguished two different recombination operators: The variant previ-
ously described is denoted KruskalRST crossover. The second variant is denoted
KruskalRST* crossover. When using this variant, edges that are common to
both parents T1 and T2, are included in the offspring Toff before KruskalRST
crossover is applied. Results from Raidl and Julstrom (2003) indicated a bet-
ter performance of the KruskalRST* crossover for the degree-constraint MST
problem.

Mutation: The mutation operator randomly replaces one edge in the span-
ning tree. This replacement can be implemented in two ways. The first variant
of the mutation operator chooses randomly one edge from E \ T and includes
it in T . This creates a cycle. Then, the operator randomly chooses one edge
of the cycle and removes it from T (”insertion before deletion”). The second

4

variant first randomly deletes one edge from T and connects then the two dis-
junct connected components using a random edge from E \ T (”deletion before
insertion”).

2.3 The Edge-Set Encoding with Heuristics

The following paragraphs describe how heuristics that rely on the weights wij

can be included in the edge-set encoding.

Heuristic Initialization: To favor low-weighted edges when generating the
initial population, the algorithm KruskalRST starts with sorting all edges in the
underlying graph according to their weights wij in ascending order. The first
spanning tree is created by choosing the first edges in the ordered list. As these
are the edges with lowest weights, the first generated spanning tree is a simple
MST. Then, the k edges with lowest weights are permuted randomly and more
spanning trees are created again using the first edges in the list. Therefore, the
heuristic initialization results in a strong bias of the initial population towards
the simple MST. With increasing k the bias of the randomly created trees
towards the simple MST is reduced. The number of edges, which are permuted,
increases according to

k = α(i− 1)n/N,

where N denotes the population size, i is the number of the tree that is actually
generated (i = 1 . . . N) and α is a parameter that controls the strength of the
heuristic bias.

Heuristic Recombination: The heuristic recombination operator is a mod-
ified version of KruskalRST* crossover. Firstly, the operator transfers all edges
T1 ∩ T2 that exist in both parents to the offspring. Then, the remaining edges
are chosen randomly from E ′ = (T1 ∪ T2) \ (T1 ∩ T2) using a tournament with
replacement of size two. If the underlying optimization problem is constrained,
it is possible that the offspring has to be completed using edges not in E ′.

Heuristic Mutation: The heuristic mutation operator is based on mutation
by ”insertion before deletion”. In a pre-processing step all edges in the underly-
ing graph are sorted according to their weights in ascending order. Doing this,
a rank is assigned to every edge. To favor low-weighted edges, edges are not
chosen randomly but according to their ranks

R = b|N (0, βn)|cmod m + 1

where N (0, βn) is the normal distribution with mean 0 and standard deviation
βn. β is a parameter that controls the bias towards low-weighted edges.

3 Investigating the Bias of the Edge-Set Encoding

A representation is unbiased if all possible solutions of the search space are
represented uniformly (Rothlauf, 2002). Consequently, a search operator is

5

unbiased if it does not overrepresent specific solutions, and the application of the
search operator alone does not modify the statistical properties of a population.
An unbiased search operator allows a uniform, non-directed search through the
search space. A biased representation resp. operator should only be used if it is
known a priori that the optimal solution of the underlying optimization problem
is similar to the overrepresented solutions (Rothlauf & Goldberg, 2003). In
contrast, unbiased representations resp. operators should be used if no a priori
problem-specific knowledge is available. Then, the probability of finding the
optimal solution is independent of the structure of the optimal solution.

To investigate if the crossover operator of the edge-set encoding with or
without heuristics leads to an overrepresentation of MST-like individuals, we
randomly generate an initial population with 500 individuals and apply the
crossover operator iteratively. As no selection operator is used, no selection
pressure exists to push the population to high-quality solutions. The crossover
operator is unbiased if the statistical properties of the population do not change
by applying crossover alone. In our experiments we measure in each generation
the average distance dmst−pop = 1/N

∑n
i=1 di,MST of the individuals Ti in the

population to the simple MST. If dmst−pop decreases, the crossover operator
is biased towards the simple MST. In contrast, if dmst−pop remains constant,
the crossover operator is unbiased and no solutions of the search space are
overrepresented.

