Programming Software Agents as Designing Executable
Business Processes: A Model-Driven Perspective

Jorg P. Miiller!, Bernhard Bauer?, and Thomas Friese?

! Siemens AG Corporate Technology
Intelligent Autonomous Systems

Otto-Hahn-Ring 6, D-81739 Miinchen, Germany
joerg.p.mueller@siemens.com

2 Programming of Distributed Systems,
Institute of Computer Science, University of Augsburg

D-86135 Augsburg
bernhard.bauer@einformatik.uni-augsburg.de

3 Dept. of Mathematics and Computer Science
University of Marburg

D-35032 Marburg, Germany
friese@einformatik.uni-marburg.de

Abstract. The contribution of this paper is fourfold. First, we sketch an archi-
tecture of agent-enabled business process management that cleanly separates be-
tween agent capabilities, business process modeling, and the modeling of ser-
vices that are employed to actually implement processes. Second, we demonst-
rate how the Model-Driven Architecture (MDA) paradigm can be beneficially
employed at all three layers of the agent-enabled business process architecture.
Third, we describe an instance of a platform independent model based on the
new UML2 standard, and sketch a mapping to a platform dependent model
based on the Business Process Execution Language for Web Services
(BPEL4WS). Fourth, we point out the relationship between the programming of
multiagent systems, and the design of agent-enabled business processes. Our
key thesis is that designing business processes based on an agent-enabled busi-
ness processes modeling and enactment framework is a useful way of program-
ming agents — a way that may help agent technology to gain much wider accep-
tance in industry.

1 Introduction

Over the past few years, enterprises have undergone a thorough transformation in
reaction to challenges such as globalization, unstable demand, and mass customiza-
tion. A key to maintaining competitiveness is the ability of an enterprise to describe,
standardize, and adapt the way it reacts to certain types of business events, and how it
interacts with suppliers, partners, competitors, and customers. Today, virtually all
larger enterprises describe these procedures and interactions in terms of business
processes, and invest huge efforts to describe and standardize these processes.

50

The trend to process-centered modeling and operation of enterprises brings new
opportunities for software technologies that support the monitoring, management, and
optimization of processes. On the other hand it requires software technologies to relate
to business processes, to understand them and to hook into them where required.

Software agents are computer systems capable of flexible autonomous action in a
dynamic, unpredictable and open environment [16]. These characteristics give agent
technology a high potential to support process-centered modeling and operation of
businesses. Consequently, there have been various research efforts of using agent
technology in business process management, one of the earliest examples being
ADEPT [15]. Recently, agent technology has also started to attract business analysts
in the context of adaptive supply network management [20].

However, the focus of ADEPT was essentially focused on communication and col-
laboration in business process management. Its outcome was a research prototype, not
a usable business process support platform. Migrating agent technology successfully to
business applications requires the provision of end-to-end solutions that integrate with
standards, that preserve companies’ investment in hardware, software platforms, tools,
and people, that enables the incremental introduction of new technologies (see also
[18]), and that can deal gracefully with moving to new technology platforms.

One main objective of this paper is to sketch an architecture of agent-enabled busi-
ness process management that cleanly separates between agent capabilities, business
process modeling, and the modeling of services that are employed to actually imple-
ment processes. We regard software agents as software components primarily respon-
sible for

e the intelligent evaluation, selection and customization of business processes and
activities matching service requests;

e and for the robust and flexible enactment of these processes or activities, including
monitoring, exception and failure handling, and decision support.

Enactment of business processes relies on an underlying service layer, an information
and communication runtime infrastructure providing the possibility of registering and
discovering services and of communicating service requests and responses.

A second objective is to demonstrate how the Model-Driven Architecture (MDA)
[17] paradigm can be beneficially employed at all three layers of the agent-enabled
business process architecture, in order to allow system designers to focus on the
functionality and behavior of a distributed application or system, independent of the
technology or technologies in which it will be implemented.

Based on this model-driven approach, our third objective is to demonstrate an in-
stance of a platform independent model based on the new UML2 standard [22],
extending the scope of the Unified Modeling Language to the design of processes, and
sketch a mapping to a platform dependent model based on the Business Process
Execution Language for Web Services (BPEL4WS) [13]. We discuss design-time and
run-time aspects of a methodology for agent-enabled business process modeling.

Finally, the fourth objective of this paper is to point out a relationship between the
programming of multiagent systems, which is the key topic of the volume at hand, and
the design of agent-enabled business processes. Our key thesis here is that designing
business processes based on an agent-enabled business processes modeling and en-

51

actment framework can be regarded as one way of programming agents — one way
that may help agent technology to gain much wider acceptance in industry.

This paper is not a primarily a technical paper although it does contain technical
elements. Our primary intention is to bring forward a position sketching the need and
requirements for, and key aspects of, an architecture and development framework for
programming agents for industrial applications, which in our opinion is not suffi-
ciently reflected in most existing research on agent-oriented software engineering and
agent programming. Many of the details remain to be fleshed out in future research,
but we feel it is worth pointing them out. We hope that the reader agrees with this.

The structure of the paper is as follows: In Section 2, we provide a conceptual ar-
chitecture for agent-enabled business processes and set the technological background.
Section 3 provides an application example that will serve as a demonstration vehicle
throughout the paper. In Section 4, a model-driven design methodology for agent-
enabled business processes is provided including examples for platform-independent
and platform-specific models. Section 5 then outlines a runtime architecture for
enactment of agent-enabled business processes. We conclude in Section 6 with some
discussion of future research opportunities.

2 Background

In this section, we describe a conceptual architecture defining the relationship between
web services, business processes, and software agents.

