
Coaching Advice and Adaptation

Patrick Riley and Manuela Veloso

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA 15232
{pfr,mmv}@cs.cmu.edu

http://www.cs.cmu.edu/~{pfr,mmv}

Abstract. Our research on coaching refers to one autonomous agent
providing advice to another autonomous agent about how to act. In past
work, we dealt with advice-receiving agents with fixed strategies, and
we now consider agents which are learning. Further, we consider agents
which have various limitations, with the hypothesis that if the coach
adapts its advice to those limitations, more effective learning will result.
In this work, we systematically explore the effect of various limitations
upon the effectiveness of the coach’s advice. We state the two learning
problems faced by the coach and the coached agents, and empirically
study these problems in a predator-prey environment. The coach has
access to optimal policies for the environment, and advises the preda-
tor on which actions to take. We experiment with limitations on the
predator agent’s actions, the bandwidth between the coach and agent,
and the memory size of the agent. We analyze the results which show
that coaching can improve agent performance in the face of all these
limitations.

1 Introduction

In spite of the increasing complexity of the relationships among autonomous
agents, one agent coaching or advising another is still somewhat uncommon. We
frequently see this relationship among human beings, yet further computational
understanding of how this relationship extends to autonomous agents is needed.

As we start to move beyond agent systems of short, limited duration, we
believe that advising relationships will become more important. Many current
agent systems implicitly allow a complete transfer of knowledge of an agent’s be-
havior structure, both because of the size of the domains and the homogeneity
of the agent’s representations of the world. In other words, if one agent knows a
good way to behave in the world, all agents can easily copy that knowledge. A
coach relationship does not assume this is possible. The goal is to obtain knowl-
edge transfer in spite of limitations in communication bandwidth or differences in
behavior representation. If the coach wants the agent to act differently, the coach
must still consider the best way to guide the agents to this behavior, rather than
simply transferring the knowledge. Additionally, a coach should adapt its idea
of optimal behavior to the strengths and abilities of the agent being coached.

Specifically, our research on coaching refers to one autonomous agent pro-
viding advice to another about how to act in the world. Through research on a
complex simulated robot soccer domain [1, 2], we have been exploring how one

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 192–204, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Coaching Advice and Adaptation 193

agent can generate advice for teams. With this experience, we have now under-
taken a series of systematic experiments in more controlled environments. We
present a general scheme for how the coach and agent interact in Figure 1. The
coach can only affect the world through communication with the agent. Both
the coach and the agent are learning. This interaction between the coach and
agent is challenging, as the coach has only an indirect effect on the world and
does not get to see the working of the agent’s decision mechanism. We empiri-
cally investigate varying the limitations of the agent as well as limitations of the
communication between the coach and agent.

Limited, Learning
Agent

Environment

Actions Perceptions

Learning CoachLanguage
Coach

Perceptions

Fig. 1. The high-level view of coach-agent-environment interaction

While our previous work has focused on adapting to an adversary and com-
piling past experience, the research here deals primarily with adapting advice
to the agent being coached. One hypothesis that underlies our current work is
that in order for a coach to be effective coaching multiple different agents, it
needs to adapt its advice to the peculiarities of each agent. This is supported
by the results of the coach competition at RoboCup 2001 as discussed in [1, 3]
where the ability of a coach to improve a team’s performance varied vastly across
different teams. This paper contributes interesting interaction modes of a coach
and coached agent and a thorough empirical exploration of the ramifications of
various limitations on that interaction. We start from the idea that advice is
recommending an action for a particular state and explore the effects in differ-
ent interaction modes. We choose basic reinforcement learning algorithms as a
starting point since our interest is in the comparative performance of different
algorithms and what that suggests for the general coaching problem.

2 Related Work

This work focuses primarily on how an advice giver can interact with an advice
taker, and how the characteristics of that interaction affect the performance of
the agent. One important component of this is how the advice-taker will function.
A variety of work has been done on using advice (often from humans) to improve
autonomous agent performance.

