
Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through Dynamic
Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer, and Mark D. Ryan,
editors, Objects, Agents and Features: Structuring Mechanisms for Contemporary Soft-
ware, Lecture Notes in Computer Science 2975, pages 69–84. Springer, July 2004.

Software Evolution through
Dynamic Adaptation of its OO Design

Walter Cazzola1,?, Ahmed Ghoneim2, and Gunter Saake2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Institute für Technische und Betriebliche Informationssysteme,

Otto-von-Guericke-Universität Magdeburg, Germany
fghoneimjsaakeg@iti.cs.uni-magdeburg.de

Abstract. In this paper we present a proposal for safely evolving a software sys-
tem against run-time changes. This proposal is based on a reflective architecture
which provides objects with the ability of dynamically changing their behavior
by using their design information. The meta-level system of the proposed archi-
tecture supervises the evolution of the software system to be adapted that runs
as the base-level system of the reflective architecture. The meta-level system is
composed of cooperating components; these components carry out the evolution
against sudden and unexpected environmental changes on a reification of the de-
sign information (e.g., object models, scenarios and statecharts) of the system to
be adapted. The evolution takes place in two steps: first a meta-object, called evo-
lutionary meta-object, plans a possible evolution against the detected event then
another meta-object, called consistency checker meta-object validates the feasi-
bility of the proposed plan before really evolving the system. Meta-objects use
the system design information to govern the evolution of the base-level system.
Moreover, we show our architecture at work on a case study.

Keywords: Software Evolution, Reflection, Consistency Validation, Dynamic
Reconfiguration, UML, XMI.

1 Introduction

In advanced object-oriented information systems related to engineering appli-
cations, classes and, therefore, their instances are subjected to frequent adapta-
tions during their life cycle. This applies to the structure of class definitions and
the behavior of their objects. In the last decade, several object-oriented systems
were designed to address the problem of adapting object structure and behavior
to meet new application requirements (see for example [14, 9]).

Nowadays a topical issue in the software engineering research area consists of
producing software systems able to adapt themselves to environmental changes
? Walter Cazzola’s work has been partially supported by Italian MIUR (FIRB “Web-Minds”

project N. RBNE01WEJT 005).
H.-D. Ehrich, J.-J. Meyer and M. D. Ryan (Eds.): Objects, Agents and Features: Structuring Mechanisms for
Contemporary Software, LNCS 2975, pp. 69–84, 2004.
c Springer-Verlag Berlin Heidelberg 2004

70 W. Cazzola, A. Ghoneim and G. Saake

by adding new and/or modifying existing functionalities. Computational reflec-
tion [15, 4] provides one of the most used mechanisms for getting software
adaptability.

A software system with a long life span, must be able to dynamically adapt
itself to face unexpected changes in its environment avoiding a long out-of-
service period for maintenance. The evolution of the design of a software system
is determined by the evolution of the behavior of its components and of the inter-
actions among them. Several design elements govern such aspects: class/object
diagrams statecharts and sequence diagrams. Run-time system evolution also
involves such aspects, therefore, design information should be used to concert
run-time evolution as well. Design information provide the right mechanism to
grant the consistency of the evolved system against the system requirements.

A reflective architecture represents the perfect structure that allows running
systems to adapt themselves to unexpected external events, i.e., to consistently
evolve. In [6] we described a reflective architecture for system evolution at run-
time. In such a framework, the system running in the base-level is the one prone
to be adapted, whereas software evolution is the nonfunctional feature realized
by the meta-level system. Evolution takes place exploiting design information
concerning the running systems.

To correctly evolve1 the base-level system, the meta-level system must face
many problems. The most important are: (1) to determine which events cause
the need for evolving the base-level system (2) how to react on events and the
related evolutionary actions (3) how to validate the consistency and the stability
of the evolved system and eventually how to undo the evolution, (4) to determine
which information allows system evolution and/or is involved in the evolution.

In [5], we introduced a pattern language modeling the general behavior of the
meta-level components and their interactions during the evolutionary process.

The rest of the paper is organized as follows: section 2 provides a brief
overview of the tools we have adopted in our work; section 3 describes our re-
flective architecture (the evolutionary mechanism) and the evolutionary engine
related with the architecture and its rules; section 4 describes the application
of our reflective approach to software evolution by an example. Finally, in sec-
tions 5 and 6 we survey some related work, draw our conclusions and present
some future work.

