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Abstract. The representations currently used by local search and some evolua-
tionary algorithms have the disadvantage that these algorithms are partially blind
to “ridges” in the search space. Both heuristics search and gradient search al-
gorithms can exhibit extremely slow convergence on functions that display ridge
structures. A class of rotated representations are proposed; these rotated represen-
tations can be based on Principal Components Analysis, or use the Gram-Schmidt
orthogonalization method. Preliminary experiments show that local search using
a rotated representation is able to align the coordinates of the search with ridge
structures. Search using a rotated representation can convergence are as much as
1000 times faster than local search using a fixed coordinate representation.

1 Introduction

Various experiments reported here and by others show that various genetic algorithms
and local search methods are more or less blind to “ridges” in the search space of
parameter optimization problems. In two dimensions, the ridge problem is essentially
this: a method that searches north, south, east and west will not see improving moves
that are oriented at a 45 degree angle in the search space.

The ridge problem is relatively well documented in the mathematical literature on
derivative free mimization algorithms [1, 2]. However, there is little discussion of this
problem in the heuristic search literature. One reason may be because many applica-
tions of heuristic search have focused on combinatorial optimization problems such
as scheduling, the TSP, graph partitioning and routing problems: it is difficult to say
what it would mean for there to be “ridges” in these search spaces. On the other hand,
genetic algorithms have a strong connection with parameter optimization. Holland’s
original “schema theory” makes much more sense when viewed in terms of parameter
optimization problems using bit encodings [3]. Our current exploration of the “ridge
problem” was motivated by three concerns.

First, over the last few years experiments have shown that genetic algorithms are
more sensitive to local optima induced by different bit representations than was previ-
ously believed. Until recently, much of this work has focused on how representations
such as Gray codes destroy local optima [4]. Our works focuses on when Gray codes
create new optima: we can prove this happens only along ridges.



Second, why do some seemingly unintelligent algorithms seem to do well on cer-
tain benchmarks? Some algorithms have semi-random behaviors that don’t seem to
make any sense from either a theoretical or intuitive perspective. What we now believe
is that these “weaker” algorithms are sometimes better able to avoid becoming trapped
on ridges. If so, this says more about the heuristic search communities’ lack of under-
standing of ridge problems than about intelligent algorithm design.

Third, we have been working on real world applications for computing inverses
for prediction problems in weather and geophysics. These problems seem to be a good
application for heuristic search. Traditional gradient based methods can be used, but the
gradients are extremely costly to compute and the search is extremely slow (e.g. hours).
However, we have found that genetic algorithms and evolution strategies do not work
on these inverse problems. We now know that there are ridges in these search spaces
that induce “false” optima in the representation spaces, or ridges otherwise slow down
the progress of search.

2 Local Optima and Ridges under Gray Encoding

Let � � ��� �� � � � � ����� be the search space which can be mapped onto a hypercube.
Elements �� � � � are neighbors when ��� �� is an edge in the hypercube. Bit climbing
search algorithms terminate at a local optimum, denoted by � � �, such that none of
the points in the neighborhood���� improve upon � when evaluated by some objective
function. Of course, the neighborhood structure of a problem depends upon the coding
scheme used. Gray codes are often used for bit representations because, by definition,
adjacent integers are adjacent neighbors.

Suppose the objective function is defined on the unit interval � � � � �. To opti-
mize this function we discretize the interval by selecting � points. The natural encoding
is then a map from � to the graph that has edges between points � and � � � for all
� � �� �� � � � � �� �.

Under a Gray encoding adjacent integers have bit representations that are Hamming
distance 1 neighbors (e.g. 3 = 010, 4 = 110). Thus a Gray encoding has the following
nice property.

Theorem 1. A function � � � � �	 cannot have more local optima under Gray en-
coding than it does under the natural encoding.

A proof first appears in Whitley and Rana [5]. This theorem states that when using
a Gray code, local optima of the objective function considered as a function on the unit
interval can be destroyed, but no new local optima can be created. In particular:

Corollary: If a function is unimodal under the natural encoding, it is unimodal under
Gray code.