A significant challenge is to operationalize “fuzzy” advice. For example, [4]
describes a multi-step method to incorporate advice into a reinforcement learner
which uses a neural network to represent the value function. [5] takes a similar



194 Patrick Riley and Manuela Veloso

approach. High level advice from a human being is translated to if-then rules
describing intermediate goals for the agents. By combining these with qualita-
tive descriptions of the domain dynamics, these rules can then be refined with
a genetic algorithm. [6] presents a model for advice taking in a recurrent con-
nectionist network. Advice changes the current activation state rather than the
weights of the network.

Clouse and Utgoff [7,8] take a similar approach to ours to study the effect of
advice on a reinforcement learner. Their focus is primarily on the advice-taker
and how to incorporate advice into the value updates, and little attention is
paid on how the advice was generated in the first place. They do empirically
explore how the rate of advice affects performance. However, they do not allow
the training agent to give advice for states other than the current state or explore
limiting the memory of the agent. Most of the past work on autonomous agents
giving advice has been in tutoring systems.

A closely related research area is that of imitation (e.g. [9]). Similar work has
gone under many different names: learning by demonstration. behavior cloning,
learning by watching. and behavior or agent imitation. In all the cases, the robot
or agent is given examples of some task being done successfully (often from a
human demonstration), and the agent’s goal is to perform the same task. The
demonstration of the task can be seen as a set of advised actions for the agent.

3 Continual Advice

We first consider an agent without limitation and where the coach can commu-
nicate some advice every step with the agent. The first question which must be
answered is how an advice-receiving agent incorporates advice into its behavior.

3.1 Learning Algorithms

We begin with a basic Q-learning agent. The state space is assumed to be rep-
resented explicitly.

During learning, the agent has a fixed exploration probability ε; with proba-
bility ε the agent takes a random action and with probability (1 − ε) it chooses
uniformly randomly between the actions with the highest Q-value. This is com-
monly known as ε-greedy exploration.

For all Q-learning done throughout, the learning rate decays over time. For
each Q-table cell, we keep track of the number of times that cell has been updated
(call it v), and calculate the learning rate for each update as 1

1+v .
Then we add a coach agent. Every step, the coach recommends a single action.

Table 1 shows the algorithm used by the coached agent. The only difference with
a basic Q-learner is in choosing an action. The new parameter β controls the
probability that the agent will follow the coach’s advice. Otherwise, the agent
reverts to the normal exploration mode. Except where noted, we use β = 0.9.

The coach is also a Q learner, but its actions are to advise optimal actions.
The algorithm for the coach is shown in Table 2. While this algorithm is ap-
parently too complex for this particular task, we will continue to use the same



Coaching Advice and Adaptation 195

Table 1. Algorithm for an agent Q-
learning and receiving continual advice

Table 2. Algorithm for the coach Q-
learning and providing advice

ContinualAdviceTaker(ε, β)
a := recommended action
with prob β

do a
with prob 1 − β

Choose action (ε greedy)
Q-update for action performed

CoachContinualAdvice(ε)
g := last rec. (a.k.a guidance)
if (see agent action (call it a))

if (a is optimal)
Q-update for a

else
no Q-update

else
Q-update for g

recommend action (ε greedy)

algorithm later in more complex settings. There are two primary cases (which
we vary as an independent variable): seeing the agent’s actions and not seeing
the agent’s action. If the coach sees the actions and the agent takes an optimal
action, the coach performs a Q-update with that action. This is based on the
assumption that if the coach had advised that action, the agent probably would
have done it. Note that in general, there may be multiple optimal actions in a
particular state. However, if the action is not optimal, the coach does nothing;
the coach’s Q-table does not even include non-optimal actions.

Note that this algorithm requires that the coach know all optimal actions.
For these experiments, we precompute the optimals beforehand.

