
On Linear Approximation of Modulo Sum

Alexander Maximov

Department of Information Technology
Lund University

Box 118, SE–22100 Lund, Sweden
movax@it.lth.se

Abstract. The general case for a linear approximation of the form
“X1 + · · ·+ Xk mod 2n” → “X1 ⊕ · · · ⊕Xk ⊕N” is investigated, where
the variables and operations are n-bit based, and the noise variable N
is introduced due to the approximation. An efficient and practical algo-
rithm of complexity O(n · 23(k−1)) to calculate the probability Pr{N} is
given, and in some cases it can be reduced to O(2k−2) .

1 Introduction

Linear approximations of nonlinear blocks in a cipher is a common tool for
cryptanalysis. One of the most typical approximations is the substitution of
the arithmetical sum modulo 2n (�) with the XOR-operation (⊕) of the input
variables. We introduce a noise variable N and write: X1 � · · ·�Xk = X1⊕· · ·⊕
Xk ⊕ N . For a distinguishing attack the bias of a linear combination of noise
variables can be calculated if their distributions are known. For the considered
approximation the distribution of N can be calculated in two ways:

I. for X1 = 0 . . . 2n − 1 ← O(2k·n)
. . .
for Xk = 0 . . . 2n − 1

DistN [(X1 � · · ·� Xk)⊕
(X1 ⊕ · · · ⊕Xk)]++;

or

II. for C = 0 . . . 2n − 1 ← O(c · 2n)
DistN [C]=ProbOfN(C);

where the function ProbOfN(C) calculates the corresponding probability
(see Section 2). Note that we deal with integer-valued distribution tables, i.e.,
Pr{N = C} = DistN [C]/2k·n.

2 The Function ProbOfN(C)

Let C = cn . . . c20 (note that Pr{N = cn . . . c21} = 0). Then:

ProbOfN(C) = (1 1 . . . 1 )×
2∏

i=n

Tci × S0,

B. Roy and W. Meier (Eds.): FSE 2004, LNCS 3017, pp. 483–484, 2004.
c© International Association for Cryptologic Research 2004



484 Alexander Maximov

where T0, T1, and S0 are fixed matrices. The algorithm to construct the matrices
T0, T1, and S0 is given below.

Initialization:
S0 = (0) - is of size (2k−1 × 1)

T0 = T1 = (0) - is of size (2k−1 × 2k−1)
Algorithm 1: S0 – construction

1. for X = 0 to 2k − 1

2. S0[�#X
2

�]+ = 1
Algorithm 2: T0, T1 – construction

1. for C = 0 to 2k−2 − 1

2. for X = 0 to 2k − 1

3. T0[C + �#X
2

�][2C] + +,

4. T1[C + �#X+1
2

�][2C + 1] + +;

where #X is the Hamming weight of X.

3 Example

Assume that n = 5 and k = 3, i.e., N = (X1 � X2 � X3) ⊕ (X1 ⊕ X2 ⊕ X3).
Then:

T0 =

⎛
⎜⎜⎝

4 0 0 0
4 0 4 0
0 0 4 0
0 0 0 0

⎞
⎟⎟⎠T1 =

⎛
⎜⎜⎝

0 1 0 0
0 6 0 1
0 1 0 6
0 0 0 1

⎞
⎟⎟⎠S0 =

⎛
⎜⎜⎝

4
4
0
0

⎞
⎟⎟⎠ .

Let C = 10110, then ProbOfN(C)= (1 1 1 1) × T1 × T0 × T1 × T1 × S0, and
⇒ Pr{N = 10110} = 1536/23·5 = 0.046875.

4 Optimization Ideas

If n is not very large, say n = 32 bits, then optimization can be done in the fol-
lowing way. Represent C = AB0, where A = c32 . . . c16 and B = c15 . . . c2. Then
create two tables of vectors: RLeft[A] = (1 1 . . . 1)×∏16

i=32 Tci and RRight[B] =∏2
i=15 Tci × S0 , for all A and B. Then the probability Pr{N = C} is just

a scalar product RLeft[c32 · · · c16]×RRight[c15 · · · c2], and the time complexity is
O(2k−2). This idea of partitioning can be extended to larger n as well.


	On Linear Approximation of Modulo Sum
	Introduction
	The Function ProbOfN(C)
	Example
	Optimization Ideas