PIM
Agent Layer >
PSM
A ovaluate colect 4
control compose
wenact P v
PIM
Business Process Layer >
PSM
A A
register request
v find reply v
PIM
Service Layer >
PSM
— Run-time aspects - Design-time aspectsé

Fig. 1. Conceptual architecture for agent-enabled business processes

2.1 Conceptual Architecture

Figure 1 illustrates the essence of our conception in an abstract three-tier architecture.
We regard software agents as software components primarily responsible for the

52

intelligent evaluation, selection and customization of business processes and activities
matching service requests and for the robust and flexible enactment of these processes
or activities, including monitoring, exception and failure handling, and decision
support. Enactment of business processes relies on an underlying service layer, an
information and communication runtime infrastructure providing the possibility of
registering with and discovering services and of communicating service requests and
responses. For grounding this conceptual architecture in a real IT environment, we
propose the Model-Driven Architecture (MDA) approach (see [17] and [25]) in order
to achieve a separation of business and application logic from underlying platform
technologies. The core idea of the MDA is to first describe a software artifact by a
platform independent model (PIM), and then provide mappings to a number of plat-
form-specific models (PSM). Our claim is that MDA can be applied beneficially at all
three layers of our conceptual architecture. At the agent layer, it can be used to specify
the behavior of agents, there strategies and objective functions in an abstract manner.
At the business process layer, it can be used to accommodate the use of different
business process representations (such as SCOR, event-driven process chains, or
activity diagrams of UML 2.0). Finally, at the service level, it can be used to ground
the architecture on different service-oriented platforms, such as web services/.NET,
Java RMI, Peer-to-Peer Platforms, or agent communication platforms available as part
of FIPA-compliant agent infrastructure (e.g., Jade/Leap).

In the following, we provide a short overview of the major technological aspects at
the different conceptual layers.

2.2 Model-Driven Architecture

The Model Driven Architecture (MDA) (for details see [25]; this section is also based
on this reference) is a framework for software development driven by the Object
Management Group (OMG). Key to MDA 1is the importance of models in the software
development process. Within MDA the software development process is driven by the
activity of modeling the software system. The MDA development process does not
look very different from a traditional lifecycle, containing the same phases (require-
ments, analysis, low-level design, coding, testing, and deployment). One of the major
differences lies in the nature of the artifacts that are created during the development
process. The artifacts are formal models, i.e. models that can be understood by com-
puters. The following three models are at the core of the MDA:

e Platform Independent Model (PIM): This model is defined at a high level of
abstraction; it is independent of any implementation technology. It describes a
software system that supports some business. Within a PIM, the system is modeled
from the viewpoint of how it best supports the business. Whether a system will be
implemented on a mainframe with a relational database, on an agent platform or
on an EJB application server plays no role in a PIM.

e Platform Specific Model (PSM): In the next step, the PIM is transformed into
one or more PSMs. It is tailored to specify a system in terms of the implementa-
tion constructs available in one specific implementation technology. E,g. an agent

53

PSM is a model of the system in terms of an agent platform. A PIM is transformed
into one or more PSMs. For each specific technology platform a separate PSM is
generated. Most of the systems today span several technologies; therefore it is
common to have many PSMs with one PIM.

e Code: The final step in the development is the transformation of each PSM to
code. Because a PSM fits its technology rather closely, this transformation is rela-
tively straightforward.

2.3 Service Layer: Web Services

Describing software architecture in a service-oriented fashion, while being increas-
ingly popular, is not a new idea; it is what CORBA has been about more than a decade
ago. Recently, the concept of web services has given new momentum to service-
oriented architecture. Web services are self-contained, self-describing, modular
applications that can be published, located, and invoked across the Web using existing
web protocols and infrastructure. The core web service standards are the Web Service
Definition Language (WSDL), Simple Object Access Protocol (SOAP), and Universal
Description, Discovery and Integration (UDDI). The combination of relative simplic-
ity, platform independence, and leveraging of HTTP positions web services to become
an important architecture for wide-scale distributed computing [8].

2.3.1 Web Service Definition

WSDL is an XML based specification for describing what a program module does
(interface description), what the result of the module’s activity is, and how to commu-
nicate with it. A WSDL document resides at a URL location, e.g. at a UDDI, and is
linked to the module, which itself may reside at any location. Web Services exchange
information through SOAP messages. SOAP is a protocol for Remote Procedure Call /
Remote Method Invocation over HTTP. SOAP uses XML to define the message
format and how variables and parameters required by the program are sent to it to
invoke its methods. The program in turn, sends the results of its process back to the
request originator in another SOAP message. Because HTTP is one of the transport
mechanisms used by SOAP, a Web Service method call can be made to and from any
Web enabled computer anywhere in the world.

2.3.2 Web Service Choreography

According to [23], web service choreography describes the specification of the inter-
action (i.e., ordering of messages) among a collection of services from the perspective
of one service or a collection thereof. Web service choreography allows applications
to combine existing web services in order to obtain more elaborated value-added web
services. Note that choreography deals with the definition of these interactions, not
with their execution. Several standards are currently under development for the defini-
tion of languages for Web Service composition or Web Service Choreography: For
instance, IBM and Microsoft have developed process languages, the Web Services
Flow Language (WSFL) and XLANG, respectively. These have been merged into the
Business Process Execution Language for Web Service BPEL4WS, see Sec-
tion 2.4.

54

2.4 Business Process Layer

The notion of service choreography logically leads to the notion of business processes.
A business process is a group of business activities undertaken by an organization in
pursuit of a common goal. The process-driven approach has become the predominant
means of describing and structuring corporate IT and information systems. Hence, we
argue that the notion of business processes is a mostly adequate basis for specifying
agents and multiagent systems.

