
Echo State Networks
for Mobile Robot Modeling and Control

Paul G. Plöger, Adriana Arghir, Tobias Günther, and Ramin Hosseiny

FHG Institute of Autonomous Intelligent Systems
Schloss Birlinghoven

53754 St. Augustin, Germany
{paul-gerhard.ploeger,adriana.arghir,tobias.guenther,

ramin.hosseiny}@ais.fraunhofer.de

Abstract. Applications of recurrent neural networks (RNNs) tend to
be rare because training is difficult. A recent theoretical breakthrough
[Jae01b] called Echo State Networks (ESNs) has made RNN training
easy and fast and makes RNNs a versatile tool for many problems. The
key idea is training the output weights only of an otherwise topologically
unrestricted but contractive network. After outlining the mathematical
basics, we apply ESNs to two examples namely to the generation of a
dynamical model for a differential drive robot using supervised learning
and secondly to the training of a respective motor controller.

1 Introduction

Neural networks can serve as universal dynamical system representations, thus
they constitute very powerful way of modeling [MNM02]. Simultaneously they
are versatile in the tasks they can solve and without doubt neuronal networks
represent an extremely successful biologically inspired solution concept. Con-
sequently researchers begin to recast technical problems in ways amenable for
solving them by the help of neural networks. Topics cover system modeling, non-
linear control, pattern classification or anticipation and prediction. Examples
are found in form of feed-forward networks i.e. multi-layer perceptrons which
allow autonomous driving of cars [Pom93] or the silicon retinas of Carver Mead
[Mea89] which produce instantaneous optical flow very similar to natural pro-
cesses found in the visual perception of animals. When it comes to even more
interesting recurrent neural networks (RNN), users face some major problems.
They find that using RNNs is in principle possible but mostly too difficult to be
really applicable. Main problems are:

1. What is the ‘right’ structure for a RNN: i.e. which topology fits to the given
problem best?

2. The convergence of teaching: i.e. which method will converge fast enough?
There is a very pronounced desire for efficiency of training.

3. Over-fitting and exactness: i.e how to avoid too literal reproduction yet as-
sure convergent behavior with respect to the teacher signal?

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 157–168, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

158 Paul G. Plöger et al.

There is a proliferation of different approaches for point 1. e.g. Ellman nets,
Jordan nets or Hopfield RNNS to name a few. Yet item 2. severely hinders to
apply RNNs to larger class of problems. Known supervised training techniques
comprise Back Propagation Through Time (BPTT), Real Time Recurrent Learn-
ing (RTRL) or Extended Kalman Filtering (EKF) all of which have some major
drawbacks. Application of BPTT to RNNs requires stacking identical copies of
the network thus unfolding the cyclic paths in the synaptic connections. Unlike
back-propagation used in feed-forward nets, BPTT is not guaranteed to con-
verge to a local error minimum, computational cost is O(TN2) per time step
where N is the number of nodes, T the number of epochs [BSF94]. In contrast
RTRL needs O((N + L)4) (L denotes number of output units), which makes
this algorithm only applicable for small nets. The algorithm complexity of EKF
is O(LN2). EKF is mathematically very elaborate and only a few experts have
trained predefined dynamical system behaviors successfully [SV98]. In this article
we approach items 1. and 2. from a different point of view and give a stunningly
simple solution. We introduce the notion of Echo State Networks (ESNs) and
apply this concept successfully in two problem domains, namely nonlinear sys-
tem identification and nonlinear control. At this time, it seems that ESNs are
also applicable to many others of the problems generally known to be solvable by
RNNs such as filtering sensor data streams [Hou03] or classification of multiple
sensory inputs [Sch02]. Thus they can be applied to many other every day prob-
lems of roboticists and their use is in no way restricted to the covered examples.
See [Jae01b], [Jae01c], [Jae02] for an in-depth coverage of already investigated
examples.

This article makes the following contribution to ESN related research: for the
first time we successfully apply this technique to system modeling and controller
generation for mobile robots. Using well known error norms from control theory
we demonstrate that ESN based well-trained controller can compete with and
even outperforms a classical handwritten one.