To obtain meaningful results, we performed this experiment on 50 randomly
generated ten and 16 node problem instances with random, resp. Euclidean
weights wij. For every problem instance we performed 50 runs with different,
randomly chosen initial populations. In each run, the crossover operator is
applied 100 times (generations). The communication requirements of the prob-
lem instances with random and Euclidean weights wij are equally distributed
real values from [0, 100]. The random distance weights wij are real values and
equally distributed from [0, 100]. When using Euclidean weights, all nodes are
randomly placed on a 1000 × 1000 grid and the Euclidean distances between
the nodes are taken as weights. As the weights wij are randomly created and
wij 6= wkl, ∀i 6= l, j 6= l, there is an unique optimum MST for every problem
instance and distances to the simple MST are unique.
Figure 1 shows the mean and the standard deviation of the distance dmst−pop be-
tween the individuals in a population towards the simple MST over the number
of generations for ten (top) and 16 (bottom) problem instances. The plots com-
pare the non-heuristic KruskalRST* crossover with the heuristic KruskalRST*
crossover operator (no selection is used). The results reveal that the crossover
operator without heuristics is unbiased and does not modify the statistical prop-
erties of the population (dmst−pop remains constant over the number of gener-
ations). In contrast, the crossover operator with heuristics shows a strong bias
towards the simple MST and the population converges quickly to the simple
MST.

6

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

d m
st

−p
op

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(a) 10 node and random distances

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

d m
st

−p
op

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(b) 10 node and Euclidean distances

0
2
4
6
8

10
12
14

0 20 40 60 80 100

d m
st

−p
op

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(c) 16 node and random distances

0
2
4
6
8

10
12
14

0 20 40 60 80 100

d m
st

−p
op

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(d) 16 node and Euclidean distances

Figure 1: The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 randomly generated individuals towards
the simple MST over the number of generations when using crossover only
(no selection pressure). Results are presented for 10 (top) and 16 (bottom)
problem instances using either random (left) or Euclidean (right) weights wij .
The results show that the non-heuristic KruskalRST* crossover is unbiased
that means the average distance between the population and the simple MST
remains constant. The crossover operator with heuristics shows a strong bias
towards the simple MST and a population converges to the simple MST in a
few generations.

7

0

20

40

60

80

0 2 4 6 8

nu
m

be
r o

f p
ro

bl
em

 in
st

an
ce

s

dopt,MST

random
Euclidean

(a) 10 node

0

20

40

60

0 2 4 6 8 10 12 14

nu
m

be
r o

f p
ro

bl
em

 in
st

an
ce

s

dopt,MST

random
Euclidean

(b) 16 nodes

Figure 2: We randomly generated 200 OCST problems and show the distri-
bution of the problem instances over the distance dopt,MST between the best
found solution and the simple MST when using either random or Euclidean
distance weights for ten (left) and 16 (right) node problems. The plots show
that the optimal solutions for OCST problems using random distances weights
are stronger biased in comparison to using Euclidean distances.

4 The Performance of the Edge-Set Encoding for the

OCST problem

4.1 Finding Optimal Solutions for OCST Problems

To investigate how the performance of the edge-set encoding depends on the
structure of the optimal solution, an optimal or near-optimal solution must be
determined. The following experiments that should identify optimal or near-
optimal solutions for OCST problems are similar to the ones described in Roth-
lauf, Gerstacker, and Heinzl (2003). They examined the OCST problem and
showed that optimal solutions of OCST problems are biased towards the simple
MST.

To determine the optimal (or near optimal) solution we apply a GA niter

times to an OCST problem using a population size of N0. T best
0 denotes the best

solution of cost c(T best
0) that is found during the niter runs. In a next round we

double the population size and again apply a GA niter times with a population
size of N1 = 2 ∗ N0. T best

1 denotes the best solution with cost c(T best
1) that

can be found in the second round. We continue these iterations and double the
population size Ni = 2Ni−1 until c(T best

i) = c(T best
i−1). This means we stop if

the cost of the best solution T best
i found in round i equals the cost of the best

solution T best
i−1 found in round i− 1. We assume that the solutions found using

this approach are optimal or near-optimal.
Figure 2 presents the results of our experiments. We show the number of

8

problem instances over the distance dopt,MST between the best found solution
and the simple MST for randomly created ten (Fig. 2(a)) and 16 (Fig. 2(b))
node OCST problem instances. We distinguish between random and Euclidean
weights wij. For every problem instance we randomly generated 200 OCST
problem instances. We used an initial population size N0 = 20 for the ten node
problem instances and N0 = 100 for the 16 node problem instances, niter = 20,
a standard GA with a NetKey representation (Rothlauf, Goldberg, & Heinzl,
2002), tournament selection without replacement of size two, uniform crossover
and no mutation. The results are similar to the ones presented in Rothlauf,
Gerstacker, and Heinzl (2003) and show that the best found solution is strongly
biased towards the simple MST. Furthermore, OCST problems using random
distance weights show a stronger bias in comparison to OCST problems using
Euclidean distances.