Driven by the availability of web services platforms (see Section 2.3), a number of
architectures, presentations, and platforms for web-based business processes have
been proposed, starting with the already mentioned BPEL4WS, but also including the
Business Process Modeling Language (BPML) defined by the Business Process
Management Initiative BPMI [4]. Another example is the ebXML Business Process
Specification Schema [5], providing a standard framework by which business systems
may be configured to support execution of business collaborations. We use BPEL4WS
in the examples used throughout this paper; however, the adherence to MDA ensures
transferability to other process models and infrastructure.

2.5 Agent Layer

From a sufficiently abstract perspective, a business process is essentially a computer
program; composing a business process is very similar to program synthesis, and
enacting a business process is program execution. Automated business process com-
position is not too different from artificial intelligence planning, which implies that Al
planning techniques are applicable but that at the same time we should not hope for
efficient general solutions of the business process composition problem, as they most
probably do not exist. However, business processes are more than plans or programs:
they incorporate knowledge about organizations, and they contain tasks that can only
be solved by or in collaboration with humans. This is where we believe agents come
into play. We claim that the role of agents in the context of business processes is
threefold:

e Agents can be used to support the evaluation of existing business processes at
request time, leading to recommendation regarding the assignment of a business
process to an incoming service request.

e Agents can combine planning methods with knowledge about structure, authori-
ties, and competencies of organizational units to modify existing business proc-
esses, or to create new instances of business processes from scratch.

e Agents can monitor, manage, and execute business processes in a robust and
intelligent fashion, involving content- and capability-based routing of tasks,
autonomous initiation and monitoring of process execution, situated recognition of
and reaction to failures or other critical events, and longer-term self-optimization.

The agent layer in our conceptual architecture needs to provide methods and tools
to model process-aware agents and to support (semi-)automated evaluation, selection,
composition, adaptation, and robust execution of business processes.

55

Our perspective extends Huhns’s [12] view on the relationship of agents and Web
Services in the following way: While Huhns describes agents as intelligent web
services, we claim that agents should be regarded primarily as driven by and responsi-
ble for business processes. While executing or monitoring business processes, they
may interact or negotiate with (web) services that may again trigger agents responsible
for the business process initiated by the service request. We believe that by de-
coupling the notion of process from the notion of service and by using the model-
driven approach, we can achieve more modular, more re-usable and technology-
independent specifications of multi-agent systems.

In this paper, we shall not provide a full specification of the agent layer of our ar-
chitecture. This is beyond the scope of this overview paper and is a topic for future
research. However, in Section 5 we sketch an agent-based process execution layer.

In the remainder of this section, we note a few requirements for an agent-enabled
business process architecture.

e Semantic process definitions: Evaluating, composing and adapting processes and
monitoring process execution require a machine-understandable description of the
behavior of processes and their activities. The use of semantic markup languages,
like DAML-OIL or OWL for the definition of ontologies and DAML-S for seman-
tic service descriptions, is one obvious approach to add information on top of pure
syntactical Web Services descriptions.

e Self-organization, self-description and self-configuration: The ability of organiza-
tions to adapt the design and execution of collaborative processes based on seman-
tic information of the agents/organizations, the environment and the services avail-
able in its surroundings are other key functions that distinguish agents. In this
context, we advocate a two-level approach where peer-to-peer concepts for resil-
ience, de-central coordination, and self-organization are applied to achieve a short-
term, reactive flexibility, and where multiagent coordination concepts such as mul-
tiagent planning are used for longer-term adaptation and self-organization (see
Section 5).

e Flexible interaction: The availability of an open interaction model enables interac-
tion among previously unknown parties and the tailoring of interactions to the
partners capabilities and preferences by using automated negotiation. The big chal-
lenge in this context is how economically motivated agents can be equipped with
domain-specific valuation models enabling them to efficiently engage in negotia-
tions from the perspective of the business process or the organization(s) they rep-
resent.

e Individualization: The availability of domain-specific and extensible representa-
tions of context, profiles, and preferences is also a prerequisite for customization
of e.g. services and goods to the needs or context of a person. Individualization
takes the specific context or situation of a user into account and can be applied at
different levels: User context, service level, interface level and infrastructure level
(see e.g., [10]).

56

3 Application Example

To illustrate our approach, we introduce an application example taken from the UML
2.0 Superstructure specification (see Figure 2); a similar example is given in [11]. The
original example describes a Supply Chain scenario with different types of activities

attributed to different organizational units. In this paper, agents represent the individ-
ual units.

Fill Ship
Order 1= Order
[order

accepted]

Order Departnent

Send
Ivonce

Accept
Payment

aartributes performingDept: Department

Accte Department

Invoice

wexternal
Customer

Ivlake Payment

Fig. 2. UML activity diagram for the order processing example

Round-cornered rectangles denote actions, diamonds denote alternatives, rectangles
denote comments, texts in brackets denote constraints. The order processing activity
diagram is partitioned into “swim lanes.” The three swim lanes denote the responsi-
bilities for the different portions of the process.

The order agent initiates the process by receiving an order using Receive Order.
This order can contain information about e.g. price and delivery date for the item
corresponding to the Customer’s constraints. The order agent checks the order and
either rejects the order with the effect of closing the order (Close Order) or accepts it.
In the latter case an order is filled (Fill Order) and two sub-processes are triggered,
namely the order is shipped (Ship Order) and the accounting department produces the
invoice and sends the invoice to the external customer (Send Invoice) who makes the
payment (Make Payment). Payment is then accepted (Accept Payment) by the

accounting department. If both sub-processes succeed the order is closed (Close
Order).