The remainder of this article is structured as follows: in section 2 we define
basic notation and mathematics of ESNs. In the core part section 3 we describe
in depth the process of teacher signal generation, training of system model and
motor controller and give results on the soundness of the application of ESNs in
the chosen application scenario. We close with a summary and give references.

2 Recurrent Neural Networks
and the Echo State Property

In general, a discrete time recurrent neural network can be described as a
graph with three sets of nodes, namely K input nodes u, N internal network
nodes x and L output nodes y. We use the terms nodes, units and neurons
interchangeably. Activation vectors at time point n are denoted by u(n) =
(u(n), . . . , uK(n)), x(n) = (x(n), . . . , xN (n)) and y(n) = (y(n), . . . , yL(n)) re-
spectively. The interconnect edges are represented by weights wij ∈ IR, which are
collected in adjacency matrices, such that wij �= 0 implies there is an edge from

Echo State Networks for Mobile Robot Modeling and Control 159

node j → i. We define Win
N×K = (win

ij) for the input weights, WN×N = (wij)
for the internal connections, Wout

L×(K+N+L) = (wout
ij) for the output weights and

finally Wback
N×L = (wback

ij) for the weights which project back from output nodes
into the net, subscripts denote dimensions. Observe that direct impact from an
input node to an output node or from one output node to another output node
is possible. Evolution of the internal activation vector given by

x(n + ) = f(Winu(n + ) + Wx(n) + Wbacky(n)) (1)

where f = (f, . . . , fN) are the internal activation functions. Calculation of the
new internal node vector from the current inputs, given old activation and old
output according to equation (1) is called evaluation. The neural network com-
putes its output activations according to

y(n + ) = fout(Wout(u(n + ),x(n + ),y(n)) (2)

where fout = (fout
 , . . . , fout

L) are the output activation functions and (u(n +
),x(n + ),y(n)) denotes concatenation of input, internal and previous output
activation vectors. Equation (2) is called exploitation. Observe that we do not
require recurrent pathways between internal units, although we expect them to
exist, and that there is no restriction on the topology. In our case of echo state
networks we usually have full matrices for Win,Wout and if needed at all also
for Wback. W is a sparse matrixes with typical densities ranging from 5-20%.
Successive evaluation and exploitation of the net according to equations (1), (2)
might show a chaotic, unbounded behavior. Thus it is necessary to damp the
system. This can be achieved by a proper global scaling of W (see below). With
the given notation the Echo State Property (ESP) can be stated as follows
[Jae02].

Definition 1. Assume that an RNN with (Win,W,Wback) defined like above
is driven by a predefined teacher input signal u(n) and teacher-forced by an
expected teacher output signal y(n) both contained in compact intervals UK and
Y L respectively. Then the network (Win,W,Wback) has the echo state property
(ESP) with respect to UK and Y L iff for every left infinite sequence (u(n),y(n−
)), n = . . . ,−,−,  and all state sequences x(n),x′(n) which are generated
according to

x(n + ) = f(Winu(n + ) + Wx(n) + Wbacky(n)) (3)
x′(n + ) = f(Winu(n + ) + Wx′(n) + Wbacky(n)) (4)

it holds true that x(n) = x′(n) for all n ≤ 0

Intuitively this means that if the network has been running long enough, its
internal state is uniquely determined by the history of the input signal and the
teacher forced output (see [Jae02] for details). The ESP is connected to certain
algebraic properties of the weight matrix W. There are sufficient conditions for
RNNs to either proof or to disproof ESP. Since it eases the further presentation
and the results do not depend on it, we assume fi(x), fout

i = tanh(x) from now
on.

160 Paul G. Plöger et al.

Theorem 1. Define σmax as largest singular value of W, λmax as largest ab-
solute eigenvalue of W.