1 By the sentence correctly evolve a system we mean the fact that evolution takes place only
when the system remains consistent and stable after evolution.

Software Evolution through Dynamic Adaptation of its OO Design 71

2 Background

2.1 Computational Reflection

Computational reflection or reflection for short is the ability of a system to watch
its own computation and possibly change the way it performs. Observation and
modification imply an “underlay” that will be observed and modified. Since the
system reasons about itself, the “underlay” modifies itself, i.e. the system has a
self-representation [15].

A reflective architecture logically models a system in two layers, called base-
level and meta-level2. The base-level realizes the functional aspect of the sys-
tem, whereas the meta-level realizes the nonfunctional aspect of the system.
Functional and nonfunctional aspects discriminate among features, respectively,
essential or not for committing with the given system requirements. Security,
fault tolerance, and evolution are examples of nonfunctional requirements3. The
meta-level is causally connected to the base-level, i.e., the meta-level has some
data structures, generally called reification, representing every characteristic
(structure, behavior, interaction, and so on) of the base-level. The base-level
is continuously kept consistent with its reification, i.e., each action performed in
the base-level is reified by the reification and vice versa each change performed
by the meta-level on the base-level reification is reflected on the base-level. More
about the reflective terminology can be learned from [15, 4].

Reflection is a technique that allows a system for maintaining information
about itself (meta-information) and using this information to change (adapt) its
behavior. This is realized through the casual connection between the base- (the
monitored system) and the meta-level (the monitoring system).

2.2 Design Information

Our approach to evolution uses design information as a knowledge base for get-
ting system evolution. Design information consists of data related to the design
of the system we want to evolve. UML is the adopted formalism for representing
design information.

The unified modeling language (UML) [3, 11] has been widely accepted as
the standard object-oriented modeling language for modeling various aspects

2 In the sequel, for simplicity, we refer to the “part of the system working in the base-level or in
the meta-level” respectively as base-level and meta-level.

3 The borderline between what is a functional feature and what is a nonfunctional feature is
quite confused because it is tightly coupled to the problem requirements. For example, in a
traffic control system the security aspect can be considered nonfunctional whereas security is
a functional aspect of an auditing system.

72 W. Cazzola, A. Ghoneim and G. Saake

of software systems. UML is an extensible language, it provides mechanisms
(stereotypes, and constraints) that allow introducing new elements for specific
domains if necessary, such as web applications, database applications, business
modeling, software development processes, and so on. A stereotype provides an
extensibility mechanism for creating new kinds of model elements derived from
existing ones, whereas constraints can be used to refine the behavior of each
model element.

The design information we consider are related to two categories: system
structure and behavior. Structural design information is an explicit description
of the structure of the base-level objects. This includes the number of attributes
and their data type. Behavioral design information describes the computations
and the communications carried out by the base-level objects. It includes objects
behavior, collaboration between objects, and the state of the objects. Structure
and behavior of the system are modeled by class diagrams, sequence diagrams
and state diagrams.

3 Software Evolution through Reflection

The main goal of our approach consists of evolving a software system to face
environmental and requirement changes and validate the consistency of such an
evolution. This goal is achieved by:

– adopting a reflective architecture which dynamically drives the evolution of
the software system through its design information when an event occurs;
this has been made possible by moving design information from design- to
run-time.

– using two sets of rules which respectively describes how evolution takes
place and when the system is consistent; these rules are used by the deci-
sional components of the reflective architecture but not by the system that
must be evolved;

– replanning the design information of the system and reflecting the changes
on the running system.

In the rest of this section we give a brief overview of the reflective architecture
and its components, we show how these components work and the manipulation
of the design information.

Software Evolution through Dynamic Adaptation of its OO Design 73

��

��

reflect

reify reify

System
Base−Level

Categories
Reification

Consistency Checker
Meta−ObjectMeta−Object

Evolutionary

MOP

MOP

Meta−Level

Base−Level

engineengine

Evolutionary
Rules

Validation
Rules

Fig.s 1. Reflective architecture designed for the evolution of software systems.