4 Modeling Agent-Enabled Business Processes

In the remainder of this paper, we describe an instance of the conceptual architecture
for agent-enabled business processes in Section 2.1. As indicated in, instantiating this
architecture entails dealing with both design-time and run-time issues. In this Section,

57

we focus on design-time aspects, i.e., at the modeling of agent-enabled business
processes. In Section 5, we sketch a corresponding run-time model.

4.1 Overview

A straightforward method of implementing the conceptual architecture described in
Section 2.1 would be to independently define three models corresponding to the three
layers of the conceptual architecture: an agent model, a business process model, and a
service model. We believe that this could be done by extending most existing method-
ologies, such as GAIA [24] or Tropos [9] by the business process layer, connecting
agent model and service model. While doing this seems a worthwhile exercise, our
approach in this paper is different. Instead of starting from the green field and describ-
ing a completely new unified framework to design the three models and their interrela-
tionship, we set out from existing representation standards, platforms, and tools, and
develop a pragmatic and simplified structure.

In this simplification, the original three-layer hierarchy is mapped into a two-stage
procedure as illustrated in Figure 3. In particular, the agent layer is not explicitly
represented in our development process. Rather, our idea is to enhance the service-
and process-related elements with appropriate metadata and functionality. An instan-
tiation of our model that fully complies with the three-tier architecture is left for future
work.

Semantic Business Process
Specification

Semantic Semantic Process
Activity/Service Choreography
Interface Definition Definition

|

!

!

!

|

PIM i
e

|

|

|

|

|

|

Service Interface interaction Process
Ontology Definition protocols Choreography
(WSDL) (BPEL4WS)
Static model Dynamic model
(service model) (business process model)

Fig. 3. Overview of model-driven development methodology for agent-enabled business
processses

Figure 3 illustrates the top-down development process starting with a semantic
business process specification using and extending UML 2.0 activity diagrams (similar
to the one depicted in for our example). This specification consists of two models:

58

e a static model, which is essentially the service model in our conceptual architecture,
even though enhanced with metadata, such as the description of pre- and post-
conditions for service invocation, and with exception definitions;

e a dynamic model, which is essentially the business process layer in the conceptual
architecture, even though enhanced with planning methods and exception handling
capabilities based on the semantic service descriptions.

Each of these two models is described by one platform-independent model and one
or more platform-specific models. We propose the usage of UML 2.0 for the Plat-
form-Independent Model both for service definition and process choreography defini-
tion. In addition, we provide exemplary mappings to Platform Specific Models, using
WSDL to specify the services/activities and using BPEL4WS for the process choreog-
raphy. In the following, the different models and mappings are investigated in more
detail. However because of lack of space we will mainly focus on WSDL and
BPEL4AWS.

This view is similar to that of DAML-S, however from a service specification per-
spective. The relevant key elements of DAML-S are:

e Service Profiles provide a means to describe the services offered by the providers,
and the services needed by the requesters. Some properties of the profile provide
human-readable information like service name, a textual description or contact in-
formation (phone, fax,...). Moreover the functionality is defined by inputs of the
service, outputs of the service, preconditions of the service; and effects of the ser-
vice. This is comparable with the Service Interface Definition in Figure 3.

e Service Model describes the processes and their composition with the related
properties parameter, input, (conditional) output, participant, precondition, and
(conditional) effect as well as the binding. This is comparable with the Semantic
Process Choreography Definition in Figure 3.

Service Grounding specifies the details of how to access the service - details having
mainly to do with protocol and message formats, serialization, transport, and ad-
dressing. A grounding can be thought of as a mapping from an abstract to a concrete
specification of those service description elements that are required for interacting
with the service.

For the platform independent model we propose to use Activity Diagrams (as
shown in) provided in UML 2.0 to model business processes. An activity diagram
depicts behavior using a control and data-flow model. In particular it describes activi-
ties and flows in different details. They are applied e.g. for business process modeling,
description of use cases and in particular defining implementation relations (i.e.,
refinements) of operations.

4.2 Semantic Activity/Service Interface Definition

In this section we shall present a platform-independent model and an example of a
platform-specific instantiation of the semantic activity/service interface definition.

59

4.2.1 Platform-Independent Model

Activity diagrams allow the specification of activities, as depicted in Figure 4, as a
specification of a parameterized behavior that is expressed as a flow of execution by
sequencing of subordinate units (whose primitive elements are individual actions).

{ACTIVITYS
Activity Name

attribute - type
attribute - type

operation (parameters)
operation (parametsrs)

Fig. 4. Notation for activities in UML 2.0

We add the required semantic metadata information to the platform-independent
model by using stereotypes in the activities, namely <<pre-conditions>>, <<post-
condition>>, <<effects>> for defining the pre-conditions, post-conditions, and condi-
tional affects of an activity. The underlying notation could be e.g. OCL from the UML
specification or some Semantic Web language. This is illustrated in Figure 5.

<<activity>>
Send Invoice

itemDB : DataBase

- preparelnvoice (item : Item, amout : Amout) Invoice
- printlnvoice (invoice : Invoice) Printedinvoice
+ sendlnvoice (printedinvoice : Printedinvoice)
<<pre-condition>> ...
<<post-condition>> ...
<<effects>> ...

Fig. 5. Semantically enhanced activity definition

4.2.2 A Platform Specific Model Based on WSDL

4.2.2.1 Modeling Web Services Interfaces

The static description of a Web Service in WSDL is mainly concerned with defining
its interfaces. A WSDL definition consists of the following parts: Ports define the
concrete Internet address of a Web Service, i.e., its URL and communication port;
Services cover several ports and define the physical address of an end point; Messages
are the format for a specific information exchange, where request and response
are two dedicated messages; PortTypes group messages to logical operations; Bindings
bind PortTypes to their implementation, usually SOAP, and define the concrete
interface of a Web Service. In [1] UML is applied for modeling WSDL descriptions.