But are there unimodal functions where the natural encoding is multimodal? If the
function is 1-dimensional, the answer is no. But if the function is not 1-dimensional,
the answer is yes. “False” local optima are induced on ridges.



Fig. 1. Local search moves only in the horizontal and vertical directions. It therefore “finds” the
diagonal, but becomes stuck there. Every point on the diagonal is locally optimal. Local search is
blind to the fact that there is gradient information moving along the diagonal.

A simplified representation of a ridge problem appears in Figure 1. Changing one
variable at a time will move local search to the diagonal. However, looking in either
the x-dimension or the y-dimension, every point along the diagonal appears to be a
local optimum. There is actually gradient information if one looks along the diagonal;
however, this requires either 1) changing both variables at once, or 2) transforming the
coordinate system of the search space so as to “expose” the gradient information.

This limitation is not unique to local search, and it is not absolute for genetic al-
gorithms. Any method that searches 1-dimension at a time has the same limitation,
including local search as well as simple “line search” methods. Any fixed neighbor-
hood scheme has a similar problem. For the Traveling Salesman Problem, for example,
2-opt can be stuck in a local optimum which can then be escaped using 3-opt [6].

A genetic algorithm is not absolutely trapped by ridges. Early population sampling
of schema can potentially allow the search to avoid being trapped by “ridges”. But it
is also well known that genetic algorithms quickly lose diversity and then the search
must use mutation or otherwise random jumps to move along the ridge. For example,
simple 1-point crossover inherits “fixed but mixed” parameters from parents for the
most part. That is, the inherited parameters come directly from the parents without
changes except for one parameter that is broken by crossover. Uniform crossover would
seem to have the ability to move along ridges: every bit is independently inherited from
the 2 parent structures. But Syswerda points out [7] that uniform crossover has the
following behavior: bits that are common between the two parents are inherited, and
all non-common bits are randomly reset because 0 or 1 is randomly inherited. So the
ability of uniform crossover to move along ridges may be no better than that of random
mutation.

Salomon [8] showed that most benchmarks become much more difficult when the
problems are rotated. Searching a simple 2-D eliptical bowl is optimally solved by one
iteration of line search when the elipse is oriented with the � and � axis. But when
the space is rotated 45 degrees, the bowl become a ridge and the search problem is
more difficult for many search algorithms. Salomon also showed that some genetic
algorithms, such as the Breeder Genetic Algorithm [9] had been tuned to behave much
like line search, largely moving in one dimension at a time; this allows ��� 	� ��
convergence proofs using the assumption that the search problem is decomposable into
� subproblems and solved in a piecewise fashion [9].



And of course, hybrid genetic algorithms often rely on local search to improve the
populations–and most local search methods are very prone to being trapped on ridges.

Salomon points out that Evolution Strategies are invariant under rotation. But be-
ing invariant under rotation and being able to exploit ridge structures is not quite the
same. Oyman, Beyer and Schwefel [10] showed that Evolution Strategies also “creep”
on ridge functions. The problem occurred when a (1+10)ES was used for a simple
parabolic ridge problem with a 1/5 rule to adjust the step size. Oyman et al. analytically
show that longer jumps in the search space result in poorer evaluation near the ridge.
Thus, the adaptive mutation mechanism reduces the step size, until finally the algorithm
also creeps along the ridge. Similar problems with self-adaptive mutations have been
noted by Mathias et al. [11].

For such widely used technologies as evolutionary algorithms and local search, this
is a serious limitation.

2.1 Benchmarks, Ridges and Direct Search Methods

Common benchmarks contain a couple of problems with “ridges” features. Figure 2
shows 2-D illustrations of 2 benchmarks, one of which is the common F2 from the
De Jong test suite [12]. F2 is relatively easy, while the “Rana” function is difficult.
F2 is also known as Rosenbrock’s “banana function.” F2 was created specifically by
Rosenbrock around 1960 to illustrate the weakness of methods such as line search,
which change only 1 variable at a time during search. Rosenbrock showed that even
gradient methods creep or move very slowly on this function because the direction of
the gradient significantly changes every time a small move is made in the search space.

