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Abstract. In this paper, we analyze the security of the stream cipher
Helix, recently proposed at FSE’03. Helix is a high-speed asynchronous
stream cipher, with a built-in MAC functionality. We analyze the differ-
ential properties of its keystream generator and describe two new attacks.
The first attack requires 288 basic operations and processes only 212

words of chosen plaintext in order to recover the secret key for any length
up to 256 bits. However, it assumes the attacker can force nonces to
be used twice. Our second attack relies on weaker assumptions. It is
a distinguishing attack that detects internal state collisions after 2114

words of chosen plaintext.

1 Introduction

A stream cipher is a secret key cryptosystem that transforms a short random
secret key K into a long pseudo-random sequence also called keystream, which
is XORed to the plaintext to produce the ciphertext. Although it is possible
to obtain a similar primitive with a block cipher in a “pseudo-random number
generator” mode (like OFB or CFB [6]), it is generally not considered to offer
optimal speed performances. To respond efficiency considerations, fast stream
ciphers reveal useful in real-life applications, especially those using live data
transmission. Many recent stream ciphers proposals have been made in that
direction including SEAL [16], SNOW [2], Scream [10] or Sober-t32 [11].

However, the security of stream ciphers is still an issue (see [1, 3, 7]), espe-
cially when compared to the level of confidence in block ciphers security. For
instance, all stream ciphers candidates for the NESSIE project [14] revealed
various degrees of weakness allowing at least distinguishing attacks faster than
exhaustive search, while no second round block cipher was successfully attacked.
As a consequence, NESSIE did not select any stream cipher in its final portfolio.
Thus the actual challenge is to design fast stream ciphers and provide a bet-
ter confidence in their security level. Several new ciphers aim at reaching these
expectations.

Helix was recently proposed at FSE’03 [5]. It is an asynchronous stream ci-
pher based on a fast keystream generator. Its advantage over other new ciphers
is to offer both confidentiality and integrity. Indeed, after encryption, Helix can
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produce a tag that guarantees the integrity of the message for very little ad-
ditional computation and without requiring a second pass. This functionality
is very useful in many applications where encryption and authentication must
function together on streaming data. Recently, several block cipher modes of
operation also providing integrity “almost for free” (see [9, 12, 15]) have been
proposed, but some of them appear to be patented, which is supposedly not the
case of Helix.

Moreover, the analysis of Helix is an interesting topic since new mechanisms
that will be included in the new 802.11i standard for wireless networks are
apparently fairly close to Helix [4, 18]. The new standard will have to repair
some cryptologic flaws from the previous 802.11b standard, which resulted from
weaknesses in RC4 key scheduling and from an improper use of initialization
vectors [8].

In this paper, we analyze the security of Helix against chosen plaintext and
chosen nonce attacks. We present two attacks which are both faster than ex-
haustive search. Our first attack recovers the secret key (for any length up to
256 bits) with time complexity of 288 basic operations and using 212 words of
chosen plaintext. It assumes an attacker could force encryption of several mes-
sages using the same pair (key,nonce). Our second attack is based on internal
state collisions and distinguishes Helix from random with data complexity of 2114

blocks. This attack uses chosen nonces and chosen plaintext but never re-uses
a pair (key,nonce). Our paper is organized as follows : first, we briefly describe
Helix. Then, in Section 3, we show two weaknesses of the cipher which are fur-
ther developed in Section 4. In Section 5, we describe two attacks based on the
previous observations.

2 Description of Helix

Helix offers two main features : encryption of a plain message and production
of a Message Authentication Code (MAC) to ensure integrity. Several modes of
operation for Helix are proposed by its authors - encryption only, MAC only,
PRNG, . . . Here, we describe briefly the mechanisms of Helix that are important
in our attacks. More details about this design can be obtained in [5].

We mostly handle 32 bits values that we denote as words. Besides, ⊕ denotes
bitwise addition on these values and + addition modulo 232. ROTLn(x) is the
circular rotation of the word x by n bits to the left. We also use the notations
LSB and MSB to refer to the least and most significant bit of a word.