60

We follow this approach for modeling WSDL descriptions. Since BPEL4WS does not
require us to deal with concrete addresses and physical addresses, we will not cover
Ports and Services.

One class is defined for an overall WSDL description. This class is stereotyped with
<<wsdl description>> to mark it as a WSDL description. Each element of a non-
complex type is modeled by stereotyped (<<element>>) attribute. Complex types of
elements are modeled as separate classes with stereotype <<element>>.

Messages are depicted by <<wsdl message>> stereotyped operations in class dia-
grams; parameters denote the part name:type information of a message.

For each PortType a class is defined stereotyped with <<wsdl portType>>. This
PortType 1s attached to a <<wsdl description>> class using aggregation; for each
operation an operation of the class is used.

Again, for each Binding a class is defined stereotyped with <<wsdl binding>> and
attached to a service by aggregation with <<port>> stereotype and for each operation
an operation is applied.

Figure 6 illustrates an excerpt of our example specification in UML. The WSDL
description has one element, i.e., OrderDepartmentDescription. It accepts different
messages, including receiveOrder() and sendInvoice(). The parameters and their types
are omitted in the figure, but can be found in the following WSDL description. The
portType sendInvoice supports one operation, named sendlnvoiceToCustomer(). This
WSDL specification can be derived from the platform-independent model, giving
additional information describing e.g. the interfaces and dependencies in detail. This
example gives an idea of how the transformation can be performed.

<< wsdl binding>>
Order Department Interface

<< port>>

<< wsdl description >>
Order Department
+ <<element>> OrderDepartmentDescription

+ <<wsdl message>> receiveOrder(...)
+ <<wsdl message>> sendInvoice(...)

(93

\

<< wsdl portType>>
sendInvoice

+ <<wsdl message>> sendInvoiceToCustomer(...)

Fig. 6. UML and WSDL

61

4.2.2.2 Mapping UML Specifications to WSDL
The following listing shows an excerpt of the WSDL description obtained from the
UML specification :

<definitions targetNamespace=".."
Xmlns:..
[...]
<message name="receiveOrder">
<part name="item" type="Item"/>
<part name="amount" type="Amount"/>
</message>

<!-- portTypes supported by the Order Department -->
<portType name="sendInvoice">
<operation name="sendInvoiceToCustomer">
<input message="receiveOrder"/>
<output message="sendInvoice"/>
</operation>
</portType>
[...]

</definitions>

4.3 Semantic Process Choreography Definition

Based on the service interface definitions described in the previous subsection, this
section deals with dynamic aspects of semantic process choreography, i.e. with how
processes are composed from activities. We start with the platform-independent
modeling of semantic process choreography, and give an exemplary mapping of a PIM
to a PSM based on BPEL4WS.

4.3.1 Platform Independent Model
UML 2.0 activity diagrams allow the definition of complex activities (sub-processes)
defining the parameters, pre-conditions and post-conditions as shown in Figure 7.

activity name wpreconditiony constraint I
parameter name: Type «postcondition: constraint

Fig. 7. Activities with parameters and pre- and post-conditions

Moreover, UML?2 supports the representation of events that can be used to obtain a
basic model of exceptions and exception handling behaviors. An example using the
UML Accept Event Action construct is given in Figure 8.

62

Order
cance]

Tequest

Ivoice

Fig. 8. Representation of events/exceptions in UML2.0

The example describes an event (denoted by the Accept Event Action Order cancel
request) that can occur during the execution of a part of the process denoted by the
dotted rectangle with rounded corners. In this case it comprises the activities Receive
Order, Fill Order, and Ship Order. This results in cancellation of the order.

For a semantic grounding of complex activities and to describe meta-data we can
add stereotypes <<effects>> and <<exceptions>> to the complex activity descriptions.

/ Process Order <<precondition>> Order Complete \
Requested Order : Order <<postcondition>> Order closed

<<effects>> Item shipped

<<exception>> Order Canceled

Request Receive
Order Order

o’

\Vi

Send Accept
Invoice Payment

Invoice

Make
Payment

- J

Fig. 9. The example (Figure 2) as a UML2.0 Activity Diagram; swim lanes omitted for simplic-
ity

Figure 9 shows the UML?2 activity diagram representation for the original example.
The diagram contains the semantic metadata information required for use by the agent
layer. It should be noted here that most of this information can actually be encoded by

63

using existing UML2 language features. The only feature used in Figure 9 which is
currently not available in UML?2 are the <<effects>> and <<exceptions>> stereotype
which we added for compatibility with DAML.

4.3.2 A Platform Specific Model: Mapping UML to BPEL4WS
In this section we show an exemplary instantiation of the PIM developed in Sec-
tion 4.3.1 as a PSM. The basic idea is to implement the PSM by first performing a
mapping from the UML activity diagrams into sequence diagrams defining the real
message exchanges between the agents, and then to derive BPEL4AWS process defini-
tions from the sequence diagrams, which can be done in a relatively straightforward
manner. Note, that for a fully automated transformation (code generation) additional
information are necessary, which is beyond the scope of this paper. Figure 10 shows
the corresponding sequence diagram (we omit the case where the order is rejected).
BPELAWS (Business Process Execution Language for Web Services; [11]) defines
a notation for specifying business process behavior based on Web Services. Processes
in BPEL4WS export and import functionality via Web Service interfaces exclusively.