Rosenbrock proposed a search method that uses the Gram-Schmidt orthogonal-
ization algorithm to adapt the search coordinate system. Later Powell introduced the
method of conjugate directions for search methods without derivatives [2]. Ultimately,
the Nelder-Mead Simplex method was introduced [13]; it is probably the best known
direct search method that does not use derivatives. All of these methods use simple
heuristics to allow search to move in arbitrary directions in the search space. These
methods often compute a direction of improvement based on a sample of points; then,
line-search type methods are often used to look for improving moves. In theory, these
methods should be able to follow ridge structure if they select the correct direction. The
potential disadvantage of these methods is that they heuristically compute a direction
based on very little information.

Even the best of these direct search methods, such as Nelder-Mead [13], have been
shown to be inferior to methods such as Evolution Strategies on several test problems.
Theory suggests that population based forms of search can filter out regions that are
less likely to be productive places for search.

One of the fundamental problems that is encountered when trying to compare direct
search methods, local search methods, and even different evolutionary algorithms, is
the representation and precision used for constructing the search space.

Genetic algorithms and local search (e.g.: RBC: the Random Bit Climber [14]) tend
to use low precision bit encodings. Evolution Strategies and direct search methods such
as Nelder-Mead use high precision, real-valued representations. The search community
has long struggled with the debate over which is better, bit representations or real-valued



representations? Unfortunately, different experiments seem to support different conclu-
sions, even when compared on the same test functions. This seems odd and confusing.

Recent work suggests that the choice of real-valued versus bit encodings may not be
nearly as important as the level of precision. Precision can dramatically change the rate
of convergence. One of the potential advantages of using bit encoding is that they can
use lower precision for many applications and achieve faster convergence compared to
real-valued encodings. This also makes comparing real-valued representations and bit
encoded representations difficult. However, forcing the bit encodings and real-valued
encoding to use 32 bit precision just to make them the same is probably not a reasonable
solution: precision matters.

2.2 Local Search, Ridges and Precision

We ran a Steepest Ascent Bit Climber on the F2 and Rana test problems at 10 and 20
bits. Results are shown in table 1. The number of steps required to reach a local optimum
jumps from about 200 steps under local search at 10 bits of precision to 200,000 or more
steps at 20 bits of precision. These numbers have been confirmed by hand-traces of the
search.

Fig. 2. The leftmost figure is F2 from the De Jong Test Suite, also known as Rosenbrock’s banana
function. The middle figure is F102, or Rana’s function. The rightmost figure is a cartoon showing
the “ridges” that lead to the global optimum as well as other competitive local optima.

Function Precision Mean Std Steps Std

F2 10-bits 0.001 0.002 235 30

F2 20-bits 4����� 1����� 2���� 4����

Rana 10-bits -501.9 06.0 225 22

Rana 20-bits -503.0 04.8 3���� 8����

Table 1. Results of steepest ascent bit climbing with 100 restarts at 10 and 20 bit resolution on
2-D problems. Results are averaged over 30 runs. Mean is calculated using the best of the 100
restarts. Steps is the average number of steps needed to reach a local optimum.
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Fig. 3. The “arrows” figure shows the approximate location of the ridges. The line in the middle
figure tracks the movement of an actual run of local search on F2. After 2 moves the ridge is
encountered. The rightmost figure: adding 1 bit of precision doubles the number of steps.

As shown in Figure 2, both of these functions have ridge like properties. Search
must move toward the upper corners to find the global optimum, as well as the better
local optima. The behavior of local search on F2 is shown in Figure 3. The first south
to north move occurs in 1 step. The second west to east move occurs in 1 step. The
ridge is then encountered after 2 moves. Because the ridge is not exactly at 45 degrees,
local search is not completely blind and does not stop. Instead, the ridge becomes a
“staircase”. Local search makes the smallest move possible and therefore “creeps.” The
problem is exponentially worse at high precision because the steps of the staircase are
exponentially smaller.