What the coach is learning here (and will be learning throughout) is not
what the optimal actions are (the coach already knows this), but rather learning
about what actions the agent is taking. The coach restricts its Q-table to just
the optimal actions and then pessimistically initializes the table. The Q-table
then provide an estimate of the value achieved by the agent when the coach
recommends an action (which is not the same as an agent taking the action).
This will have important consequences when the advisee agent has limitations
in the following sections.

3.2 Experimental Results in Predator-Prey

We use a predator-prey environment in order to test all the algorithms. The
simulation is built upon the SPADES simulation system [10]. The agents operate
on a discrete 6x6 grid world. The agents have 5 actions, stay still or move north,
south, east, or west. There are virtual walls on the outside of the grid so if an
agent tries to move outside the grid, it stays where it is.

There are two prey agents which, for these experiments, move randomly.
The predator agent’s goal is to capture at least one prey agent by being on the
same square as it. The coach’s job is to advise the predator agent. The world
is discrete, all agents have a global view of the world, and all moves take place
simultaneously.



196 Patrick Riley and Manuela Veloso

The world is operated episodically, with an episode ending when at least one
prey is captured; the predator can simultaneously capture both prey if all three
agents occupy the same square. The predator and coach receive a reward of 100
for each prey captured and a reward of -1 every step that is taken. The agents
try to maximize undiscounted reward per episode.

The state space of the world is 363 = 46656 (the predator location, prey 1
location, prey 2 location), though for any state which is a capture for the predator
(2556 states), there are no actions so no learning need take place. After a capture,
all agents are placed randomly on the grid. Further note that approximately 20%
of the states in this environment have multiple optimal actions.

The optimal average reward per step is approximately 17, which means on
average between 5 and 6 steps to capture a prey. The average reward per step
reflects the value of a policy since we are using episodic undiscounted reward.
In all cases, the coach has access to the complete true values of all actions in all
states and therefore optimal policies of the environment.

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000 700000

V
al

ue
 o

f L
ea

rn
ed

 P
ol

ic
y

Time

Optimal
β=1.0
β=0.9
β=0.7
β=0.5
β=0.3
β=0.1
β=0.0

Fig. 2. Data for a predator agent learning with a coach advising the agent every cycle

We alternated periods of learning and evaluation. Every 5000 steps, 5000
steps of policy evaluation were done. The results throughout are the average
values per step obtained during the policy evaluation periods. In order to smooth
the curves and make them more readable, the values of two periods of policy
evaluation were averaged together before plotting.

Throughout, we used ε = 0.1 as the exploration parameter. The Q table was
initialized to 0 everywhere, and the optimal Q values are positive everywhere.

The β = 0.0 line in Figure 2 shows the results for the predator agent learning
without the coach. The agent is learning, though over 700,000 steps (half of which
are learning, half are evaluation), the agent achieves only about 40% of optimal.

The rest of Figure 2 presents the results of the coach advising (with the
algorithm CoachContinualAdvice as shown in Table 2) and the predator taking
advice (with the algorithm ContinualAdviceTaker as shown in Table 1), varying
the value of β to the ContinualAdviceTaker algorithm. This value β controls



Coaching Advice and Adaptation 197

how often the predator listens to the coach, and how often the predator ignores
the advice. As expected, with the coach, the predator agent learns much more
quickly and reaches nearly an optimal policy. The coach is effectively guiding the
agent to the right actions, which improves the speed at which the predator’s Q
table reflects an optimal policy. Also, the more often the predator listens to the
coach (i.e. as β increases), the faster the learning and the better the performance.
However, there are diminishing returns with the performance difference between
β = 0.7 and β = 0.9 rather slight and the difference between β = 0.9 and β = 1.0
not significantly different.

4 Limited Agent Actions

We now consider cases where the action space of the coached agent is limited.
For our purposes, this will simply mean that the agent is not allowed/able to
perform some actions.

4.1 Learning Algorithms

A revised algorithm for the coached agent is shown in Table 3. The only difference
from ContinualAdviceTaker (Table 1) is that if the coach recommends an action
the agent can not perform, a random action is performed. This is intended to
simulate an agent which is not fully aware of its own limitations. By trying to
do something which it can’t do, some other action will result.