3.1 The Reflective Architecture

To render a system self-adapting4, we encapsulate it in a two-layers reflective
architecture as shown in Fig. 1. The base-level is the system that we want to
render self-adapting whereas the meta-level is a second software system which
reifies the base-level design information and plans its evolution when particu-
lar events occur. Reflective properties as transparency [20,21] and separation of
concerns [13] provide the meta-level with the mechanism for carrying out the
evolution of the base-level code and behavior without having previously fore-
seen such an adaptation for the system.

At the moment, we just take in consideration two kinds of software adapta-
tion: structural and behavioral evolution. This limitation is due to the fact that,
at the moment, we only reify the following design information related to the
base-level:

– object and class diagrams, which describes classes, objects and their rela-
tions; this model represents the structural part of the system;

– sequence diagrams, which trace system operations between objects (inter-
object connection) for each use case at a time; and

4 By the sentence to render a system self-adapting we mean that such a system is able to change
its behavior and structure in accordance with external events by itself.

74 W. Cazzola, A. Ghoneim and G. Saake

– statecharts, which represent the evolution of the state of each object (intra-
object connection) in the system.

The approach can be easily extended to observe and manipulate all the other
diagrams provided by UML such as use case, activity diagrams.

The meta-level is responsible of dynamically adapting the base-level and it
is composed of some special meta-objects, called evolutionary meta-objects.
There are two types of evolutionary meta-objects: the evolutionary and the con-
sistency checker meta-objects. Their goals consists of consistently evolving the
base-level system. The former is directly responsible for planning the evolution
of the base-level through adding, changing or removing objects, methods, and
relations. The latter is directly responsible for checking the consistency of the
planned evolution and of really carrying out the evolution through the causal
connection relation.

The base-level system and its design information is reified in reification cat-
egories in the meta-level (see section 3.3 for more details). Classic reflection
takes care of reifying the state and every other dynamic aspect of the base-level
system, whereas the design information provides a reification of the design as-
pects of the base-level system such as its architecture and the collaborations
among its components. The reification categories content is the main differ-
ence of our architecture with respect to standard reflective architectures. Usu-
ally, reifications represent the base-level system behavior and structure not its
design information. Reification categories can be considered as representatives
of the base-level system design information in the meta-level. Both evolutionary
and consistency checker meta-objects directly work on such representatives and
not on the real system, this allows a safe approach to evolution postponing ev-
ery change after validation checks. As described in [5] when an external events
occur, the evolutionary meta-object proposes an evolution as a reaction to the
consistency checker meta-object which validates the proposal and schedules the
adaptation of the base-level system if the proposal is accepted.

3.2 Decisional Engines and Evolutionary Rule Sets

Adaptation and validation are respectively driven by a set of rules which define
how to adapt the system in accordance with the detected event and the meaning
of system consistency.

To give more flexibility to the approach, these rules are not hardwired in the
corresponding meta-object rather they are passed to a sub-component of the
meta-objects themselves, respectively called evolutionary and validation en-
gines, which interpret them. Therefore, each meta-object has two main com-
ponents: (i) the core which interacts with the rest of the system (e.g., detect-

Software Evolution through Dynamic Adaptation of its OO Design 75

ing external events/adaptation proposals, or manipulating the reification cate-
gories/applying the adaptation on the base-level system) and implementing the
meta-object’s basic behavior, and (ii) the engine which interprets the rules driv-
ing the meta-object’s decisions.

In this paper, for sake of simplicity, we express both evolutionary and valida-
tion rules by using the formalism for event-condition-action (ECA) [1, 8] rules.
Rules are usually written in the following form:

on event if conditions do actions

where event represents the event which should ignite the evolution of the base-
level system, conditions, and actions, respectively, represent the conditions the
engine must validate when the event occurs and the actions the engine must
carry out for adapting the system against the occurred event. Both events and
conditions involve the base-level reification (see section 3.3 for details on reifi-
cations). The engines (both evolutionary and consistency checker) interpreting
these rules are simply state machines indexed on events and conditions.