(a) If σmax < 1 then ESP holds for the network (Win,W,Wback).
(b) If |λmax| > 1 then the network (Win,W,Wback) has no echo states for any

input/output interval UK × Y L which contains the zero input/output tuple
(0,0).

In practical experiments it was found that condition (a) is much too strong
and that on the contrary the negation of (b) appeared to be sufficient in the
sense that it always produced RNNs with ESP though this is not provable up
to now. More precisely we apply the following algorithm to produce RNNs with
ESP:

Algorithm 1 1. Randomly generate a sparse matrix W, w

ij ∈ [−, ] with a

low density (e.g. 5-20% weights �= 0).
2. Normalize W = /|λmax|W, where λmax is eigenvalue of W with maxi-

mal absolute value.
3. Scale W = αW , where α < 1, so α is the spectral radius of W.
4. Then ESP holds for the network (Win,W,Wback)

Observe that the ESP prevails regardless of the choice of (Win or Wback).
Thus the open parameters of the network which require tuning are the dimen-
sionality N of W, spectral radius α, and scaling, sign and topology of input
weights Win and back-propagation weights Wback, all of which have be adapted
to the time series data of the given problem domain. The parameter α can be
interpreted as the intrinsic time scale of the ESN where small α means fast
reacting network and α close to one implies slow reactions. The number of in-
ner nodes, N , relates to the short term memory capacity of the net [Jae01c].
Algorithm 1 gives a surprising answer to problem 1 from section 1: the exact
interconnect topology of the RNN can be arbitrary and a condition taming the
largest eigenvalues will suffice. As another convenient consequence teaching of
echo state networks becomes easy and user friendly. Specifically for RNNs with
ESP, only the matrix of output weights Wout needs to be adjusted. In detail,
one applies the following steps:

Algorithm 2 Let D = {dn|n = 1, . . . , T} be a set of T elements of training
data dn each consisting of a teach input vector uteach(n) and a desired (to be
taught) output vector yteach(n). Set x() = 0 and yteach() = 0.

1. Calculate the current network state x(n + ), i = , . . . , T −  according to
equation (1).

2. For n = T0, . . . , T concatenate (uT
teach(n + ),xT (n + ),yT

teach(n)) in rows
and store it in a state collecting matrix M(T−T+)×(K+N+L)

3. Similarly collect (tanh−1 yT
teach(n)) in rows into the teacher collection matrix

C(T−T+)×L

4. solve for W′ = M−1C where M−1 denotes the pseudo (Moore-Penrose)
inverse of M and set Wout = W

′T .

Echo State Networks for Mobile Robot Modeling and Control 161

Usually T − T0 + 1 >> (K + N + L) so step 4 amounts to the solution of
an over-determined set of equations by regression, which can be accomplished
by virtually any numerical SW packages in little cpu time. Usually there is no
unique solution but there is unique one shortest in length. The trained network
(Win,W,Wout,Wback) is now ready to use by application of equations (1)+(2).
In cases necessary arising stability problems can be cured by adding a vector term
of small white noise in equation (1) during step 3. Algorithm 2 addresses item 2
- the difficult teaching problem- from section 1. ESNs teach the L× (K +N +L)
coefficients of Wout only instead of the whole topology, all other parts remain
untouched.

Now the mathematical basics of ESN can be summarized as follows: we can
heuristically characterize them as RNNs with sparse internal interconnect topol-
ogy and some restriction on the size of its maximal singular (or most of the
time: eigen) value. In ESNs, only output weights are trained. Thus they ease
topology and teaching related problems of classical RNNs. They have a low al-
gorithmic complexity, allow fast teaching and are highly adaptable to AI tasks
like filtering and classification. To train them, a designer still needs to fix some
parameters like dimension, density and spectral radius. Signals have to be prop-
erly filtered, scaled and offset. For each of these operations there exist single or
combined heuristics for an educated guess of the initial values. The most time
consuming part deals with scaling of input and output ranges. Here one needs to
find parameter sets specially adapted to the given problem. Speaking in terms
of electrical circuit analysis shifting and scaling input/output data amounts to
fixing an operating point of the ESN. Like for many other RNN models stability,
data over fitting or lack of generalization abilities remains an issue also for ESNs.
In the next chapter we apply ESNs to real world data stored during a game to
find system models and nonlinear controllers for mobile robots.