Table 3. Algorithm for a predator with limited actions. Note that for the random
action done, the same action is chosen every time that state is visited

LimitedContinualAdviceTaker(ε, β)
a := recommended action
with prob β

if (a is enabled)
do a

else
do random enabled action

with prob 1 − β
Choose action with ε greedy exploration

Q-update based on action performed

The coach can follow the same CoachContinualAdvice algorithm as before
(Table 2) and should be able to learn which optimal policy the agent can follow.
If the coach can see the agent’s actions, then only those Q-values for actions
which the agent can perform will have their values increased. If the coach can
not see the actions, then recommending an action that the agent can perform will
tend to lead to a higher value state than recommending an action the agent can
not perform (since the agent then acts randomly). In this manner, the coach’s Q-
table should reflect the optimal policy that the agent can actually perform, and
over time the coach should recommend less actions which the predator agent can



198 Patrick Riley and Manuela Veloso

not do. Note that this algorithm implicitly assumes that the agent can perform
some optimal policy.

4.2 Experimental Results in Predator-Prey

We once again use the predator-prey world as described in Section 3.2.
We assume that the limitations on the agent still allow some optimal policy.

In particular, in this environment, 9392 of the 46656 states have more than one
optimal action. Every choice of optimal action for each of those states gives an
optimal policy, and we restrict the predator agent to be able to perform exactly
one of the optimal policies. The same restriction was used for all experiments
that are directly compared, but different experiments have different randomly
chosen restrictions.

Further, for a given state action pair, the same random action always results
when the agent is told to do an action it can not do. We also chose to use β = 1.0
to emphasize the effects of the coach’s advice.

Results of this learning experiment are shown in Figure 3. An important issue
to consider when analyzing the results is how much our limitation algorithm
actually limits the agent. Only 20% of the states have multiple optimal actions,
and of those, almost all have exactly 2 optimal actions. If an agent performs
optimally on the 80% of the state space with one optimal action and randomly
anytime there is more than one optimal action, the average reward per step of
this policy is approximately 14.2 (optimal is 17.3).

In order to provide a reasonable point of comparison, we also ran an ex-
periment with the coach providing intentionally bad advice. That is, for every
state where the predator has an optimal action disabled, the coach would always
recommend that action, and the predator would always take the same random
action in a given state. This is the data line “Always Rec. Disabled” in Figure 3.
The data line for the predator learning without limitations and with the coach
(with β = 0.9 from Section 3) is shown labeled “No Limitation.” Whether or not
the coach sees the actions, the learning coach achieves better performance than
the baseline of bad advice and approaches the performance without limitations
at all.

A natural question to ask at this point is whether the coach is really learning
anything about the agent’s abilities. One measure of what the coach has learned
about the agent is to examine what percentage of the coach’s recommended
actions are ones that the agent can not do. Figure 4 shows this value as the
simulation progresses. The three lines represent the case where the coach is
not learning (basically flat), learning and not seeing the agents actions, and
learning and seeing the agent’s actions. As one would expect, with learning, the
percentage of bad actions recommended goes down over time, and seeing the
actions enables faster learning.

5 Limited Bandwidth

Up to this point, the coach was giving advice to the agent every cycle. We see this
as an unrealistic interaction mode with the coach, and this set of experiments



Coaching Advice and Adaptation 199

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000 700000

V
al

ue
 o

f L
ea

rn
ed

 P
ol

ic
y

Time

No Limitation
Coach Sees Actions
Coach Does Not See Actions
Always Rec. Disabled
No Coach

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 100000 200000 300000 400000 500000 600000 700000

Fr
ac

tio
n 

of
 A

ct
io

ns

Time

Coach Does Not Learn
Coach Does Not See Actions
Coach Sees Actions

Fig. 3. The value of the policy learned
by a limited predator agent under vari-
ous coach conditions

Fig. 4. As a function of time, the per-
centage of coach recommended actions
which the predator can not do

Table 4. RandomState strategy for coach giving advice with limited bandwidth

CoachRandomState()
if (time for K more advice)

do K times
s := random state
a := random optimal action for s
advise (s, a)

deals with limiting the amount of advice provided, while still using an advisee
agent with a limited action space (as described in Section 4).