Both rules and engines working on them are tightly bound but completely
unbound from the rest of the reflective architecture. Therefore, to adapt our ap-
proach to use rules specified with a different formalism is quite simple; we have
just to substitute the engine with one able to interpret the chosen formalism. Of
course, the engines must be able to interact with the rest of the architecture as
described in the following algorithm. More complex and powerful approaches
are under development.
In general, adaptation takes place as follows:

– the meta-level reifies the base-level design information and the system itself
into reification categories;

– the evolutionary meta-object waits for an event that needs the adaptation of
the base-level system; when such an event occurs it starts to plan evolution:
� through the design information of the base-level system, it detects which

base-level components might be involved in the evolution; then
� it informs its engine about the occurred event and components involved

in the evolution;
� the evolutionary engine decides which evolutionary rule (or which group

of evolutionary rules) is better to apply; then
� it designs the evolutionary plan by applying the chosen evolutionary rule

(or group of rules);
– the evolutionary meta-object passes the evolutionary plan to the consistency

checker meta-object which must validate the proposed evolutionary plan
before rendering the adaptation effective:

76 W. Cazzola, A. Ghoneim and G. Saake

� the consistency checker meta-object demands the validation phase to the
validation engine;

� the validation engine validates the proposed evolutionary plan by using
its validation rules and the base-level system design information.

– if the proposed evolutionary plan is considered sound the consistency checker
meta-object schedules the base-level system adaptation in accordance with
such an evolutionary plan; otherwise the consistency checker meta-object
returns an error message to the evolutionary meta-objects restarting the adap-
tation phase.

The evolutionary plan proposed by the evolutionary meta-object is a manipu-
lation of the design information of the base-level system. The causal connection
is responsible of modifying the model of the base-level system accordance with
the proposed evolution. The adopted mechanism for transposing design infor-
mation in the real system is based on the UML virtual machine [17].

The most important side-effect of this approach is represented by the fact
that adaptation can take place also on nonstoppable systems because it does not
require that the base-level system stops during adaptation, but it only needs to
define when it is safe to carry out the adaptation.

3.3 Reification and Reflection by Using Design Information

We have talked about reifying and reflecting on design information of the base-
level system whereas such design information simply feed the meta-level system
during system bootstrap and drive its meta-computations during the evolution of
the base-level system.

When an event occurs, the design information related to the base-level en-
tities, that can be involved by the event, are used by the evolutionary and the
consistency checker meta-objects for driving the evolution of such base-level
entities (as described in the previous algorithm).

Design information identifies which entities are involved by the event (ob-
ject/class and state diagrams), their behavior (sequence diagrams) and how the
event can be propagated in the base-level system (collaboration diagrams). There-
fore introspection and intercession on large systems become simpler than using
standard reflective approaches because the design information provide a sort of
index on the base-level entities and their interactions.

Moreover design information is the right complement to the base-level sys-
tem reification built by the standard causal connection. Meta-objects consult and
manipulate the design information in order to get information that otherwise are
not easily accessible from the running system, e.g., the collaboration among ob-
jects. Design information is also used as a testbed for manipulation because they

Software Evolution through Dynamic Adaptation of its OO Design 77

Yellow

Red Green

+turn−off()
+tick()
+turn−on()

−color=Yellow

Traffic Light

 <UML:StateMachine.context>
 <UML:Class xmi.idref=’a4’/>
 </UML:StateMachine.context>
 <UML:SimpleState xmi.id=’a20’ name=’Green’>
 <UML:StateVertex.outgoing><UML:Transition xmi.idref=’a15’/>
 <UML:StateVertex.incoming><UML:Transition xmi.idref=’a19’/>
 </UML:SimpleState>
 <UML:StateMachine.transitions>
 <UML:Transition xmi.id=’a15’ name=’tick’>
 <UML:Transition.effect><UML:CallAction xmi.id = ’a42’ name = ’tick()’>
 <UML:Transition.trigger><UML:CallEvent xmi.id = ’a45’ name = ’t mins’>
 <UML:Transition.source><UML:SimpleState xmi.idref=’a20’/>
 <UML:Transition.target><UML:SimpleState xmi.idref=’a10’/>
 </UML:Transition>

<UML:StateMachine xmi.id=’a6’ name=’Traffic LightStateMachine’>

<UML:Class xmi.id=’a4’ name=’Traffic Light’>
 <UML:StateMachine xmi.id=’a6’ name=’Traffic LightStateMachine’>

<UML:Attribute xmi.id=’a34’ name=’color’>
 <UML:Attribute.initialValue>

 <UML:Expression xmi.id=’a35’ body=’Yellow’/>
 </UML:Attribute.initialValue>

...