Order Department Accounting Department Customer
request order
<
~
Fill order
<
<
par >
request invoice >
Request payment
<
<
Accept payment &<
Make payment
ship order
close order
<&
<

Fig. 10. PSM for Semantic Process Choreography Definition

The process specified in Figure 9 (including its representation as a sequence dia-
gram shown in Figure 10) defines a re-usable process template. E.g., for the order
department, it can be written in pseudo-code as follows:

64

while (ordering) do
receive request order
invoke fill order
parallel
seq
receive accept-payment
invoke payment-accepted
invoke ship-order
close order
od

<process name="Process Order"
targetNamespace=[...]
xmlns=[...]
<partners>
<partner name="AccountingDepartment"
serviceLinkType="Accounting"
partnerRole="accounting"
myRole="order department"/>
</partners>
<assign> order-continue-yes=true </assign>
<while condition="order-continue-yes"
<gequence>
<recelve partner="Customer"
portType="OrderInformation"
operation="orderItem"
inputContainer="item">
</receive>
<invoke partner="OrderDepartment"
portType="OrderItem"
operation="order">
</invoke>
<flow>
<gsequence>
<receive partner="AccountingDepartment"
portType="SendInvoice"
operation="sendInvoiceToCustomer"
inputContainer="receivedOrder">
</receive>
<invoke partner="OrderingDepartment"
portType="PaymentAcception"
operation="acceptPayment">
</invoke>

</sequence>
<invoke partner="OrderingDepartment"
portType="ShipingOrders"
operation="shipOrder">
</invoke>
</flow>
<invoke partner="OrderingDepartment"
portType="ShipOrdering"
operation="ghipOrder">
</invoke>
</sequence>
</while>
</process>

Fig. 11. BPEL4WS Representation of the example process

65

Figure 11 illustrates the BPEL4WS definition of this example process. The business

processes use the following components of BPEL4WS (following [13]):

Service Linking, Partners and Service References: The relationship of a business
process with a partner is typically peer-to-peer, requiring a two-way dependency at
the service level. The notion of service links is used to directly model peer-to-peer
partner relationships. Service links define the relationship with a partner by the
message and port types used in the interactions in both directions. However, the
actual partner service may be dynamically determined within the process.

Messages Properties: The data in a message consists conceptually of two parts:
application data and protocol-relevant data, where the protocols can be business
protocols or infrastructure protocols providing higher quality of service, like secu-
rity and transaction. The business protocol data is usually found embedded in the
application-visible message parts, whereas the infrastructure protocols almost al-
ways add implicit extra parts to the message types to represent protocol headers
that are separate from application data. Business processes might need to gain ac-
cess to and manipulate both kinds of protocol-relevant data. The notion of message
properties is defined as a general way of naming and representing distinguished
data elements within a message, whether in application-visible data or in message
context. Message properties are defined in a sufficiently general way to cover mes-
sage context consisting of implicit parts, but the use focuses on properties embed-
ded in application-visible data that is used in the definition of business protocols
and abstract business processes. A property definition creates a globally unique
name and associates it with an XML Schema type. The intent is to create a name
that has greater significance than the type itself.

Data Handling: Business processes model stateful interactions. The state involved
consists of messages received and sent as well as other relevant data such as time-
out values. The maintenance of the state of a business process requires the use of
state variables, which are called containers. Furthermore, the data from the state
needs to be extracted and combined in interesting ways to control the behavior of
the process, which requires data expressions. Finally, state update requires the no-
tion of assignment. BPEL4WS provides these features for XML data types and
WSDL message types. In BPEL4WS, Data handling is performed by using the fol-
lowing features:

e Expressions: BPELAWS uses several types of expressions: Boolean-valued
expressions used for transition conditions, join conditions, while conditions,
and switch cases; deadline-valued expressions used with the "until" attribute
of onAlarm and wait; duration-valued expressions used for "for" attribute of
onAlarm and wait; general expressions based on XPath 1.0 used in assign-
ments. Moreover, BPEL4WS provides an extensible mechanism for the lan-
guage used in these expressions. The language is specified by the expres-
sionLanguage attribute of the process element.

e (Containers: Containers provide the means for holding messages that consti-
tute the state of a business process. Containers can hold messages, either re-
ceived or temporary defined, that act as "temporary variables" for computa-

66

tion and are never exchanged with partners. Containers can be specified as
input or output containers for invoke, receive, and reply activities. At the be-
ginning of a process all containers are not initialized. Containers can be ini-
tialized by a variety of means including assignment and receiving a message.
Containers can be partially initialized with property assignment or when some
but not all parts in the message type of the container are assigned values.

Assignments: Copying data from one container to another is a common task
within a business process. The assign activity can be used to copy data from
one container to another, as well as to construct and insert new data using ex-
pressions.

e Activities: BPELAWS distinguishes between two types of activities: basic and
structured activities.

basic activities: The receive construct allows the business process to do a
blocking wait for a matching message to arrive. The reply construct allows
the business process to send a message in reply to a message that was re-
ceived through a receive. The combination of a receive and a reply
forms a request-response operation on the WSDL portType for the process.
The invoke construct allows the business process to invoke a one-way or
request-response operation on a portType offered by a partner. The assign
construct can be used to update the values of containers with new data. An
assign construct can contain any number of elementary assignments. The
throw construct generates a fault from inside the business process. The
terminate construct allows to immediately terminate a business process.
The wait construct allows to wait for a given time period or until a certain
time has passed. Exactly one of the expiration criteria must be specified. The
empty construct enables insertion of "no-op" instructions into business
processes. This is useful for synchronization of parallel activities, for in-
stance.

structured activities: The sequence construct allows one to define a col-
lection of activities to be performed sequentially. The switch construct al-
lows selecting exactly one branch of execution from a set of choices. The
while construct allows one to indicate that an activity is to be repeated un-
til a certain success criteria has been met. The pick construct allows block-
ing and waiting for exactly a suitable message to arrive or for a time-out
alarm to go off. When one of these triggers occurs, the associated activity is
executed and the pick completes. The £ 1ow construct allows specifying one
or more activities to be executed in parallel. Links can be used within parallel
activities to define arbitrary control structures. The scope construct allows
defining a nested activity with its own associated fault and compensation
handlers. The compensate construct is used to invoke compensation on an
inner scope that has already completed its execution normally. This construct
can be invoked only from within a fault handler or another compensation
handler.