Genetic algorithms are very often used at 10 bits of precision. We have tested vari-
ous genetic algorithms at 20 bits of precision across a number of common benchmarks.
Genetic algorithms can be 10 to 100 times slower to converge using 20 versus 10 bits of
precision. This may in part be due to the failure of genetic algorithms to exploit ridges
in the search space.

3 Ridges and Temperature Inversion

The temperature inversion problem is a real world application in atmospheric science
that involves searching for 43 temperatures which produce a set of radiance observa-
tions using a forward model.

MODEL(temperature.vector)�� radiance.observations

The 
�� variable is the temperature at an approximate altitude of 
 kilometers (this
spacing is somewhat greater at higher altitudes).

Figure 4 is a 2-D slice taken from the 43-dimensional temperature inversion problem
in the area around the global optimum. While the space is relatively smooth, there is a
distinct ridge. The companion image shows the location of “false” local optima: there
is no improving move in the � or � dimension of the space. As can be seen, there are
a surprising number of false local optima that will trap local search and which make
search difficult. We have shown that such ridges occur throughout the search space.



Fig. 4. On the left is a 2-D slice near the global optimum of the 43-D temperature inversion
problem. The points in the rightmost figure shown where “false” local optima occur under Gray
code due to the effect of the ridge in the search space.

These ridge structures represent the nonlinear interaction between variables: changing
a parameter in dimension � simultaneously changes the location of the ridge in many
other dimensions. In carefully studying the temperature inversion problem, we have also
found that different parameters (i.e., potential temperatures at the different altitudes)
have very different effects on the error functions: some changes in temperature affect
the error slightly, while others have an impact 100 times larger. These factors all work
together to produce a difficult nonlinear evaluation function with “false” local optima.

Our results show that evolutionary algorithms are trapped in these local optima at
about the same rate as local search. Evolutionary algorithms will easily escape local
optima that are not competitive with the best members of a population; but evolutionary
algorithms are not guaranteed to escape all local optima. We have applied a Steepest
Ascent Bit Climber, the CHC algorithm, a (30,210)ES and a (30+210)ES with standard
mutation adaptations and no rotations, PBIL and Differential Evolution. All of these
algorithms failed to solve the temperature inversion problem and failed in similar ways.

4 Rotating Search Coordinates with PCA and Gram-Schmidt

One way to deal with ridges in the search space is to change the search coordinates.
One way to do this is to use a rotated representation. Evolution Strategies which use
a heuristic rotation of the search space [15] by adapting a set of rotation strategy pa-
rameters via evolution. However, adapting rotation “strategy” parameters of the form
used by Evolution Strategies is too imprecise and impractical for large problems: for
the temperature problem, there would be 43 temperatures as object variables, 43 step
size strategy parameters and 903 rotation strategy parameters.

We have results using two different forms of local search that includes a more formal
rotation mechanism for changing the search coordinates.

A standard way of computing a rotation is to use Principal Component Analysis.
Given a data set of sample points, an eigenvalue/eigenvector decomposition is per-



Fig. 5. Under Gray code, search can only move north-south east-west, the neighborhood is not
symmetric (leftmost figure) and sampling is highly localized. “GS Ring Search” rotates the search
coordinates; the neighborhood is symmetric and neighbors are more uniformly spaced.

formed. The eigenvectors are represented by a rotation matrix R. Let � be the diagonal
eigenvalue matrix. Let X represent a matrix of data vectors. Using PCA we find R and
� such that

R � XX� � �R

For a single search point represented by the vector x we compute xR, which is the
projection of the point x into the space defined by R. The rotation matrix is orthonor-
mal, so a simple correction is also needed to translate and re-center the rotation during
search. The rotation is general purpose, and we can define a neighbor as a layered hy-
persphere rotated about the centroid, or we can rotate the neighbors of a reflected Gray
neighborhood (e.g. see Figure 5).

If we want to find a structure such as a ridge, one way to do this with PCA is to
sample locally, then isolate a subset of the better sample points. For example, sample
20 points and then apply PCA analysis to the 10 best solutions. Or we can use all 20
points, but weight them by solution quality. While this can give a correct rotation, the
direction of maximal variance might be in the direction of the gradient if the samples
are on a ridge, or the maximal variance may be orthogonal to the gradient if the sample
is drawn from a large gently sloping plateau. Still, it is one of the best formal methods
to determine rotation.