 </UML:Attribute>
 <UML:Operation xmi.idtag=’a46’ name=’tick’>
 </UML:Operation>
 </UML:Class>

/turn−on()

/turn−off()
after t mins/tick()

after t mins/tick()

after t mins/tick()

Class Diagram

Class Diagram

StateChart

StateChart

Fig.s 2. Poseidon4UML’s XMI translation of a simply class diagram and the
related statechart

give a easily accessible overview of global features as inter-objects collabora-
tions.

UML specifications provide graphical data that usually exist at design-time
and are difficult to manage at run-time. Whereas, our meta-objects require such
a specifications at run-time for driving the evolution. We chose to overcome this
problem by encoding the design information in XML, in particular with the XMI
standard [16]. XMI provides a translation of UML diagrams in a text-based form
more suitable for run-time manipulation.

The XMI standard gives a guideline for translating each UML diagram in
XML. Each diagram is assimilated to a graph whose nodes are the diagram’s
components (e.g., classes, states and so on), and arcs represents the relation
among the components. The graph is decorated with XML tag describing the
properties of the corresponding UML component. In our architecture, we use
the XMI code generated by Poseidon4UML [2]. Poseidon4UML provides us
with a tool for drawing UML diagrams and for generating the corresponding
XMI code. Figure 2 shows a simple class diagram, a possible statechart for that
and the corresponding XMI code (shortened for the sake of space) generated by
Poseidon4UML.

At system bootstrap, the meta-level reifies the design information of the base-
level, that is, the meta-level loads into the reification categories (each categories

78 W. Cazzola, A. Ghoneim and G. Saake

is devoted to an aspect of the base-level) the XMI representation of design infor-
mation of the base-level. In this way we render accessible UML data-model to
the meta-objects.

The XMI schemas are tightly linked with the base-level components. The evo-
lutionary meta-object modifies these schemas introducing some specific XMI
elements, providing the consistency checker with the necessary pieces of infor-
mation for validating the evolutionary plan and for effectively modifying the
base-level. Some of these elements are:

– XMI.difference is the element used to describe differences from the ini-
tial model;

– XMI.delete represents a deletion from the base model;
– XMI.add represents an addition to the base model; and
– XMI.replace represents a replacement of a model construct with another

model construct in the initial model.

As described in [12], we can create new UML models from XMI schemas,
therefore the evolutionary plan, which is a group of modified XMI schemas, can
be reverted into UML diagrams. Basically, this reciprocity between UML dia-
grams and XMI schemas allows us maintaining the causal connection between
base- and meta-level.

4 Urban Traffic Control System: a Case Study

When designing urban traffic control systems (UTCS), the software engineer
will face many issues such as distribution, complexity of configuration, and re-
activity to the environment evolution. Moreover, modern cities have to face a
lot of unexpected hard to plan problems such as traffic lights disruptions, car
crashes, traffic jams and so on. In [18] these issues and many others are illus-
trated.

The evolution of complex urban agglomerates have posed significant chal-
lenges to city planners in terms of optimizing traffic flows in a normally con-
gested traffic network. Simulation and analysis of such systems require mod-
eling the behavioral, structural and physical characteristics of the road system.
This model includes mobile entities (e.g., cars, pedestrians, vehicular flow, and
so on) and fixed entities (e.g., roads, railways, level crossing, traffic lights and
so on).