2.1 General Structure of the Cipher

Helix is an asynchronous stream cipher, based on an iterated block function
applied to an internal state of 160 bits. The input consists in a secret key K of
varying length, up to 256 bits, and a nonce N of 128 bits. The internal state
before encryption of the i-th word of plaintext is represented as 5 words

(Z(i)
0 , . . . , Z

(i)
4 )
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Fig. 1. The general structure of Helix

which are initialized for i = 0 using K and N . Details of this initialization
mechanism are irrelevant here. The general structure of the encryption algorithm
is described in Figure 1. It basically uses a block function F to update the internal
state in function of the plaintext P , the key K and the nonce N .

More precisely, during the i-th round, the internal state is updated with F ,
using the i-th word of plaintext Pi and two words derived from K, N and i,
denoted as Xi,0 and Xi,1. We refer to them as the “round key words”. Hence,

(Z(i+1)
0 , . . . , Z

(i+1)
4 ) = F (Z(i)

0 , . . . , Z
(i)
4 , Pi, Xi,0, Xi,1)

The i-th keystream word, also denoted as Si, is equal to Z
(i)
0 . It is added

to Pi to produce the i-th ciphertext word Ci. Thus,

Si = Z
(i)
0

Ci = Si ⊕ Pi

This process is repeated until all words of the plaintext have been encrypted.
Finally, a last step (described in [5]) can generate a tag of 128 bits that consti-
tutes the MAC. More details on this general framework are given in the following
sections.

2.2 The Block Function

The round function F of Helix mixes three types of basic operations on words:
bitwise addition represented as ⊕, addition modulo 232 represented as �, and
cyclic shifts represented as <<<. F relies on two consecutive applications of
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Fig. 2. The half-round “helix” function G

a single “helix” function, which constitutes half of the round function. This
“helix” function is denoted as G and is represented in Figure 2.

G uses two auxiliary inputs (A, B). In the first half of the round function,
(A, B) = (0, Xi,0) and in the second half, (A, B) = (Pi, Xi,1). Thus, the block
function can be described by the following relations

(Y (i)
0 , . . . , Y

(i)
4 ) = G(Z(i)

0 , . . . , Z
(i)
4 , 0, Xi,0)

(Z(i+1)
0 , . . . , Z

(i+1)
4 ) = G(Y (i)

0 , . . . , Y
(i)
4 , Pi, Xi,1)

where (Y (i)
0 , . . . , Y

(i)
4 ) is the internal state in the middle of the computation.

2.3 Role of K and N

To protect the cipher against related-key attacks, a first step is applied that
computes a working key K from the actual secret key U . Independently of its
length l(U), K is always 256 bits long and is used in all subsequent operations
instead of U . The derivation of K is based on 8 rounds of a Feistel network. The
result is also represented as 8 words: K0, . . . , K7.

Besides, Helix uses a nonce N to obtain different keystream sequences with
the same secret key. N is always 128 bits long and is generally represented as 4
words: N0, . . . , N3. An expansion phase turns it into a 256 bits value by creating 4
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additional words N4, . . . , N7 defined as

Nk+4 := (k mod 4) − Nk

for k = 0, . . . , 3. During the i-th round of encryption, the round key words Xi,0

and Xi,1 are computed as

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 + Ni mod 8 + X ′
i + i + 8

X ′
i :=

⎧⎨
⎩

⌊
(i + 8)/231

⌋
if i mod 4 = 3

4 l(U) if i mod 4 = 1
0 otherwise

These values depend only on i, K and Ni. Besides, it is straightforward to
reconstruct the secret key from these values for 4 consecutive rounds when the
nonce is known.

3 Some Weaknesses of Helix

In this section, we describe two weaknesses of the block function. They respec-
tively concern the role of the plaintext words and the nonce words at each round.

3.1 Influence of Each Plaintext Word

Since Helix requires a plaintext-dependent keystream, it is reasonable to analyze
the round function assuming an attacker can control the plaintext introduced.
In general, an attacker should not be able to recover any information about
the secret key or the internal state of the cipher, by observing the keystream
corresponding to chosen plaintext.

