On Linear Approximation of Modulo Sum

Alexander Maximov

Department of Information Technology Lund University Box 118, SE-22100 Lund, Sweden movax@it.lth.se

Abstract. The general case for a linear approximation of the form ${}^{"}X_1 + \cdots + X_k \mod 2^{n}{}^{"} \to {}^{"}X_1 \oplus \cdots \oplus X_k \oplus N{}^{"}$ is investigated, where the variables and operations are *n*-bit based, and the noise variable N is introduced due to the approximation. An efficient and practical algorithm of complexity $O(n \cdot 2^{3(k-1)})$ to calculate the probability $\Pr\{N\}$ is given, and in some cases it can be reduced to $O(2^{k-2})$.

1 Introduction

Linear approximations of nonlinear blocks in a cipher is a common tool for cryptanalysis. One of the most typical approximations is the substitution of the arithmetical sum modulo $2^n (\boxplus)$ with the XOR-operation (\oplus) of the input variables. We introduce a noise variable N and write: $X_1 \boxplus \cdots \boxplus X_k = X_1 \oplus \cdots \oplus X_k \oplus N$. For a distinguishing attack the bias of a linear combination of noise variables can be calculated if their distributions are known. For the considered approximation the distribution of N can be calculated in two ways:

I. for
$$X_1 = 0 \dots 2^n - 1 \qquad \leftarrow O(2^{k \cdot n})$$

 \vdots
for $X_k = 0 \dots 2^n - 1$
 $\text{Dist}_N[(X_1 \boxplus \dots \boxplus X_k) \oplus (X_1 \oplus \dots \oplus X_k)] + +;$

or

II. for
$$C = 0 \dots 2^n - 1$$
 $\leftarrow O(c \cdot 2^n)$
Dist_N[C]=ProbOfN(C);

where the function $\operatorname{ProbOfN}(C)$ calculates the corresponding probability (see Section 2). Note that we deal with integer-valued distribution tables, i.e., $\Pr\{N=C\} = \operatorname{Dist}_N[C]/2^{k \cdot n}$.

2 The Function ProbOfN(C)

Let
$$C = \overline{c_n \dots c_2 0}$$
 (note that $\Pr\{N = \overline{c_n \dots c_2 1}\} = 0$). Then:
 $\operatorname{ProbOfN}(C) = (1 \ 1 \dots 1) \times \prod_{i=n}^2 \mathbf{T}_{c_i} \times \mathbf{S}_{\mathbf{0}},$

B. Roy and W. Meier (Eds.): FSE 2004, LNCS 3017, pp. 483-484, 2004.

© International Association for Cryptologic Research 2004

where T_0 , T_1 , and S_0 are fixed matrices. The algorithm to construct the matrices T_0 , T_1 , and S_0 is given below.

```
      Initialization:

      S_0 = (0) - is of size (2^{k-1} \times 1)

      T_0 = T_1 = (0) - is of size (2^{k-1} \times 2^{k-1})

      Algorithm 1: S_0 - construction

      1. for X = 0 to 2^k - 1

      2. S_0[\lfloor \frac{\#X}{2} \rfloor] + = 1

      Algorithm 2: T_0, T_1 - construction

      1. for C = 0 to 2^{k-2} - 1

      2. for X = 0 to 2^k - 1

      3. T_0[C + \lfloor \frac{\#X}{2} \rfloor][2C] + +,

      4. T_1[C + \lfloor \frac{\#X + 1}{2} \rfloor][2C + 1] + +;

      where \#X is the Hamming weight of X.
```

3 Example

Assume that n = 5 and k = 3, i.e., $N = (X_1 \boxplus X_2 \boxplus X_3) \oplus (X_1 \oplus X_2 \oplus X_3)$. Then:

$$\mathbf{T}_{\mathbf{0}} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \mathbf{T}_{\mathbf{1}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 6 & 0 & 1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{S}_{\mathbf{0}} = \begin{pmatrix} 4 \\ 4 \\ 0 \\ 0 \end{pmatrix}$$

Let $C = \overline{10110}$, then ProbOfN(C)= $(1\ 1\ 1\ 1) \times \mathbf{T_1} \times \mathbf{T_0} \times \mathbf{T_1} \times \mathbf{T_1} \times \mathbf{S_0}$, and $\Rightarrow \Pr\{N = \overline{10110}\} = 1536/2^{3 \cdot 5} = 0.046875.$

4 Optimization Ideas

If n is not very large, say n = 32 bits, then optimization can be done in the following way. Represent $C = \overline{AB0}$, where $A = \overline{c_{32} \dots c_{16}}$ and $B = \overline{c_{15} \dots c_2}$. Then create two tables of vectors: $R_{Left}[A] = (1 \ 1 \dots 1) \times \prod_{i=32}^{16} \mathbf{T}_{c_i}$ and $R_{Right}[B] = \prod_{i=15}^{2} \mathbf{T}_{c_i} \times \mathbf{S_0}$, for all A and B. Then the probability $\Pr\{N = C\}$ is just a scalar product $R_{Left}[\overline{c_{32} \cdots c_{16}}] \times R_{Right}[\overline{c_{15} \cdots c_2}]$, and the time complexity is $O(2^{k-2})$. This idea of partitioning can be extended to larger n as well.