5.1 Learning Algorithms

First, to allow the coach to talk about states that are not the current state,
a single piece of advice is now a state-action pair. The coach is advising an
agent to perform a particular action in a particular state. Further, the coach has
limitations on how much advice it can give. We use two parameters: I is the
interval for communication and K is the number of states that the coach can
advise about. Every I cycles, the coach can send K pieces of advice.

The agent stores all advice received from the coach and consults that table in
each state. The new algorithm is shown in Table 5. For this experiment, the table
T simply stores all advice received and if multiple actions have been advised for
a given state, the table returns the first one received which the agent is capable
of doing.

We propose two strategies for sending advice. The first strategy is mostly
random; the coach randomly chooses K states and sends advice for an optimal
action for each of those states (see Table 4). Note that while we call this a random
strategy, it is still providing optimal advice about the states it chooses. If the
bandwidth between the coach and advice taker were large enough, RandomState
would send the entire optimal policy to the agent.



200 Patrick Riley and Manuela Veloso

Table 5. Algorithm for a predator Q-
learner with limited bandwidth with the
coach; T is a table which stores past ad-
vice from the coach

Table 6. OptQ strategy for coach giving
advice with limited bandwidth

LimitedBWAdviceTaker(ε, β, T )
if (advice received from coach)

add advice to T
if (current state is in T )

a := rec. action from T
with prob β

do a
with prob 1 − β

Choose action (ε greedy)
else

Choose action (ε greedy)
Q-update for action performed

CoachOptQ(ε)
Q∗ := optimal Q-table
V ∗ := optimal value function
every cycle

s := current state
a := action predator took
put (s, V ∗(s) − Q∗(s, a)) in W
if (a was an advised action for s)

perform Q-update
if (time to send K advice pieces)

W ′ = (smallest K values of W )
for each (s′, x) in W ′

if (x ≈ 0)
s′ := random state

a′ := action for s′ (ε greedy)
advise (s′, a′)

The other strategy, which we call “OptQ” is more knowledge intensive. It
requires the entire optimal Q table and always seeing the coached agent’s actions.
The algorithm is given in Table 6. Like RandomState, OptQ always provides
optimal advice for the states it chooses. The difference is that OptQ attempts
to choose better states about which to advise. The basic idea is to advise about
the states in the last interval for which the agent performed the least optimal
actions. Note that the smallest values are chosen first since all of the values in
W are negative. If the algorithm runs out of states about which to advise, it
simply chooses random ones rather than wasting the bandwidth.

While neither RandomState nor OptQ may be good algorithms to imple-
ments in a real world setting, they provide good bounds on the range of perfor-
mance that might be observed. RandomState puts no intelligence into choosing
what states to advise about, and OptQ uses more information than would likely
be available in any real world setting. The improvement that OptQ achieves over
RandomState indicates how much benefit could be achieved by doing smarter
state selection in an advice giving framework like this one.

5.2 Experimental Results in Predator-Prey

We once again use the predator prey world as described in Section 3.2. The
predator has limited actions as described in Section 4.2. For the parameters
limiting advice bandwidth, we chose I to be 500 and K to vary between 1
and 50. Recall that every I cycles, the coach can send K pieces of advice.

The results are shown in Figure 5 for different values of K. Note first the
that as the amount of information the coach can send gets larger (i.e. K gets



Coaching Advice and Adaptation 201

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000 700000

V
al

ue
 o

f L
ea

rn
ed

 P
ol

ic
y

Time

Optimal
K=50, OptQ
K=50, Random
K=25, OptQ
K=25, Random
K=1, OptQ
K=1, Random
No coach

Fig. 5. Policy evaluation for the predator for various coach strategies and values of K

larger), the agent learns more quickly. While the same performance as the coach
advising every cycle is not achieved, we do approach that performance. However,
it should be noted that the agent is remembering all advice given.