Using the notations of Section 2, Pi denotes the i-th word of plaintext. It is
introduced inside Helix internal state at the i-th advance. Then, at the beginning
of the (i + 1)-th advance, a new keystream word Si+1 is produced. From the
description of Helix, one sees that Pi is introduced only in the second half of the
block function (as the input A of Figure 2). It is XORed to Y

(i)
3 , then added

to Y
(i)
0 . The result is then modified only once before the end of the round -

excepting cyclic shifts - through a XOR with some intermediate value (referred
to as a). However, it is easy to verify that a is actually independent of Pi.
Thus Si+1 can be computed as

Si+1 = Z
(i+1)
0 = ROTL20(a ⊕ ROTL9(Y

(i)
0 + (Y (i)

3 ⊕ Pi)))

If the plaintext word P ′
i = Pi ⊕ ∆ was introduced instead of Pi, then the next

keystream word would be S′
i+1, such that

δ = Si+1 ⊕ S′
i+1

= ROTL29((x + (y ⊕ Pi)) ⊕ (x + (y ⊕ Pi ⊕ ∆)))
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where x and y respectively denote the intermediate words Y
(i)
0 and Y

(i)
3 . Suppose

that Pi = 0, then for any difference ∆ on the plaintext,

∆′ = ROTL3(δ) = (x + y) ⊕ (x + (y ⊕ ∆)) (1)

is the corresponding difference on the keystream. In Section 4, we will discuss
how an attacker can take advantage of this differential property.

3.2 Influence of Each Nonce Word

Similar differential properties hold regarding each nonce word. Indeed, the nonce
N serves two purposes in Helix :

– Fill the initial 160 bits of internal state.
– Derive two words Xi,0 and Xi,1 introduced at round i.

Concerning this second task, it appears from Section 2.3 that the two “key
words” introduced at each round do not depend on the full nonce. Actually, the
round key words at round i depend only on Ni mod 4. Therefore, if we consider
two distinct nonces N and N ′ where only one word changes, the round function
will essentially apply the same mapping on the internal state, for 3 rounds out
of 4. This property has consequences on the propagation of state collisions.

Moreover, if only one nonce word Ni is modified to Ni +∆ then, for rounds j
such that j mod 4 �= i, both round key words remain unchanged. For other
positions, Xj,1 is changed to (Xj,1 ± ∆) while Xj,0 is unchanged. Since Xj,1 is
introduced at the very end of the block function, we have a differential property,
like in Section 3.1. When all other inputs are unchanged, the difference on the
keystream words resulting from this difference ∆ on the nonce word Ni is

∆′ = a ⊕ (a ± ∆) (2)

for some unknown internal value a (see Figure 2).

4 Differential Properties of Addition Modulo 232

We have seen that differential patterns on the plaintext or the nonce propagate
to simple differential patterns on the keystream. More precisely, the differential
property on the plaintext is related to a general problem concerning linear ap-
proximations of addition modulo 232 that can be summarized by relation (1). In
this section, we will describe various ways to take advantage of this observation.

4.1 Related Problems

A well known problem (see [13]) is, given two fixed words x and y, to find a pair
(∆, ∆′) such that

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (3)
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and that is observed with high probability. This problem has been studied from
a theoretical point of view in [17]. However, in the present situation, we are
looking things the other way around since x and y are unknown to us but we
might be able to choose ∆ and observe ∆′. More precisely, we want to

1. find statistical properties that can be easily detected in order to distinguish
Helix from a random source.

2. recover some secret information about the internal state of Helix (the values
of x and y for instance).

4.2 A “Dummy” Distinguisher

Suppose an attacker encrypts two messages that begin similarly, but, at some
point, differ on one word by

∆ = 0x80000000

Then, the difference on the next keystream word (called ∆′) is such that ∆′ = ∆,
since there is no propagation from MSBs to LSBs during an addition. Using this
relation, the block function of Helix can be distinguished from a random source
with two chosen messages, but this requires to use twice the same key and the
same nonce. This attack scenario is discussed in Section 5. In the next section,
we go further by trying to actually recover the two internal values x and y using
relation (3).