5 Agent-Enabled Business Process Enactment

67

In this section, we sketch an infrastructure for agent-enabled business process enact-
ment. This infrastructure is an instance of the model-driven architecture framework
described in Section 4. Figure 12 shows the architecture of the run-time system.

Ontology

Service Editor
_ | Ont. Search Client
@
= Service
n—‘? Matchmaker - Abstract Process
Process Editor |-
Action 1 (| Action 2 |[Action 3 || Action 4
— Process Compiler B
-
Workflow i Workflow
Binding
> WS 1 WS 2 Ws3 W54
‘“\\‘_‘_‘_'_'/
L
Execution Fault
(Process 1D, Warkflow |ID, Task 1D) BPWS4J

A

<

Robust Execution

Layer
; 1|
I
+
@

Fig. 12. Business process enactment architecture

The system is arranged in a two-tier hybrid architecture [19]. The upper tier pro-
vides a planning mechanism based on a library of process descriptions, the process
repository. In the ideal case the planner starts from the platform independent descrip-
tion of the process descriptions, performs the planning and transforms this platform
independent processes or workflows into platform specific processes and workflows,
like BPEL4WS. Currently, the planner selects plans from the plan library based on a

68

goal description and a precondition (both of which are first order formulae matched
against plan metadata). The planning tier provides a number of additional tools such as
a service editor, a service matchmaker used to find suitable service instances, and a
process editor and compiler which are able to create abstract process descriptions to
populate the process repository. When an entry in the process repository matching a
pair <goal, precondition> has been found, a BPEL4AWS workflow instance is
generated by a workflow-binding module. This module instantiates variables in the
abstract process by constants obtained by the matching with <goal, precondi -
tion>. Thus, each abstract action in the process description is instantiated by a task
corresponding to a web service invocation. The corresponding workflow is then
passed on to the business process execution engine. In our current implementation, we
use IBMs BPWS4]J business process execution engine to enact BPEL4WS business
process descriptions which have been generated from UML?2 representations. Existing
fields of BPEL4WS process descriptions are used to transfer identifying information
of processes, workflows, and tasks from the planning to the execution layer and back.

The business process execution engine now executes the workflow step-by-step.
However, instead of directly calling individual web services, the calls from the execu-
tion engine go to the lower tier, the so-called Robust Execution Layer (REL), which
acts as a proxy for the execution engine. The intention of the REL is to provide a
higher level of execution reliability. This is achieved by means of an underlying peer-
to-peer network maintained by the REL. In our implementation, we use the Resource
Management Framework (RMF) developed at Siemens [7]. Individual web services
are registered as resources in the peer-to-peer system. Services can be replicated using
the RMF’s replication mechanism. If a selected service fails, the Robust Execution
Layer tries to transparently re-route the request to a replicated service and carries out
compensation activities if necessary to prevent or resolve inconsistent transactional
states. E.g., if the task represented by web service WS fails (see Figure 12), the RMF
can transparently re-route the request to the replicated web service WS1*.

A simple rollback concept is provided to compensate in case of failure. For this, the
BPEL4WS task descriptions contain links to compensation actions. If a task fails (e.g.,
WS3) and the REF is not able to find an alternative (replicated) service, the REL will
call an appropriate fault handler in the execution engine. Then, the execution engine
tries to compensate the previously executed tasks, starting with the most recent ones.
If a task does not have a compensation routine, or compensation fails, the rollback
stops and the process execution engine reports an execution fault to the planner (see
Figure 12). For instance, assume that WS3 and WSI1 can be compensated, but WS2
cannot. In this case, a failure would be reported indicating the identifier of the abstract
process, of the workflow instance and of the failed task (in this case WS3).

The planner will then try and elaborate alternatives either by trying to locally
amend the plan (e.g., suggesting an alternative task WS3a), or by looking up an
alternative process in the business process repository, taking the effects of the per-
formed tasks that could not be compensated into account. The amended process
description is again instantiated and the corresponding BPEL4WS workflow is sent to
the Robust Execution Layer.

69
6 Conclusions and Outlook

The foremost goal of this paper was to point out a relationship between the program-
ming of multiagent systems, which is the key topic of the volume at hand, and the
design of agent-enabled business processes. Our key thesis here is that designing
business processes based on an agent-enabled business processes modeling and en-
actment framework should be regarded as a very practicable way of programming
specific types of agents, i.e., agents that assist humans and organizations in monitor-
ing, managing, and optimizing business processes.

The technical contributions of this paper were the (i) definition of a conceptual ar-
chitecture of agent-enabled business process management that cleanly separates
between agent capabilities, business process modeling, and the modeling of services
that are employed to actually implement processes; (ii) a sketch of implementing the
conceptual architecture based on using the Model-Driven Architecture (MDA) para-
digm at all three layers of the agent-enabled business process architecture, in order to
allow system designers to focus on the functionality and behavior of a distributed
application or system, independent of the technology or technologies in which it will
be implemented; and (ii1) to outline an instance of a platform independent model based
on the new UML2 standard, extending the scope of the Unified Modeling Language to
the design of processes, and sketch a mapping to a platform dependent model based on
the Business Process Execution Language for Web Services (BPEL4WS). We discuss
design-time and run-time aspects of a methodology for agent-enabled business process
modeling.

