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Abstract. The general case for a linear approximation of the form
“X1 + · · ·+ Xk mod 2n” → “X1 ⊕ · · · ⊕Xk ⊕N” is investigated, where
the variables and operations are n-bit based, and the noise variable N
is introduced due to the approximation. An efficient and practical algo-
rithm of complexity O(n · 23(k−1)) to calculate the probability Pr{N} is
given, and in some cases it can be reduced to O(2k−2) .

1 Introduction

Linear approximations of nonlinear blocks in a cipher is a common tool for
cryptanalysis. One of the most typical approximations is the substitution of
the arithmetical sum modulo 2n (�) with the XOR-operation (⊕) of the input
variables. We introduce a noise variable N and write: X1 � · · ·�Xk = X1⊕· · ·⊕
Xk ⊕ N . For a distinguishing attack the bias of a linear combination of noise
variables can be calculated if their distributions are known. For the considered
approximation the distribution of N can be calculated in two ways:

I. for X1 = 0 . . . 2n − 1 ← O(2k·n)
. . .
for Xk = 0 . . . 2n − 1

DistN [(X1 � · · ·� Xk)⊕
(X1 ⊕ · · · ⊕Xk)]++;

or

II. for C = 0 . . . 2n − 1 ← O(c · 2n)
DistN [C]=ProbOfN(C);

where the function ProbOfN(C) calculates the corresponding probability
(see Section 2). Note that we deal with integer-valued distribution tables, i.e.,
Pr{N = C} = DistN [C]/2k·n.

2 The Function ProbOfN(C)

Let C = cn . . . c20 (note that Pr{N = cn . . . c21} = 0). Then:

ProbOfN(C) = (1 1 . . . 1 )×
2∏

i=n

Tci × S0,
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where T0, T1, and S0 are fixed matrices. The algorithm to construct the matrices
T0, T1, and S0 is given below.

Initialization:
S0 = (0) - is of size (2k−1 × 1)

T0 = T1 = (0) - is of size (2k−1 × 2k−1)
Algorithm 1: S0 – construction

1. for X = 0 to 2k − 1

2. S0[�#X
2

�]+ = 1
Algorithm 2: T0, T1 – construction

1. for C = 0 to 2k−2 − 1

2. for X = 0 to 2k − 1

3. T0[C + �#X
2

�][2C] + +,

4. T1[C + �#X+1
2

�][2C + 1] + +;

where #X is the Hamming weight of X.

3 Example

Assume that n = 5 and k = 3, i.e., N = (X1 � X2 � X3) ⊕ (X1 ⊕ X2 ⊕ X3).
Then:

T0 =

⎛
⎜⎜⎝

4 0 0 0
4 0 4 0
0 0 4 0
0 0 0 0

⎞
⎟⎟⎠T1 =

⎛
⎜⎜⎝

0 1 0 0
0 6 0 1
0 1 0 6
0 0 0 1

⎞
⎟⎟⎠S0 =

⎛
⎜⎜⎝

4
4
0
0

⎞
⎟⎟⎠ .

Let C = 10110, then ProbOfN(C)= (1 1 1 1) × T1 × T0 × T1 × T1 × S0, and
⇒ Pr{N = 10110} = 1536/23·5 = 0.046875.

4 Optimization Ideas

If n is not very large, say n = 32 bits, then optimization can be done in the fol-
lowing way. Represent C = AB0, where A = c32 . . . c16 and B = c15 . . . c2. Then
create two tables of vectors: RLeft[A] = (1 1 . . . 1)×∏16

i=32 Tci and RRight[B] =∏2
i=15 Tci × S0 , for all A and B. Then the probability Pr{N = C} is just

a scalar product RLeft[c32 · · · c16]×RRight[c15 · · · c2], and the time complexity is
O(2k−2). This idea of partitioning can be extended to larger n as well.
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