4.3 Recovering x and y

In this section, we are interested in recovering the two intermediate values x
and y involved in relation (3). Thus, we have to consider the following problem

Problem 1. Let x and y be two given constants of 32 bits. For any
∆,

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (4)

is given. How many (x, y) are possible solutions ? Give an efficient
algorithm to recover these solutions.

First, it is easy to see that the solution is not always unique. Indeed, if x = 0,
then ∆′ does not depend on y. However, in average, the number of candidates
is small. In this section, we propose an efficient algorithm to recover the two
unknown values x and y with a limited number of observations. The following
notations are used : wj denotes the j-th bit of a word w. Besides, let cj denote
the carry bit at position j in the addition of x and y ⊕∆. For all j, 0 ≤ j ≤ 31,

(x + (y ⊕ ∆))j = xj ⊕ yj ⊕ ∆j ⊕ cj

and initially c0 = 0. We also suppose that x �= 0.
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Claim. Let t, 0 ≤ t ≤ 30, denote the position of the least signif-
icant bit ’1’ of x. Then, there are exactly 2t+3 valid pairs (x, y),
solutions of the previous problem. Recovering these solutions can
be done by testing at most 93 chosen values of ∆.

We use the following induction

– Assume all bits of x and y are known up to position (i − 1).
– If any xj = 1 with 0 ≤ j < i, then

• By choosing an appropriate value of ∆k for j ≤ k < i, it is possible to
obtain any value of ci (0 or 1), since everything is known up to position i.

• In both cases, pick both values of ∆i (0 and 1) and set all other bits of
∆ to 0. The resulting value of ∆′

i+1 depends only on the carry bit ci+1.
• Recover xi and yi by comparing the different distributions (see Table 1)

– Otherwise
• Necessarily, ci = 0
• Using Table 1, it is still possible to recover xi.
• No information on yi is obtained.

Therefore, by induction, all bits of x can be recovered from position 0 to
30 (it is impossible to recover x31 because no observation can be made about
position 32 of ∆′). Similarly, all bits of y from position (t + 1) to 30 can be
recovered. The other t + 3 bits of x and y need to be guessed. When x = 0, our
analysis remains valid by taking t = 30.

In fact, 3 queries are enough to distinguish the distributions in Table 1. Thus,
at most 3×31 = 93 queries are sufficient to recover a valid solution (x, y). Besides,
it is easy to verify that flipping the bit yt will imply to flip all bits xj and yj for
t < j < 31 in order to obtain an other valid solution, since all carry bits also
get flipped. Therefore all solutions of the system can be expressed directly from
a single solution, without any extra query.

We performed some experiments using various values of x and y and always
identified with success the expected number of 2t+3 solutions.

Table 1. Distribution of ∆′
i+1 depending on xi and yi

xi yi ci ∆i ∆′
i+1

1 1 0 0 δ
1 1 0 1 δ ⊕ 1
1 1 1 0 δ
1 1 1 1 δ

1 0 0 0 δ
1 0 0 1 δ ⊕ 1
1 0 1 0 δ ⊕ 1
1 0 1 1 δ ⊕ 1

xi yi ci ∆i ∆′
i+1

0 1 0 0 δ
0 1 0 1 δ
0 1 1 0 δ ⊕ 1
0 1 1 1 δ

0 0 0 0 δ
0 0 0 1 δ
0 0 1 0 δ
0 0 1 1 δ ⊕ 1
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5 Attacks against Helix

In this section, two attacks against Helix are developed. The first one is a dis-
tinguishing attack using chosen plaintext, which is extended to a key recovery
attack requiring 288 basic operations and about 212 block encryptions. A sec-
ond attack takes advantage of choosing similar nonces to detect internal state
collisions.

5.1 A Distinguishing Attack

In Section 3.1, we have shown that the introduction of a chosen difference on
the plaintext from a fixed internal state results in predictable patterns on the
keystream. However, to turn these observations into an attack, it is necessary to
consider the following scenario

– The attacker requests encryption of some random message P = (P1, . . . , Pn)
under some pair (key,nonce) = (K, N). The resulting ciphertext is C =
(C1, . . . , Cn).