As noted in the introduction, the current paper deliberately leaves a number of
questions and technical issues open. Firstly, this includes most of the agent layer of the
conceptual architecture. Currently we have shown how semantic process and service
information can be modeled in a technology-neutral way using industrial modeling
standards. Obviously, it will also be necessary to model the agents that actually make
use of this information. We believe that current agent design methodologies can be
used at this point; however, certain extensions may be required to make these method-
ologies cope with the notion of business processes and to leverage the concept of a
Model-Driven Architecture to the agent layer. Achieving this requires further re-
search.

A second open issue is the extension of our model to enable code generation. In
order to be able to generate executable code from platform-specific models,
transformation rules will need to be designed and additional platform-specific
information needs to be encoded. We believe that these transformation rules can be
defined directly on the UML meta model. However, the verification of this hypothesis
is open.

In summary, there is still some way to go to achieve the vision of business-process
aware agents that can understand semantically enhanced business process definitions,
that can help in the design of business processes, that can select appropriate business
processes for execution, monitor distributed business process execution, recognize and
fix problems in a collaborative manner. We hope that with this paper, we succeeded in
setting a starting point and defining an overall approach that will help researchers and

70

practitioners to ultimately build such technology based on existing standards for
service-oriented computing, business process management, and software architecture.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Armstrong, Ch. (2002) ‘Modelling Web Services with UML’, Talk given at the OMG Web

Services Workshop 2002.

. Barbuceanu, M., Fox M.S. (1997) ‘Coordinating Multiple Agents in the Supply Chain’.

Proceedings of WET-ICE 97, Boston, pp. 134-141.

. B. Bauer, J. P. Miiller, J. Odell: Agent UML: A Formalism for Specifying Multiagent

Software Systems. International Journal of Software Engineering and Knowledge Engi-
neering (IJSEKE) 11(3): 207-230, 2001.

. BPMI (2003), 10 June, http://www.bpmi.org/
. ebXML (2003) ‘ebXML Business Process Specification Schema’, June 2003,

http://www.ebxml.org/specs/ebBPSS.pdf

. FIPA (2003), FIPA specifications, http://www.fipa.org/specs/fipa00030/
. Friese T., Freisleben B., Rusitschka S., Southall A. A Framework for Resource Manage-

ment in Peer-to-Peer Networks. In Proceedings of NetObjectDays 2002, Volume 2591 of
Lecture Notes in Computer Science, pp. 4—21, Springer-Verlag.

. Fuchs, 1. (2002) ‘Web Services and Business Process Management Platforms — Under-

standing Their Relationship and Defining an Implementation Approach’,
http://www.ebpml.org/ihf.doc

. Giunchiglia F., Mylopoulos J, and Perini A. The Tropos Software Development Methodol-

ogy: Processes, Models, and Diagrams. In Agent-oriented Software Engineering III. Lec-
ture Notes in Computer Science, volume 2585, pp. 162—173. Springer-Verlag, 2003.

Guo Y., J. P. Miiller, C. Weinhardt. Learning User Preferences for Multi-attribute Negotia-
tion: An Evolutionary Approach. In Proceedings of the 3rd International Central and East-
ern European Conference on Multi-Agent Systems, volume 2691 of Lecture Notes in Arti-
ficial Intelligence, pages 303-310, Prague, Czech Republic. Springer-Verlag, 2003.

Huget M.-P. "An Application of Agent UML to Supply Chain Management". In Proceed-
ings of Agent Oriented Information System (AOIS-02), Paolo Giorgini and Yves
Lespérance and Gerd Wagner and Eric Yu (eds.), Bologna, Italie, July 2002. (Short presen-
tation of the technical report ULCS-02-015)

Huhns, M.N. (2002) ‘Agents as Web Services’, IEEE Internet Computing, July/August
2002, pp. 93-95.

IBM (2003) BPEL4WS: Business Process Execution Language for Web Services,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

IBM Business Process Execution Language for Web Services Java Run Time.
http://www.alphaworks.ibm.com/tech/bpws4;j

Jennings N.R., P. Faratin, T. J. Norman, P. O'Brien and B. Odgers (2000) "Autonomous
Agents for Business Process Management" Int. Journal of Applied Artificial Intelligence
14 (2) 145-189.

Jennings N.R., K. Sycara, and M. Wooldridge. A Roadmap of Agent Research and Devel-
opment. Autonomous Agents and Multi-Agent Systems, 1(1):7--38, 1998.

Model Driven Architecture homepage. The Object Management Group (OMG).
http://www.omg.org/mda/

18.

19.

20.

21.

22.

23.
24.

25.

71

Miiller, J.P., Bauer, B. (2002) ‘Agent-oriented Software Technologies: Flaws and Reme-
dies’, Proceedings of Workshop on Agent Oriented Software Engineering (AOSE 2002),
Bologna, pp. 210-227.

Miiller, J.P. The Design of Autonomous Agents — A Layered Approach, volume 1177 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.

Radjou, N., Orlov, L. M., und Nakashima, T.: Adaptive Agents Boost Supply Network
Flexibility. 2002. March 2002 Tech Strategy Brief. Forrester Research.

Thone, S., Depke R., Engels G. (2002) ‘Process-Oriented, Flexible Composition of Web
Services with UML’, Proc. of Joint Workshop on Conceptual Modeling Approaches for e-
Business (eCOMO 2002); Tampere; (to appear)

UML Homepage. The Object Management Group. http://www.omg.org/uml/

W3C Web Services glossary. http://www.w3.org/TR/ws-gloss/

Wooldridge M., Jennings J.R., and Kinny D. The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multiagent Systems, volume 3,
number 3, 2000, pp. 285—312.

Kleppe M., Warmer J., Bast W. MDA Explained — The Model Driven Architecture: Prac-
tice and Promise, Addison Wesley, 2003