4.2 Comparing Heuristic and Non-heuristic Crossover Opera-

tors

After determining optimal or near-optimal solutions as described in the pre-
vious paragraphs we examine the performance of the edge-set encoding on
these 200 problem instances. We use the same randomly generated problem
instances as in section 4.1 and investigate how the performance of the edge-set
encoding using different types of crossover operators depends on the distance
dopt,MST between the optimal (or near-optimal) solution and the simple MST.
For comparing the performance of the two crossover operators, KruskalRST*
and heuristic KruskalRST*, we use a standard GA with no mutation and tour-
nament selection without replacement of size two. The initial population is
generated using the non-heuristic KruskalRST (compare Sect. 2.2). Each run
is stopped after the population is fully converged or the number of generations
exceeds 200. We perform 100 runs for each of the 200 problem instances.

The population size N is chosen with respect to the performance of the
crossover operator without heuristics (KruskalRST*). The aim is to find the
optimal solution with a probability of about 50 %. Therefore, we choose for
the ten node problems a population size of N = 60 (random weights), resp.
N = 100 (Euclidean weights) and for the 16 node problems a population size
of N = 200 (random weights) resp. N = 450 (Euclidean weights).

The results of our experiments are presented in Figure 3 (ten nodes) and
Figure 4 (16 nodes). We show results for random (left) and Euclidean (right)
weights. The top of Figure 3 and 4 shows the percentage of GA runs that
correctly identify the optimal solutions at the end of a run over the distance
dopt,MST between the optimal solution (compare section 4.1) and the simple

MST. The bottom of the figures show the gap,
c(Tfound)−c(Topt)

c(Topt)
(in percent),

between the cost of the best found solution and the cost of the optimal solu-
tion that was identified in section 4.1 over dopt,MST . The results reveal that
the heuristic crossover operator, heuristic KruskalRST*, always finds the opti-
mal solution if the optimal solution is the simple MST (dopt,MST = 0). How-
ever, with increasing dopt,MST GA performance is significantly reduced and for
dopt,MST ≥ 3 the optimal solution can not be found any more. In contrast, the

9

0

20

40

60

80

100

0 1 2 3 4

op
tim

al
 s

ol
ut

io
ns

 (i
n

%
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(a) 10 node random

0

20

40

60

80

100

0 1 2 3 4 5 6 7

op
tim

al
 s

ol
ut

io
ns

 (i
n

%
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(b) 10 node Euclidean

0
2
4
6
8

10
12
14

0 1 2 3 4

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(c) 10 node random

0
2
4
6
8

10
12
14

0 1 2 3 4 5 6 7

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(d) 10 node Euclidean

Figure 3: The figures compare the performance of different crossover operators
for the edge-set encoding (KruskalRST* versus heuristic KruskalRST*) for ran-
domly generated ten node OCST problem instances. The plots 3(a) and 3(b)
show the mean and standard deviation of the percentage of optimal solutions
that can be found over dopt,MST . The plots 3(c) and 3(d) show the mean and
standard deviation of the gap between the cost of the best found solution and
the cost of the optimal solution determined in section 4.1. The results are av-
eraged over 200 randomly created OCST problems using either random (left)
or Euclidean (right) weights. The plots show that the heuristic KruskalRST*
crossover outperforms the non-heuristic version if the optimal solution is very
similar to the simple MST (dopt,MST ≈ 0). If the difference between the opti-
mal solution and the simple MST becomes greater the heuristic KruskalRST*
crossover results in low GA performance and is not able to find the optimal so-
lution. In contrast, when using the non-heuristic KruskalRST* crossover, GA
performance remains about constant with increasing dopt,MST .