Another approach is to use the Gram-Schmidt (GS) orthogonalization algorithm to
rotate the space. Often the Gram-Schidt algorithm is used to construct a representation
that is orthogonal with respect to two points in the search space–such as the best two
points seen so far. This is a more localized and heuristic way of determining a useful
“rotation” for changing the problem representation.

We implemented a 2-D version of Gram-Schmidt to create an algorithm we call
“GS Ring Search.” The space is rotated to align with the best two solutions seen so
far. A symmetric neighborhood was used instead of a Hamming neighborhood. This is
illustrated in the cartoon shown in Figure 5. We tested “GS Ring Search” on F2 and
Rana’s functions in two dimensions. The results in Table 2 are compared to Steepest
Ascent Bit Climbing (SABC) with a Gray Code representation. We also searched these
functions using SABC after using PCA to rotate the search space. For the PCA, 15



Functions Search Best Mean Std Steps Std Evals Std

SABC +4.5E-07 +5.4E-07 +1.2E-07 6,193 814 247,710 32,541

GS Ring Search +1.1E-08 +5.8E-04 +7.3E-04 259 355 15,606 21,287
F2

PCA SABC +3.1E-10 +2.5E-07 +2.5E-07 138 58 7,603 3,189

SABC -510 -417 87 208 321 8,305 12,822

GS Ring Search -512 -476 28 18 24 1,148 1,443
Rana

PCA SABC -511 -480 24 23 6 1,262 341

Table 2. Results of steepest ascent bit climbing (SABC) and two rotated local search methods.
No restarts were used in these experiments. Mean is the mean best over 30 experiments, and best
is the best of the 30 experiments.

points were sampled, with PCA applied to the best 8. The speed-up is dramatic using
rotated representations.

Both GS Ring Search and SABC using a PCA rotated representation dramatically
speeds up search in two dimensions. The “ring” search neighborhood we constructed
uses 15 concentric rings that are uniformly spaced. This provides more neighbors (30
instead of 20 per dimension) but less precision at the smallest step size. We tried 10 and
20 rings, with 10 rings providing somewhat poorer solutions but being very fast, and
with 20 rings providing very good solutions, but requiring more steps and evaluations.
This was done in part to see if a different neighborhood structure would impact the
results. Hamming neighborhoods are such that some points in the search space have
far more neighbors in one direction compared to another–it all depends on how the
bits code to integers. Ring search more uniformly samples the search space. Future
work needs to explore these questions. Given there is no clear advantage to the ring
neighborhood we used the Gray code neighbhor in subsequent experiments.

5 Constructing Higher Dimensional Test Problems

Functions with two variables are often scaled to higher dimensions using an expansion
function. Different expansion functions have different properties. Sometimes subfunc-
tions are added together with no interactions between subfunctions. The problem here
is the linearly combination of subfunctions results in a test problem that is separable
when there are no interfunction interactions between the parameters. Specifically, it is
possible to optimize the each component (e.g., ����� ���) independently of the other
parameter values.

Expansion functions that create non-separable problems are often generalized in
the following way:

Expansion Method 1: ���� �

����

���

����� �����
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Fig. 6. Results of expanding Rosenbrock’s function in three dimensions using Expansion Method
1 are shown in the top 3 slices of the space: with the possible exception of the first slice, the
search space is simpler and easier than the original problem. Results of expanding Rosenbrock’s
function in three dimensions using Expansion Method 2 are shown in the bottom 3 slices of the
space: the first two slices retain the long narrow ridge and the third slice is a multimodal surface.

However, the symmetry that exists in this function can make some problems easier to
solve in higher dimensions. Figure 6 (topmost) shows the two dimensional slices taken
from the three dimensional Rosenbrock function when generalized in this way. With the
exception of the first slice, the other surfaces aren’t as difficult as the original landscape
proposed by Rosenbrock. In fact, local search finds the optimum rather quickly under
this transformation.