3 Applications of ESNs to Control

Our mid size league robots have a standard differential drive with passive caster-
type front wheels, so only nonholonomic movement is possible. As such the
dynamics of the robot forms a nonlinear system which requires expert knowl-
edge to be modeled in an analytic way. Consequently we preferred a black-box
approach to modeling based on RNNs. They are especially powerful when ap-
proximating fast changing dynamics which is frequently the case in our behavior
programming approach called dual dynamics (DD). In DD different behaviors
run simultaneously on each robot [BK01].

Schematically Figure 1 displays the data flow in our robot architecture. Re-
quired left and right wheel speeds are calculated by the DD behavior program
which runs on a LINUX notebook. The two values are send to the PIDs ap-
proximately every 33 msec. The PIDs convert the required speed (cm/s) into a
pulse width modulation signal (PWM) in percent thus effectively controlling the
voltage of the motors. At the two motors actual odometric speed values are mea-
sured. The velocity (cm/s) is feedback to the PID to close the low level control

162 Paul G. Plöger et al.

left right

re
qu

ir
ed

 S
pe

ed
 r

ig
ht

re
qu

ir
ed

 S
pe

ed
 le

ft
pw

m
 le

ft

pw
m

 r
ig

ht

le
ft

ri
gh

t

od
om

et
ry

 r
ig

ht

od
om

et
ry

 le
ft

ro
bo

t
m

ot
or

Behavior

PID

Fig. 1. Interface to low level robot architecture. Above the dashed line, we have the
non-real-time PC-level. Below it there is a closed fast reactive real-time loop on µ-
controller-level. Here physical modeling is mandatory.

odometr
y+∆

ESN as Model

required speed

ESN as controllerESN as Model ESN as controllerpwm odometry pwm

odometry

pwm

odometry

Train System Model Train System Controller Test Model with controller

Fig. 2. Left: training of system model, middle: training of controller, right: combined
simulation of controller and model, acting as a model of the physical robot.

loop and also to the behavior system running on the notebook. It operates in a
non real-time way while below the dotted line the PID micro-controller operates
in real-time in its feedback loop. We employ ESNs in three different situations,
firstly as a system model. Inputs of the model are two PWMs and outputs are
odometric velocities left and right. This can be seen as a forward model as it
maps from inputs to outputs, in a context of a given state vector [Jor95]. In terms
of Figure 1 this amounts to replacing the bottom box by an ESN. Secondly, as
a system controller or inverse model which inverts the system by determining
(i.e. by learning) the motor commands which will cause a desired modification
in state. Here the trained ESN acts as controller, as it provides the necessary
motor command (PWM) to achieve some desired state (i.e. the required speed).
This is equivalent to the substitution of the box PID with an ESN in Figure 1.
We train both replacing networks separately. Lastly in a third setup both ESNs
are coupled to build an integrated model robot/low level controller pair. Then
in Figure 1 the whole system below the dashed line is being modeled.

Echo State Networks for Mobile Robot Modeling and Control 163

Model: Figure 2 displays the two different teaching situations and the appli-
cation situation in the simulator. We begin by training the system model like
depicted on the left side. According to Algorithm 1 we construct an ESN of
dimension N = 100, 5% interconnection arcs spectral radius λ = 0.8, with two
inputs and outputs (i.e. K = 2, L = 2) for left and right wheel. The inputs of
the model are PWMs. Outputs are odometry and the teacher signal is set to
the measured odometry from a stored trace file. The inputs were scaled down
from their original domain [−250, 250] to the range [−1, 1]. We added some mild
noise of +/ − 0.002 during teaching in equation 1 as a fourth term inside the
network activation function. The matrix Wback was set to zero. This is done
for passive filtering tasks. In tasks involving active signal generation, the back
weights are usually different from zero. The parameters and results from training
are summarized in Table 1. We also computed MSEr and MSEl which denote
the mean square error for both learned time series for the left and right wheel.
Teaching took just less then a minute for a training sequence of length 6800 time
steps. The evaluation time took a second on a Pentium III class machine using
a MATLAB 5.30 implementation.