Of course, the UTCS, due to its complexity, cannot be considered as a whole
case study. In this section, we describe our approach to evolution involving just
three components of the UTCS: road, traffic light and traffic. Figure 3 shows
how this fragment of the UTCS is integrated with our reflective approach to

Software Evolution through Dynamic Adaptation of its OO Design 79

Meta−Level

Base−Level

Road

+flow−density()
+snapshot()

+road−name
Traffic Light

+turn−on()
+turn−off()
+tick()

−color

Traffic

+flow−density()
+snapshot()
+crash−alarm()

−traffic−density

Activity Diagrams Representation
StateCharts Representation

Structure Information State & Behavior Information

Class Diagrams Representation
Object Diagrams Representation

VR1: traffic flows
 in a closed road
VR2: closing a road

ER1: car accident management
ER2: traffic jam management

evolutionary plan

en
gi

ne

en
gi

ne

Design
Information

Reifications

Evolutionary
Meta−Object

Consistency Checker
Meta−Object

XMI representations

reflectreify

Fig.s 3. XMI reification data and UML UTCS flow density.

evolution, and how the UTCS design information is managed by using the XMI
encoding.

In this example we consider as unexpected events only car accidents. There-
fore, we will show some evolutionary and validation rules that, used in conjunc-
tion with our approach, force the UTCS evolution for dealing with problems due
to car accidents, e.g., traffic jams.

4.1 Evolutionary and Validation Rules against Car Accidents

For UTCS to deal with traffic jams must monitor vehicular flow density5, and
the status of every involved entity (both fixed and mobile). The evolutionary
meta-object detects when the vehicular flow augments in a specific street and
plans to adapt the current traffic schedule (i.e., the UTCS behavior) to face the
problem.

5 UTCS is supported by CCD-Cameras and movement sensors installed in every important
nexus [18]. CCD-cameras take a photo every second and by comparing these photos, we can
estimate the traffic flowing density. Sensors will notify anomaly events that cannot be detected
by CCD-cameras like traffic light disruptions or damages to the road structure.

80 W. Cazzola, A. Ghoneim and G. Saake

Evolutionary Rules

ER1 (car accident management): when there is a notification of a car accident
in a specific road and the traffic in that road is stuck then such a street must be
closed and the traffic flow hijacked towards the adjacent streets.

on (a car accident in street Ri has been detected)
if (flow density of Ri is too elevate)
do closes Ri and reschedules the traffic lights so that cars avoid to
pass through Ri.

Obviously, the traffic lights rescheduling implies a change in the statechart of
the traffic lights, whereas closing the road means to add a new traffic light in the
system. The evolutionary meta-object will render effective these considerations
manipulating the corresponding XMI schemas and forming the evolutionary plan
to pass to the consistency checker meta-object.

ER2 (traffic jam management): the density of the vehicular flow is constantly
monitored road by road thanks to automatic cameras installed at the entrance
of each road. These cameras take a snapshot of the traffic entering in the road
every few seconds (delta that can be changed to have a more timely reaction),
consecutive snaps are compared to establish if the vehicular flow has overcome
a given tolerance threshold, if so the temporization of the traffic lights in the
corresponding area are modified to allow a more fluid circulation in the road.

on (comparing two consecutive snapshots)
if (the traffic flow has increased overcoming the tolerance threshold)
do control the traffic lights and modify their temporization.

As for ER1, changing the traffic light temporization implies a modification of
the statechart associate to the involved traffic light.

Validation Rules

VR1 (traffic flows in a closed road): when the evolutionary meta-object proposes
an evolutionary plan in which traffic is inhibited to a certain road, the consis-
tency checker must verify that there is not any road whose traffic flows in the
inhibited road.

on (traffic has been inhibited to road Ri)
if (there is a road R j whose traffic still flows into Ri)
do inconsistency has been detected, reject the plan.

Software Evolution through Dynamic Adaptation of its OO Design 81

The checking for consistency implies a complete scan of the object models and
statecharts of the roads whose traffic usually flows in the closed road.

Note that we have decided of rejecting the evolutionary plan but another strat-
egy should consider to fix the evolutionary plan against the detected problems
instead of rejecting it.

VR2 (closing a road): another important aspect that must be validated before
rendering effective the planned evolution is to determine when it is safe to sched-
ule the changes. In our example this mean to wait that all cars are halted at the
entrance of the road to close before changing the direction of the vehicular flow.

on (evolutionary plan has been authorized) ^ (road Ri must be closed)
if (no car is entering in Ri)
do turns red the traffic lights in Ri and applies the evolutionary plan.

This rule monitors the traffic light statecharts and intervenes on that when it is
feasible before applying the evolutionary plan.