The surprising result is that the OptQ algorithm with its much higher in-
formation requirements does not perform much better than the RandomState
strategy. There are two things to consider. First, by the end of the simulation,
the RandomState strategy achieves fairly large coverage of the state space. For
example, with K = 25, the random strategy is expected to provide advice about
47% of the states1. Since the agent remembers all of the advice, near the end of
the run it is essentially getting optimal advice for one in two states. Secondly,
the OptQ strategy only advises about states about which the agent has already
been and taken an action. The chance of encountering one of these states again
is about the same as encountering any other given state.

Differences between RandomState and OptQ performance only emerge at
the K = 50 level. This suggests as the bandwidth of the advice interaction is
increased, the first benefit obtained by the agent is simply by obtaining some
coverage of the state space with optimal advice (see the K = 25 line). Only after
the bandwidth is increased more do we see how the advice is given start to make
a difference.

6 Limited Bandwidth and Memory

In Section 5, the coached agent has a limited action space and there is limited
bandwidth between the agents. However, the coached agent remembers all advice
which the coach has sent. This is probably unrealistic once the world becomes

1 With basic probability theory, one can calculate that if T is the number of pieces
of advice and S the size of the state space, the expected number of distinct states
about which the random strategy advises is S(1 − (S−1

S
)T ). At the end of 700,000

steps with K = 25, 35000 pieces of advice have been given. With S = 46656, this is
approximately 22035 states.



202 Patrick Riley and Manuela Veloso

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000 700000

V
al

ue
 o

f L
ea

rn
ed

 P
ol

ic
y

Time

Optimal
Continual Interaction
K=50, OptQ
K=50, Random
K=25, OptQ
K=25, Random
K=1, OptQ
K=1, Random

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000 700000

V
al

ue
 o

f L
ea

rn
ed

 P
ol

ic
y

Time

Optimal
Continual Interaction
K=50, OptQ
K=50, Random
K=25, OptQ
K=25, Random
K=1, OptQ
K=1, Random

M = 5000; 11% of state space M = 10000; 21% of state space

Fig. 6. Results of learning with limited predator, limited bandwidth, and limited mem-
ory, M is the number of pieces of advice the predator can remember. The M = 1000
case is not shown as all data lines perform at approximately the K = 1 level

large enough that the advised agent is not using a full state/action table. There-
fore, we explore the additional limitation of varying the amount of advice which
can be remembered.

6.1 Learning Algorithms

We consider a straightforward FIFO model of memory. The coached agent has
a fixed memory size, and when it is full, the agent forgets the oldest advice.

The coach strategies are the same as before: RandomState (Table 4) and
OptQ (Table 6). The coached agent can still uses LimitedBWAdviceTaker (Ta-
ble 5), but now the state advice table T only stores the last M pieces of advice
heard, where M is an independent variable which we experimentally vary.

6.2 Experimental Results in Predator-Prey

We once again use the predator prey world as described in Section 3.2. The
predator has limited actions as described in Section 4.2. Figure 6 shows the
results. With the smallest memory of M = 1000, the predator does not improve
significantly over having no coach at all. This can be explained simply because
the memory can only hold approximately 2% of the state space. As the amount
of memory is increased, the agent’s performance improves. It should be noted
that for K = 1, throughout the entire simulation the coach only sends 1400
pieces of advice, just barely more than the smallest memory. Therefore, we can
not expect increasing the memory of the to improve performance for K = 1 since
memory is not really the limiting resource for most of the simulation.

We see the same general effects of the differences between the RandomState
and OptQ strategies here as when there was no limited memory (Section 5.2).
The difference is that the size of memory effectively lowers the absolute per-
formance of all techniques. It is interesting to note that absolute performance



Coaching Advice and Adaptation 203

improves (in the M = 5000 and M = 10000 cases) when moving from K = 25
to K = 50 only when using the OptQ strategy and not RandomState.