10

0

20

40

60

80

100

0 1 2 3 4 5 6

op
tim

al
 s

ol
ut

io
ns

 (i
n

%
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(a) 16 node random

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

op
tim

al
 s

ol
ut

io
ns

 (i
n

%
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(b) 16 node Euclidean

0
2
4
6
8

10
12
14

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(c) 16 node random

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(d) 16 node Euclidean

Figure 4: The figures compare the performance of different crossover operators
for randomly generated 16 node OCST problem instances. The plots 4(a) and
4(b) show the mean and standard deviation of the percentage of optimal solu-
tions that can be found over dopt,MST . The plots 4(c) and 4(d) show the mean
and standard deviation of the gap between the cost of the best found solution
and the cost of the optimal solution determined in section 4.1. The results
are averaged over 200 randomly created OCST problems using either random
(left) or Euclidean (right) distance weights. The plots show that the heuristic
KruskalRST* crossover outperforms the non-heuristic KruskalRST* crossover
only if the optimal solution is very similar to the simple MST (dopt,MST ≈ 0).

11

performance of the crossover operator without heuristics decreases only slightly
with larger dopt,MST and allows the GA to correctly identify the optimal solution
even for larger dopt,MST .

The direct comparison between the performance of the two crossover oper-
ators reveals that the heuristic crossover performs well only for problems where
the optimal solution is slightly different from the simple MST. Otherwise, GAs
using the edge-set encoding with heuristic crossover fail. These results are

confirmed when examining the gap
c(Tfound)−c(Topt)

c(Topt)
(bottom of Figure 3 and

4). Heuristic crossover shows perfect performance if the optimal solution is
the simple MST. However, with increasing dopt,MST the quality of the solu-
tions strongly decreases and the non-heuristic KruskalRST* outperforms the
heuristic variant.

5 Summary and Conclusions

This work investigates different crossover variants, heuristic KruskalRST* cross-
over versus KruskalRST* crossover, of the edge-set encoding, which was pro-
posed by Raidl and Julstrom (2003). Section 2 defines the optimal communi-
cation spanning tree (OCST) problem and describes the functionality of the
edge-set encoding. In section 3 an investigation into the bias of the crossover
operators is performed. Based on an analysis of optimal solutions for randomly
generated instances of the OCST problem, section 4.2 investigates how the per-
formance of the crossover operators of the edge-set encoding depends on the
similarity between the optimal solution for an OCST problem and the simple
minimal spanning tree (MST).

The investigation into the bias of the crossover operators for the edge-set
encoding reveals that the heuristic KruskalRST* crossover is strongly biased to-
wards the simple MST. In contrast to the unbiased, non-heuristic KruskalRST*,
which results in a uniform search through the search space, the population con-
verges quickly towards the simple MST if heuristic KruskalRST* crossover is
used. Therefore, due to the strong bias towards the simple MST, GAs using
the edge-set encoding with the heuristic KruskalRST* crossover can easily solve
OCST problems if the optimal solution is the simple MST. However, with de-
creasing similarity between the optimal solution of an OCST problem and the
simple MST, the edge-set encoding with heuristics fails as heuristic search gets
stuck at the simple MST. In contrast, GAs using the edge-set encoding with
the unbiased KruskalRST* crossover operator show good performance for all
different OCST problems independently of the similarity between the optimal
solution and the MST. The results suggest that the edge-set encoding with the
heuristic KruskalRST* crossover operator is not appropriate for solving OCST
problems. This search operator can only be used successfully if the optimal
solutions are the simple MST, or slightly different variants of it.

The problems of the heuristic crossover operator of the edge-set encoding
emphasizes the difficulty of a proper design of representations and operators.
Especially the design of direct representations is difficult as in contrast to indi-
rect representations, the behavior of new, problem-specific search operators is

12

often unknown. The analysis of the edge-set encoding has shown that although
optimal solutions for the OCST problems are biased towards the simple MST
(Rothlauf, Gerstacker, & Heinzl, 2003), direct representations resp. operators
like the heuristic KruskalRST* that use this problem-specific knowledge and
are biased towards the simple MST, can fail in solving most of the randomly
created OCST problem instances. Therefore, the authors recommend the use
of unbiased representations if no problem-specific knowledge is known a priori.
Proper representations for tree problems are for example non-heuristic versions
of the edge-set encoding or NetKeys (Rothlauf, Goldberg, & Heinzl, 2002). In
the case that biased representations resp. operators are used, it must be con-
firmed that the bias of the search fits to the properties of the optimal solutions.
Otherwise failure is unavoidable.