The rules showed in this section do not pretend to cover every aspect of the
evolution but they want only to give a glance at the possibilities offered by
our approach. Moreover the rules are expressed by using the natural language
because the scope of this paper consists of describing our approach to evolution
and we prefer to avoid complicated formalisms that would have obscured the
simplicity of the mechanism.

5 Related Work

Several other researchers have proposed a mechanism for dynamic evolution
by using a reflective architecture and design information. The system we con-
sider in this short overview are UML virtual machine [17], The K-Component
Architecture [10], Architectural Reflection [7] and design enforcement [19].

In [17] has been presented the architecture for a UML virtual machine. The
virtual machine has a logical architecture that is based on the UML four-level
modeling architecture and a physical architecture that realizes the logical archi-
tecture as an object-oriented framework.

Dowling and Cahill [10] have proposed a meta-model framework named K-
components, that realizes a dynamic, self-adaptive architecture. It reifies the fea-
tures of the system architecture, e.g., configuration graph, components and con-
nectors. This model presents a mechanism for integrating the adaptation code
in the system, and a way to deal with system integrity and consistency during
dynamic reconfiguration.

82 W. Cazzola, A. Ghoneim and G. Saake

Cazzola et al. [7] have presented a novel approach to reflection called ar-
chitectural reflection which allows dynamic adaptation of a system through its
design information. This has been possible moving the system software archi-
tecture from design-time to run-time. Software architecture manipulation allows
adaptation in-the-large of the system, i.e., we can add and remove components
but we cannot add functionalities to a component.

In [19] has been presented a method for design enforcement, based on a com-
bination of reflection and state machine diagrams. Combining concepts of con-
current object-oriented design, finite state diagrams, and reflection leads to in-
crease the reliability of the systems, by insuring that objects work in accordance
with their design.

6 Conclusions and Future Work

The main topic of our work concerns with software adaptability. In this paper we
have presented: i) a reflective architecture for dynamically and safely evolving
a software system; and ii) the decisional engines and their rules which govern
such an evolution. Finally, we have shown on a case study how to instruct our
reflective architecture to adapt itself to unexpected events and how the evolution
takes effect.

Our approach to software evolution has the following benefits:

– evolution is not tailored to a specific software system but depends on its
design information;

– evolution is managed as a nonfunctional features, therefore, can be added to
every kind of software system without modifying it; and

– evolution strategy is not hardcoded in the system but it can be dynamically
changed by substituting the evolutionary and validation rules.

Unfortunately there are also some drawbacks: (i) we need a mechanism for con-
verting UML diagrams in the corresponding XMI schemas (problem partially
overcome by using Poseidon4UML [2]); (ii) decomposing the evolution pro-
cess in evolution and consistency validation could be inadequate for evolving
systems with tight time constraints.

In future work, we plan to overcome the cited drawbacks and to implement a
prototype of the described architecture by using OpenJava for supporting the
causal connection among meta-level representation and the base-level system
and a scripting language such as Ruby or Python for specifying and interpret-
ing the rules.

Software Evolution through Dynamic Adaptation of its OO Design 83

References

1. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An Event-Condition-Action Lan-
guage for XML. In Proceedings of the 11th International World Wide Web Conference,
WWW2002, pages 486–495, Honolulu, Hawaii, USA, May 2002. ACM Press.

2. Marko Boger, Thorsten Sturm, and Erich Schildhauer. Poseidon for UML Users Guide.
Gentleware AG, Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany, 2000.

3. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, Reading, Massachusetts, third edition,
February 1999.

4. Walter Cazzola. Evaluation of Object-Oriented Reflective Models. In Proceedings of ECOOP
Workshop on Reflective Object-Oriented Programming and Systems (EWROOPS’98), in 12th
European Conference on Object-Oriented Programming (ECOOP’98), Brussels, Belgium, on
20th-24th July 1998. Extended Abstract also published on ECOOP’98 Workshop Readers,
S. Demeyer and J. Bosch editors, LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

5. Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Framework Pat-
terns for the Evolution of Nonstoppable Software Systems. In Pavel Hruby and Kristian Elof
Søresen, editors, Proceedings of the 1st Nordic Conference on Pattern Languages of Pro-
grams (VikingPLoP’02), pages 35–54, Højstrupgård, Helsingør, Denmark, on 20th-22nd of
September 2002. Microsoft Business Solutions.

6. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Reflective Analysis and Design for
Adapting Object Run-time Behavior. In Zohra Bellahsène, Dilip Patel, and Colette Rolland,
editors, Proceedings of the 8th International Conference on Object-Oriented Information
Systems (OOIS’02), Lecture Notes in Computer Science 2425, pages 242–254, Montpellier,
France, on 2nd-5th of September 2002. Springer-Verlag. ISBN: 3-540-44087-9.

7. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Rule-Based Strategic
Reflection: Observing and Modifying Behaviour at the Architectural Level. In Proceedings
of 14th IEEE International Conference on Automated Software Engineering (ASE’99), pages
263–266, Cocoa Beach, Florida, USA, on 12th-15th October 1999.

8. Stefan Conrad and Can Türker. Prototyping Object Specifications Using Active Database
Systems. In A. Emre Harmancı, Erol Gelenbe, and Bulent Örencik, editors, Proceedings of
the 10th International Symposium on Computer and Information Sciences (ISCIS X), Volume
I, pages 217–224, Kuşadası, Turkey, October 1995.

9. Jim Dowling and Vinny Cahill. Building a Dynamically Reconfigurable Minimum CORBA
Platform with Components, Connectors and Language-Level Support. In Proceedings of
the IFIP/ACM Middleware 2000 Workshop on Reflective Middleware, New York, NY, USA,
April 2000. Springer-Verlag.

10. Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-Model for Self-
Adaptive Software. In Akinori Yonezawa and Satoshi Matsuoka, editors, Proceedings of 3rd

International Conference on Metalevel Architectures and Separation of Crosscutting Con-
cerns (Reflection’2001), LNCS 2192, pages 81–88, Kyoto, Japan, September 2001. Springer-
Verlag.

11. Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard Object Modeling
Language. Addison-Wesley, Reading, Massachusetts, 1997.

12. Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A. Mastering XMI: Java Program-
ming with XMI, XML, and UML. John Willy & Sons, Inc., April 2002.

13. Walter Hürsch and Cristina Videira Lopes. Separation of Concerns. Technical Report NU-
CCS-95-03, Northeastern University, Boston, February 1995.

14. Jeff Kramer and Jeff Magee. Analysing Dynamic Change in Distributed Software Architec-
tures. IEEE Proceedings Software, 145(5):146–154, October 1998.

84 W. Cazzola, A. Ghoneim and G. Saake

15. Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Mey-
rowitz, editor, Proceedings of the 2nd Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 of Sigplan Notices, pages 147–156,
Orlando, Florida, USA, October 1987. ACM.

16. OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and
Metadata Specifications available at http://www.omg.org, January 2002.

17. Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. The Architecture of
a UML Virtual Machine. In Linda Northrop and John Vlissides, editors, Proceedings of the
2001 Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’01), pages 327–341, Tampa Bay, Florida, USA, October 2001. ACM Press.

18. Andrea Savigni, Filippo Cunsolo, Daniela Micucci, and Francesco Tisato. ESCORT: To-
wards Integration in Intersection Control. In Proceedings of Rome Jubilee 2000 Conference
(Workshop on the International Foundation for Production Research (IFPR) on Manage-
ment of Industrial Logistic Systems – 8th Meeting of the Euro Working Group Transportation
- EWGT), Roma, Italy, September 2000.

19. Shaul Simhi, Vered Gafni, and Amiram Yehudai. Combining Reflection and Finite State
Diagrams for Design Enforcement. Theory and Practice of Object Systems, 2(4):269–281,
1997.

20. Robert J. Stroud. Transparency and Reflection in Distributed Systems. ACM Operating
System Review, 22:99–103, April 1992.

21. Robert J. Stroud and Zhixue Wu. Using Metaobject Protocols to Satisfy Non-Functional
Requirements. In Chris Zimmerman, editor, Advances in Object-Oriented Metalevel Archi-
tectures and Reflection, chapter 3, pages 31–52. CRC Press, Inc., 2000 Corporate Blvd.,N.W.,
Boca Raton, Florida 33431, 1996.