7 Conclusion

This paper examines the problem of how one automated agent (the coach) can
give effective advice to another learning agent (the advisee). Our focus has been
on proposing and exploring modes of interaction between the agents, as well
as various limitations on the agents. We explore both problems of giving and
receiving advice.

A thorough experimental analysis was done in a controlled predator-prey
environment. The predator agent is a Q-learning agent that takes advice by
probabilistically following the advised action. The coach agent was given a large
amount of information about the world, such as the full dynamics and full in-
formation about the value and optimality of all actions.

The results consistently show that advice indeed improves the advisee’s per-
formance under all forms of limitation tested. For constant advice, our results
show that the more an agent listens to coach advice, the better it performs, with
the expected diminishing returns. Further when the bandwidth between coach
and agent is limited, two effects are observed. First, for smaller bandwidths the
presence of advice helps regardless of how that advice is chosen. Only when
the bandwidth is increased further does the choice of which states to advise
about begin to matter. Lastly, limiting the memory of the agent lowers overall
performance, but the same general trends still hold.

Further, we have shown how the coach can learn to adapt its advice to the
limitations of the agent. We show empirically that the coach is effectively learning
about the actions that the limited agent can do.

The challenge of coaching involves learning about an environment, learning
about the agents, and effectively communicating advice while taking into account
agent abilities. We believe that this work is a core step towards completely
answering that challenge.

References

1. Riley, P., Veloso, M., Kaminka, G.: An empirical study of coaching. In Asama,
H., Arai, T., Fukuda, T., Hasegawa, T., eds.: Distributed Autonomous Robotic
Systems 5. Springer-Verlag (2002) 215–224

2. Riley, P., Veloso, M.: Planning for distributed execution through use of probabilistic
opponent models. In: AIPS-2002. (2002) 72–81 Best Paper Award.

3. Riley, P., Veloso, M., Kaminka, G.: Towards any-team coaching in adversarial
domains. In: AAMAS-02. (2002) 1145–1146

4. Maclin, R., Shavlik, J.W.: Creating advice-taking reinforcement learners. Machine
Learning 22 (1996) 251–282

5. Gordon, D., Dubramanian, D.: A multi-strategy learning scheme for knowledge
assimilation in embedded agents. Informatica 17 (1993)



204 Patrick Riley and Manuela Veloso

6. Noelle, D., Cottrell, G.: A connectionist model of instruction following. In Moore,
J.D., Lehman, J.F., eds.: Proceedings of the Seventeenth Annual Conference of
the Cognitive Science Society, Hillsdale, NJ, Lawrence Erlbaum Associates (1995)
369–374

7. Clouse, J.A., Utgoff, P.E.: A teaching method for reinforcement learning. In:
ICML-92. (1992) 92–101

8. Clouse, J.: Learning from an automated training agent. In Gordon, D., ed.: Work-
ing Notes of the ICML ’95 Workshop on Agents that Learn from Other Agents,
Tahoe City, CA (1995)

9. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: ICML-92,
Morgan Kaufmann (1992)

10. Riley, P.: MPADES: Middleware for parallel agent discrete event simulation. In
Kaminka, G.A., Lima, P.U., Rojas, R., eds.: RoboCup-2002: The Fifth RoboCup
Competitions and Conferences. Number 2752 in Lecture Notes in Artificial Intel-
ligence. Springer Verlag, Berlin (2003) RoboCup Engineering Award (to appear).


	1 Introduction
	2 Related Work
	3 Continual Advice
	3.1 Learning Algorithms
	3.2 Experimental Results in Predator-Prey

	4 Limited Agent Actions
	4.1 Learning Algorithms
	4.2 Experimental Results in Predator-Prey

	5 Limited Bandwidth
	5.1 Learning Algorithms
	5.2 Experimental Results in Predator-Prey

	6 Limited Bandwidth and Memory
	6.1 Learning Algorithms
	6.2 Experimental Results in Predator-Prey

	7 Conclusion
	References