In order to retain the original ridge structure, the following expansion function was
used:

Expansion Method 2: ���� �

������

���

�������� ���� �

����������

���

�������� ����

This effectively creates a non-separable, higher dimension problem that preserves the
ridge features of the original problem. Figure 6 (bottom) illustrates using Expansion
Method 2 to create the three dimensional Rosenbrock function. The first two slices re-
tain the long narrow ridge that characterizes the Rosenbrock function. The interaction
between parameters one and three creates a multi-modal surface from which it is diffi-
cult for a coordinate strategy to escape.



Function Search Best Mean Std Steps Std Evals Std

SABC 2.4E-06 2.4E-06 8.1E-08 11,663 1,415 1,166,268 141,503
F2

PCA SABC 5.3E-07 2.4E-06 1.3E-06 1,057 177 148,042 24,800

SABC -386 -313 49 506 915 50,551 91,540
Rana

PCA SABC -399 -310 42 112 167 15,662 23,318

(a) Five Dimension Results

Function Search Best Mean Std Steps Std Evals Std

SABC 5.9E-06 6.1E-06 1.3E-07 29,437 1,865 5,887,321 372,921
F2

PCA SABC 3.8E-06 5.9E-06 2.2E-06 8,915 406 2,496,201 113,735

SABC -427 -354 40 758 940 151,628 187,959
Rana

PCA SABC -411 -308 47 525 632 146,917 176,958

SABC 11,607 16,026 2,497 373 64 41,064 7,092
Temp

PCA SABC 5,353 10,121 2,910 109 36 20,100 6,722

(b) Ten Dimension Results

Table 3. The results of applying local search SABC with and without PCA rotated representations
on 5-D and 10-D versions of the Rana and F2 functions using Expansion Method 2. At 5-D, PCA
used the best half of 40 samples; at 10-D PCA used the best half of either 80 or 74 samples to
compute rotations.

This same pattern extends to slices of 5 and 10 dimensional functions contructed
using Expansion Method 2: more of the features that make the primitive 2-D function
difficult are preserved in the expanded functions.

We next applied the local search SABC algorithm with and without a PCA rotated
representation to 5-D and 10-D versions of Rosenbrock’s banana function (F2) and the
Rana function. We also ran a 10-D temperature inversion problem looking for temper-
ature for the first 10 kilometers of the atmosphere. PCA was applied after every step,
which adds to the number of evaluations. The number of steps taken during search is
5 to 10 times less under SABC with PCA compared to the non-rotated representations
on the 5-D problems. The number of step is 2 to 3 times less under SABC with PCA
compared to the non-rotated representations on the 10-D problems. Using a rotated rep-
resentation is more effective on F2 than Rana. This may be because the ridge is the only
thing than makes F2 difficult, while Rana is also extremely multimodal. There is a clear
advantage using PCA on the 5-D problems; the advantage is less clear at 10-D for Rana.
For the 10-D temperature problem, using PCA significantly reduces both the error and
the number of evaluations.



6 Discussion and Future Directions

Our results and the related literature [10] [8] indicate that rotated ridge structures can
be a serious problem for both local search and evolutionary algorithms. Using rotated
representations can potentially help. The relative advantages of using a localized Gram-
Schmidt orthogonalization algorithms versus PCA for computing rotations need to be
explored. It is likely that PCA only needs to be run occasionally, not after every step.

Another key question raised by this work concerns the use of strategy parameters
in Evolution Strategies for computing heuristic rotations. To use rotations, an ES en-
codes ��� �� rotation or covariance parameters onto the chromosome to be evolved
along with the � object parameters. How does this compare to using PCA derived
rotation parameters? Using a (� � 
)ES or (�� 
)ES, a population of 
 parents gener-
ates � offspring. Typically, � � 
. The set of � offspring represents a natural unit for
applying PCA, so that no additional sampling is needed. After a set of offspring are gen-
erated and evaluated, rotation and (potentially) variance information can be computed
and used to generate the next set of offspring. Strategy parameters for rotations are no
longer needed. This could produce a fundamental change in the theory and application
of Evolution Strategies.
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