References

Berry, L. T. M., Murtagh, B. A., & McMahon, G. (1995). Applications of
a genetic-based algorithm for optimal design of tree-structured commu-
nication networks. In Proceedings of the Regional Teletraffic Engineering
Conference of the International Teletraffic Congress (pp. 361–370). Pre-
toria, South Africa.

Charikar, M., Chekuri, C., Goel, A., Guha, S., & Plotkin, S. (1998, Novem-
ber). Approximating a finite metric by a small number of tree metrics.

Chou, H., Premkumar, G., & Chu, C.-H. (2001, June). Genetic algorithms
for communications network design - an empirical study of the factors
that influence performance. IEEE Transactions on Evolutionary Compu-
tatios, 5 (3), 236–249.

Fekete, S., Khuller, S., Klemmstein, M., Raghavachari, B., & Young, N.
(1997). A network-flow technique for finding low-weight bounded-degree
spanning trees. Journal of Algorithms, 24 , 310–324.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A
guide to the theory of NP-completeness. New York: W. H. Freeman.

Gottlieb, J., Julstrom, B. A., Raidl, G. R., & Rothlauf, F. (2001). Prüfer
numbers: A poor representation of spanning trees for evolutionary search.
In Spector, L., Goodman, E., Wu, A., Langdon, W. B., Voigt, H.-M., Gen,
M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., & Burke, E. (Eds.), Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2001
(pp. 343–350). San Francisco, CA: Morgan Kaufmann Publishers.

Hu, T. C. (1974, September). Optimum communication spanning trees. SIAM
Journal on Computing , 3 (3), 188–195.

Kim, J. R., & Gen, M. (1999). Genetic algorithm for solving bicriteria net-
work topology design problem. In Angeline, P. J., Michalewicz, Z., Schoe-
nauer, M., Yao, X., Zalzala, A., & Porto, W. (Eds.), Proceedings of
the 1999 IEEE Congress on Evolutionary Computation (pp. 2272–2279).
IEEE Press.

13

Li, Y., & Bouchebaba, Y. (1999). A new genetic algorithm for the optimal
communication spanning tree problem. In Fonlupt, C., Hao, J.-K., Lut-
ton, E., Ronald, E., & Schoenauer, M. (Eds.), Proceedings of Artificial
Evolution: Fifth European Conference (pp. 162–173). Berlin: Springer.

Narula, S. C., & Ho, C. A. (1980). Degree-constrained minimum spanning
trees. Computers and Operations Research, 7 , 239–249.

Palmer, C. C. (1994). An approach to a problem in network design using
genetic algorithms. unpublished PhD thesis, Polytechnic University, Troy,
NY.

Palmer, C. C., & Kershenbaum, A. (1994). Representing trees in genetic
algorithms. In Proceedings of the First IEEE Conference on Evolutionary
Computation, Volume 1 (pp. 379–384). Piscataway, NJ: IEEE Service
Center.

Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, approxima-
tion, and complexity classes. J. Comput. System Sci., 43 , 425–440.

Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv für
Mathematik und Physik , 27 , 742–744.

Raidl, G. R., & Julstrom, B. A. (2003). Edge-sets: An effective evolutionary
coding of spanning trees. IEEE Transactions on Evolutionary Computa-
tion, 7 (3), 225–239.

Rothlauf, F. (2002). Representations for genetic and evolutionary algo-
rithms. Number 104 in Studies on Fuzziness and Soft Computing. Berlin:
Springer. 1st edition 2002. 2nd printing 2003.

Rothlauf, F., Gerstacker, J., & Heinzl, A. (2003). On the optimal communi-
cation spanning tree problem (Technical Report 15/2003). University of
Mannheim.

Rothlauf, F., & Goldberg, D. E. (2003). Redundant representations in evo-
lutionary computation. Evolutionary Computation, 11 (4), 381–415.

Rothlauf, F., Goldberg, D. E., & Heinzl, A. (2002). Network random keys –
A tree network representation scheme for genetic and evolutionary algo-
rithms. Evolutionary Computation, 10 (1), 75–97.

14