Table 1. Parameters used for training ESNs as Model and as Controller.

Name Model New Contrl.

Dimension 100 100
Density 5% 6%
λ 0.8 0.8
Inputs 2 4
Outputs 2 2
|win

ij | ±0.25 0.5
Noise ±0.002 ±0.002
MSE left 6.5e − 5 4e − 6
MSE right 8.4e − 5 4e − 6
Train steps 6800 1800

A picture of the desired and trained time series is shown in picture Figure 3.
Firstly it can be stated that the trained model follows the trainer signal quite
closely in general. Taking the maximum norm the overall relative error is 12%.
The L1 integral norm of the difference function between teacher and network
output defined as

∫ b

a |f − g|dt/(b − a) is 1.1e-2 on the given time interval, the
respective L2 error norm is 4.2e-4. Taking a closer look the following observations
can be made. Firstly we see how the measurement noise on top of the teacher
signal is filtered away. The ESN generated signal appears to be smoother then the
orignal. Secondly in the start interval [6900,7000] the ESN signal saturates and is
not able to reach the desired 175 cm/sec. The explanation for this is very simple,
since the used data file contained only 212 data points above 150 cm/sec and just
10 over 180cm/sec. This data set is far too small to train the network sufficiently
well in this region of high speeds. By itself an ESN can neither extrapolate nor

164 Paul G. Plöger et al.

generalize for learned situations to close nearby input stimuli yet lying beyond
the previously trained range. Thus it saturates at 150cm/sec. The very same
explanation applies to some observed over-drives when the robot moves back.
During teaching this situation prevailed for just about 10% of the time. We do
not have an convincing explanation for the divergence in intervals [7250,7350]
or [7750,7800] though. It might simply be mentioned that all our observations
indicate that ESNs seems to behave especially well in spiking situations while in
steady state situations a drift is frequently observable. The entire system model
is reasonably exact to be useful in simulations and it surpasses the kinematical
model in prediction quality by far. We then compared this result to a standard
approach applied in the System Identification Toolbox in MATLAB. This SW
supports many different methods but the default is the prediction error method
(PEM) which is used when no special model was given by the user. Observe
that PEM is still a parametric method but it chooses its parametric model all
on its own using some clever heuristics. The comparison of ESN to PEM in
Figure 4 proves that both models suffer from the same flaws. The training data
set contained signals with extraordinary high frequencies. Consequently the fit
at all rapid changes of inputs is very good, but the low frequency part is too
rarely present in the teacher signal. Thus it can be concluded that the teacher
stimulus set is not rich enough. More inputs sets containing rides on a straight
line are needed. A final remark on the phase difference at the very end of the test
data set may be noted. It is due the numerical roundoff error in the numerical
calculation of the step size which PEM must use.

7000 7100 7200 7300 7400 7500 7600 7700 7800 7900
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
left:red: teacher, blue: learnedmean at: 0

Fig. 3. Comparison of outputs of trained system model and observed robot speeds
after teaching. Teacher is dashed, system is solid.

Controller: A similar teaching setup can be used to try to train a new ESN as
a better controller then the given PID. If an embedded version of an ESN would
be at hand this version could actually be used in the real robot replacing the

Echo State Networks for Mobile Robot Modeling and Control 165

225 230 235 240 245 250 255 260 265
−100

−50

0

50

100

150

200

Fig. 4. Comparison of ESN method (solid line) and prediction method error (crossed
line).

old PID controller. Since this hardware unit is not ready at this time we can
only present a feasibility study. The ESN for this enhanced version controller
has again the dimension of N = 100 internal units, 0.06 density, spectral radius
lambda = 0.82, inputs K = 4 and outputs L = 2. In this case we are feeding the
controller with the odometry signal itself and an incrementally delayed odometry
signal (4 steps). Both are again derived from original speed data. A bigger delay
it likely to enhance prediction, but would also result in damping or attenuating,
which is unwanted here. In this training situation the ESN will learn to deduce
how to mimic the given PWMs by using the current velocity and the desired
velocity in near future. In Figure (5) we see a good fit in steady state situations
on interval [50,100] as well as at rapid changes in [205,220].