– He requests encryption with (K, N) of an other message where Pn−1 is re-
placed by P ′

n−1 = Pn−1 ⊕ ∆. This yields the ciphertext C′ = (C′
1, . . . , C

′
n).

– The attacker observes ∆′ = Cn ⊕ C′
n.

In this case, we have seen that a real Helix output can be distinguished from
a random output, by picking ∆ = 0x80000000 (then, necessarily, ∆′ = ∆).

5.2 A Simple Key Recovery Attack

Now, we wish to extend the observations of Section 4.3. This technique allowed
an attacker to retrieve up to 64 bits of intermediate values by observing the
keystream corresponding to well chosen plaintexts. Actually, this information
leakage is an important weakness, since it reduces the entropy of the internal
state. Using an appropriate guessing technique, one may hope to turn it into a key
recovery attack. Such an attack is generally called a guess-then-determine attack,
since an attacker will first guess some internal state bits and then determine the
correct guess using available information.

First, let us consider the round number i of Helix encryption. We suppose an
attacker has access to the keystream word Z

(i)
0 and to a few candidates for Y

(i)
0

and Y
(i)
3 as described in Section 4.3. These two intermediate words depend on

the internal state at input of round i : (Z(i)
0 , . . . , Z

(i)
4 ) and on the first round

key word Xi,0. This is represented in Figure 3 where each box is a 32 bits value
and dashed boxes represent known values. An attacker may hope to use these
conditions to reduce the number of possible internal states to

2128 × 232 × 2−64 = 296

Actually, this number can be reached by guessing Z
(i)
2 , Z

(i)
3 and Xi,0. Then

the attacker can retrieve Z
(i)
1 and Z

(i)
4 by looking precisely at the function G
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Fig. 3. The framework of the simple attack

(see Figure 2). Thus, the attacker can indeed find 296 candidates for the internal
state at the beginning of round i. To tell which candidate is correct, some of the
previous rounds (say τ = 5 rounds) need to be inverted. This can be done without
increasing the number of candidates, provided Y

(i−j)
0 and Y

(i−j)
3 are known, for

0 ≤ j < τ . For this purpose, the recovery technique of Section 4.3 needs to be
applied τ times here. As long as it returns few solutions, an appropriate round
inversion reduces the number of candidates - roughly by a factor 232. Thus, for
τ = 5 we eventually obtain a unique candidate, and enough “round key words”
to directly retrieve the complete secret key.

To summarize, this simple attack requires to guess 96 bits of internal state
and to apply τ times the technique described in Section 4.3 to recover interme-
diate values. However, this technique does not provide a unique solution, which
increases the time complexity of the attack. Actually, only the round i is in the
critical path and with probability 1

2 , the number of solutions here is only 8. In
this “good” case, the complexity of the attack is 296×8 = 299 basic instructions.
In “bad” cases, there are more than 8 solutions at position i, but the attacker
may easily find another position i′ where there are only 8 solutions.

The data complexity corresponds to the encryption of τ×93 pairs of messages
of length at most τ = 5 words. Thus, the number of plaintext blocks encrypted
is

2 × 5 × 5 × 93 � 212

5.3 An Improved Attack

A more subtle guessing technique can be applied using bitwise analysis of the
block function. The “subtle” attack consists in guessing only 2 words, Z

(i)
3 and

(Z(i)
1 +Z

(i)
4 ), plus 17 LSBs of Z

(i)
2 . Then, like in the “simple” attack, the attacker

can obtain the 17 LSBs of ROTL25(Z
(i)
4 ) and thus the 17 LSBs of ROTL25(Z

(i)
1 ).

Looking at the block function of round i − 1, the attacker knows two output
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words, and has partial knowledge of the three other output words. Two relations
can be written, involving one unknown intermediate word a

Z
(i)
3 = ROTL21(Z

(i)
1 ) + a

Y
(i−1)
3 = ROTL28(Z

(i)
1 ) ⊕ ROTL21(Z

(i)
2 )

⊕ROTL26(Z
(i)
4 ) ⊕ ROTL19(a)

From the first relation, one sees that guessing the 4 LSBs of a will give the
attacker a candidate for the 21 LSBs of a (using partial knowledge of Z

(i)
1 ). Then,

using the second relation, a condition on bit number 13 of Y
(i−1)
3 is obtained.

This condition eliminates half of the candidates. Then, each additional guessed
bit of Z

(i)
2 provides one extra condition, that is immediately used to discard half

of the guesses. This ”early abort” technique results in a guessing complexity of

232 × 232 × 217 × 24 = 285

The backtracking can be performed here exactly as before to complete the attack.
The resulting time complexity is reduced to 8×285 = 288 guesses (each requiring
a few boolean operations on 32 bit words). Furthermore, the existence of even
better guessing techniques should be investigated.

5.4 Practical Impact

Previously, we have proposed a differential attack on Helix, using chosen plain-
text. It requires to obtain twice the same internal state as input of the block
function. Thus, the attacker needs to encrypt twice with the same key and the
same nonce, and to introduce a difference in the plaintext at some point. How-
ever in [5], it is specified that ”the sender must ensure that each (K, N) is used
at most once to encrypt a message”, otherwise Helix ”loses its security prop-
erties”. According to the authors, this requirement is not restrictive since it is
underlying many similar situations in cryptography. For instance, when using
a synchronous stream cipher, if secret key and nonce are unchanged, the same
pseudo-random sequence is generated twice, which breaks the confidentiality.
Similar problems may also be encountered when using a block cipher in OFB
mode for instance. In general, a distinguishing attack is always possible when
nonces are re-used. We believe the situation is more preoccupying in the case of
Helix since we obtain key recovery attacks and not only distinguishing attacks.

On the one hand, there are situations where the previous scenario is not real-
istic. Indeed, the secret key may be used to communicate only in one direction.
In this case, it is straightforward for the sender never to re-use the same nonce
(he can use counters for instance). Apparently, this is true for wireless networks,
where each pair of users have two separate secret keys, one for each direction.
A differential attack cannot be applied there, unless the attacker gains physically
access to the encryption machine and can force nonce repetition. This may be
possible in some particular occasions, but in general it is a strong assumption.
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On the other hand, in most situations, our differential attack scenario seems
realistic. For instance, several users often need to share a secret key. Even if
they split properly the nonce space, what happens if the same message is sent to
multiple receivers ? An attacker can sit in the middle, and modify the ciphertext
on one of the communication channels. Then, by comparing a “faulty” decryption
with a correct decryption, he may obtain the kind of differential information he
needs.

To conclude, we think the security impact of our attacks will highly depend
on the context, but in general, one should expect the block function of Helix to
resist better against differential attacks. Overall, the secrecy of the key cannot
reasonably rely on the absence of nonce repetition.

5.5 A Chosen Nonce Attack

A weakness regarding the influence of each nonce word has been identified in
Section 3.2. Here, we propose an extension to a distinguishing attack against
Helix. Its complexity is much bigger than the previous attack. However it has
the advantage of being based on weaker assumptions. Indeed, in this case, the at-
tacker does not need to encrypt several messages with the same pair (key,nonce).
Instead, we suppose that the same plaintext P is encrypted twice with the same
secret key, but two distinct nonces N and N ′ such that

N = (N0, N1, N2, N3)
N ′ = (N0, N1, N2, N3 + ∆)

Then, as argued in 3.2, the block function is essentially the same for any round i
such that i mod 4 �= 3. If a state collision occurs on the input of such a round,
it will also propagate to a state collision for the input of the next round. Thus
state collisions on inputs of rounds i such that i mod 4 = 0 imply collisions on 4
consecutive blocks of keystream. Moreover, the difference on the 5-th block can
be predicted exactly (by picking ∆ = 10 . . . 0x for instance). Thus, we obtain
a detectable condition on 160 bits of keystream. This is sufficient to detect state
collisions with good probability.

Therefore, contrarily to what is claimed in [5], state collisions in Helix can be
detected. However, the length of messages is not allowed to exceed 262 blocks,
so collisions are unlikely to be observed for practice purpose.

5.6 Forcing the Collisions

In this section, we show that the previous attack can be extended into a dis-
tinguisher against Helix with only 2114 encrypted blocks. This is an important
result, since it constitutes a break of the cipher, according to the definition given
by the authors [5].