Controller with System Model in the Loop: The third and last step consists
of testing the new trained controller, but this time in combination the system
model instead of the physical robot, see Figure 2 right frame. After initialization
of start values for odometry, and PWMs, we need only to apply required speed as
reference signal to the controller, while updating controller and model in a closed
loop. These speeds are exactly the outputs from our DD behavior systems. Figure
5 shows the robot PID controller in the top frame and in the bottom frame it
displays desired speeds, modeled odometry and PWMs. The lower part uses the
new enhanced controller in combination with the system model. As it is easier, we
discuss only the left motor. In the original trace on top we see a problem situation
at time interval [380,460]. The desired speed is a constant but the PWM signal

166 Paul G. Plöger et al.

0 100 200 300 400 500 600 700 800
−100

−50

0

50

100

150
trace left :r=odo,b=req,g=pwm

0 100 200 300 400 500 600 700 800
−100

−50

0

50

100

150
left: sig1 red,req1 blue,sig1−mod green

Fig. 5. Top: original trace data from real robot (black: required speed left, light grey:
PWM, grey: odometry). Bottom: new enhanced controller in combination with learned
physical model for an interval of 750 time steps. There are improvements at steady
state situations and at points with rapid changes.

oscillates around 25 as does the measured odometry around zero. In this situation
the robot was blocked by an obstacle and could not move forward as commanded
by the behavior. Naturally this is an outer force not present in the simulation
of the bottom frame. Instead the simulated velocity smoothly approaches the
limit velocity and saturates with a significant steady state error. The situation
itself was not mimicked by the trained controller instead he is able to handle
it as expected with good results. This indicates that our model is well fitted.
Besides that convergence in all dynamically changing situation seems to be better
especially at [50,110] or at [620,660]. Another difficult situation is pictured in the
time interval [200, 250]. Near step 200, required speeds are 140, but the odometry
takes on this value only in the time step 225 very unstably jumping back and
forth. Different from this, the bottom picture displays rectificated results for the
discussed time intervals. Also the enhanced new controller can anticipate some
step in future. This can be seen at time step 225. Again we computed the L1

norm, which is one of the most popular ones in controller design, when there are
fitting problems, or -as in our case- when there are big errors or “wild” points.

Echo State Networks for Mobile Robot Modeling and Control 167

For the data in the original trace file the L1 error was 2.3084 over 750 time
steps. The L1 norm for the same interval, with the optimized controller was
about 0.0036.

These results clearly demonstrate the potential of our approach. Yet ESNs do
share problems with other RNN based modeling approaches. For example they
have to be taken as an undividable whole. This means that we can only control
global network parameters like size, spectral radius etc. Changing them will
impact the whole net and optimization space seems to be highly discontinuous
as is it also well known from other areas like integer linear programming. Up to
now we lack a systematic way to enhance convergence at one point while not
sacrificing quality at others. A possible remedy might be a learnt superposition
of network each being an expert in its own regime. Thus a modeling task could
be decomposed and fine tuned in different independent areas. The harder or
“wilder” you train the model, the better your controller will work. Another point,
which is well known from learning theory, is that ESNs cannot master situations
which have never been taught. The system model has to be taught “beyond
limits” to be really applicable in the whole needed dynamical range. Thus in
a future training sequence we want to expose the system model to dynamically
wider situation by training via human operated joystick control with higher gains
in comparison to the gains which the final running robot will have.