The general idea is to work on a large set of nonces that will preserve collisions
during a few rounds. Then these collisions can be detected by observing the
corresponding keystream blocks. More precisely, we build a message P of the
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maximal authorized length 262 words by repeating 262 times the same word P0.
Then, P is encrypted under a fixed unknown secret key K using different nonces
of the form

N (δ,∆) = (N0 + δ, N1 + δ, N2 + δ, N3 + ∆)

with four fixed constants (N0, . . . , N3). δ is of the form 8 × x where x spans all
values from 0 to 220 and ∆ spans all 232 possible words. Therefore the number
of blocks encrypted is

262 × 232 × 220 = 2114

As before, we consider any state collisions that occurs between two different
nonces N (δ1,∆1) and N (δ2,∆2), at two different positions in the encryption, re-
spectively i1 and i2. We would like this state collision to be preserved for several
rounds, in order to detect some properties on the keystream, as in the previous
Section. We are sure that the plaintext word introduced is always P0, by con-
struction. Furthermore we would like to have the same round key words for both
encryptions. Hence, these positions should satisfy

i1 mod 8 = i2 mod 8 = 0

in order to have Xi1+j,0 = Xi2+j,0 for all j. Besides, if

δ1 + i1 = δ2 + i2 mod 232 (5)

then Xi1+j,1 = Xi2+j,1 when j mod 4 �= 3. In this case, the state collision is
preserved during at least 3 rounds. Concerning rounds i1 + 3 and i2 + 3, we
would like to also preserve the collision, thus we need Xi1+3,1 = Xi2+3,1 or

∆1 + i1 + X ′
i1+3 = ∆2 + i2 + X ′

i2+3 mod 232 (6)

With these three assumptions, the state collision is preserved at least until the
rounds i1 + 7 and i2 + 7 which results in collisions on 8 consecutive words of
keystream.

To mount an attack, we first store sequences of 8 consecutive keystream
words, for each message and for each position i such that i mod 8 = 0. Then,
we look for a collision among the 2114

8 = 2111 entries in this table. This can be
achieved by sorting the table, with complexity of 2111×111 � 2118 basic instruc-
tions. Then, since we consider objects of 256 bits, the number of “fortuitous”
collisions in the table is

2111 × 2111

2
× 2−256 � 0

Besides, when a “true” state collision occurs, a collision is also observed on the
entries of the table, provided the additional assumptions (5) and (6) hold. (5)
holds with probability 2−29, since all terms are multiples of 8, and (6) holds with
probability 2−32. Therefore, the number of “true” collision observed in the table
is in average

2111 × 2111

2
× 2−160 × 2−29 × 2−32 = 1
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Thus we have considered enough encrypted data to detect some particular state
collisions that are preserved during a few rounds. We achieve it by observing
patterns of 8 consecutive words of keystream. For a true Helix output we expect
to find a collision in the previous table, while it will not be the case for a random
output. Actually this distinguishing attack can be slightly improved if we take
into account the case i mod 8 = 4.

To conclude, we have proposed a distinguishing attack against Helix requiring
the encryption of 2114 words of plaintext under chosen nonces. This attack is
faster than exhaustive search, processes less than 2128 blocks of plaintext and
respects the security requirements proposed in [5], since no pair (key,nonce) is
ever re-used to encrypt different messages. Therefore, this attack constitutes
a theoretical break of Helix.

6 Conclusion

This paper describes two attacks against the new stream cipher Helix. The first
one recovers the secret key with a reasonably low complexity in time and data,
so we think it should be considered as an important threat. The assumptions we
use are quite usual (chosen plaintext, chosen nonce), but they are outside the
security model proposed by the authors of the cipher.

However, we also propose a second attack, less efficient but which relies on
weaker assumptions. This distinguishing attack constitutes a break of Helix ac-
cording to the definition given by the authors. Both attacks result from weak
differential properties of the encryption function regarding the plaintext and the
nonce. In general, our attack illustrates the fact that one should be careful to
protect new stream ciphers against differential-like attacks.
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