4 Summary

We introduced the notion of Echo State Networks as an easily trainable versatile
variant of recurrent neural networks. We showed how these networks can be
used to teach a physical system model of a differential drive robot and also
how to mimic a given controller for it. Furthermore an improved controller was
generated. All three applications show good agreement with observed real life
data. Now an ESN can be implemented in the actual HW of the motor controller,
yet the performance of this extended approach has to be studied in a future
paper.

References

[A00] Christaller Th. Jaeger H Kobialka H.-U Schoell P Bredenfeld A. Robot
behavior design using dual dynamics. Tech. GMD Report, 2000.

[Ark98] R. C. Arkin. Behavior-based robotics. The MIT Press, 1998.

[BK01] Ansgar Bredenfeld and Hans-Ulrich Kobialka. Team cooperation using dual
dynamics. In Markus Hannebauer, editor, Balancing reactivity and so-
cial deliberation in multi-agent systems, Lecture notes in computer science,
pages 111 – 124, 2001.

[BSF94] Yoshua Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Net-
works, 5(2):157–166, 1994. (Special Issue Dynamic and Recurrent Neural
Networks.).

168 Paul G. Plöger et al.

[Gal80] C. R. Gallistel. The Organization of Action: a New Synthesis. Lawrence
Erlbaum Associates, Inc., Hilldale, NJ., 1980.

[Hou03] Ramin Housseiny. Echo state networks used for the classification and fil-
tering of silicon retina signals. Master’s thesis, RWTH AAchen, 2003.

[Jae01a] H. Jaeger. The “echo state” approach to analysing and training recurrent
neural networks. GMD Report 148, pages 1–43, 2001.

[Jae01b] Herbert Jaeger. The echo state approach to analysing and training recurrent
neural networks. Technical report, GMD - Forschungszentrum Information-
stechnik GmbH, 2001.

[Jae01c] Herbert Jaeger. Short term memory in echo state networks. Technical
report, GMD Forschungszentrum Informationstechnik GmbH, 2001.

[Jae02] Herbert Jaeger. Tutorial on trainig recurrent neural networks covering bppt,
rtrl, ekf and the “echo state network” approach. Technical report, GMD
Forschungszentrum Informationstechnik GmbH, 2002.

[JD92] M.I. Jordan and Rumelhart D.E. Forward models: Supervised learning with
a distal teacher, 1992.

[Jor95] M.I. Jordan. Computational aspects of motor control and motor learning. In
H. Heuer and S. Keele, editors, Handbook of Perception and Action: Motor
Skills. Academic Press, New York, 1995.

[KBM98] D. Kortenkamp, R. P. Bonasso, and R. Murphy. Artificial Intelligence and
Mobile Robots. AAAI Press / The MIT Press, 1998.

[KS87] Furawaka K. Kawato, M. and R. Suzuki. A hierarchical neural network
model for the control learning of voluntary movements, 1987.

[Mea89] Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading,
MA, USA, 1989.

[MNM02] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturba-
tions. Neural Computation, 2002.

[MW96] R.C. Miall and D.M. Wolpert. Forward models for phisiological motor
control, 1996.

[Pom93] Dean A. Pomerleau. Neural Network Perception for Mobile Robot Guidance.
Kluwer, Dordrecht, The Netherlands, 1993.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, 2 edition, 1992.

[SB81] R.S. Sutton and A.G. Barto. Toward a modern theory of adaptive networks:
expectation and prediction., 1981.

[Sch02] Frank Schoenherr. Learning to ground fact symbols in behavior-based
robots. In F. van Harmelen, editor, Proceedings of the 15th European Con-
ference on Artificial Intelligence, pages 708–712. ECAI, IOS Press, 2002.

[SV98] Johan A.K. Suykens and Joos Vandewalle, editors. Nonlinear modeling,
chapter Enhanced Multi-Stream Kalman Filter Training for Recurrent Net-
works. Kluwer, 1998.

	1 Introduction
	2 Recurrent Neural Networks and the Echo State Property
	3 Applications of ESNs to Control
	4 Summary
	References

