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Abstract. This paper presents a method for generating vision-based
humanoid behaviors by reinforcement learning with rhythmic walking
parameters. The walking is stabilized by a rhythmic motion controller
such as CPG or neural oscillator. The learning process consists of two
stages: the first one is building an action space with two parameters (a
forward step length and a turning angle) so that infeasible combinations
of them are inhibited. The second one is reinforcement learning with the
constructed action space and the state space consisting of visual features
and posture parameters to find feasible action. The method is applied
to a situation of the RoboCupSoccer Humanoid league, that is, to reach
the ball and to shoot it into the goal. Instructions by human are given
to start up the learning process and the rest is completely self-learning
in real situations.

1 Introduction

Since the debut of Honda humanoid [3], the research community for biped walk-
ing has been growing and various approaches have been introduced. Among
them, there are two major trends in the biped walking. One is model based ap-
proach with ZMP (zero moment point) principle [4] or the inverted pendulum
model [14] both of which plan the desired trajectories and control their bipeds to
follow them. In order to stabilize the walking, these methods need very precise
dynamics parameters for both the robot and its environment.

The other one is inspired by the findings [2] in neurophysiology that most
animals generate their walking motions based on the central pattern generator
(hereafter, CPG) or neural oscillator. CPG is a cluster of neural structures that
oscillate each other under the constraint of the relationships in their phase spaces,
and generates rhythmic motions that interact with the external environment
and the observed motion can be regarded as a result of the entrainment between
robot motion and the environment. This sort of approach does not need model
parameters that are as precicise as ZMP or the inverted pendulum.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 344–354, 2004.
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Fig. 1. A model of biped locomotion robot

Taga et al. [11] gave the mathematical formulation for neural oscillator, con-
structed a dynamic controller for biped walking on the sagittal plane, and showed
the simulation results which indicated that his method could generate stable
biped motions similar to human walking. Others extended his method to three
dimensions [8] and adaptive motion on the slope by adjusting the neural oscil-
lator [1].

The second approach seems promising for adaptation against changes in the
environment. To handle more complicated situations, the visual information has
been involved. Taga [12] studied how the robot can avoid an obstacle by adjusting
the walking pattern assuming that the object height and the distance to it can
be measured by the visual information. Fukuoka et al. [5] also adjusted CPG
input so that a quadruped can climb over a step through the visual information.
In these methods, however, the adjusting parameters were given by the designer
in advance. Therefore, it seems difficult to apply to more dynamic situations,
and learning method seems necessary.

This paper presents a method for generating vision-based humanoid behav-
iors by reinforcement learning with rhythmic walking parameters. A rhythmic
motion controller such as CPG or neural oscillator stabilizes the walking [13].
The learning process consists of two stages: first one is building an action space
with two parameters (a forward step width and a turning angle) so that infeasi-
ble combinations of them are inhibited. The second one is reinforcement learning
with the constructed action space and the state space consisting of visual fea-
tures and posture parameters to find feasible action. The method is applied to a
situation of the RoboCupSoccer Humanoid league [6], that is, to approach the
ball and to shoot it into the goal. Instructions by human are given to start up
the learning process and the rest is solely self-learning in real situations.
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2 Rhythmic Walking Controller

2.1 Biped Robot Model

Fig. 1 shows a biped robot model used in the experiment which has a one-link
torso, two four-link arms, and two six-link legs. All joints rotate with a single
DoF rotation. Each foot has four FSRs to detect reaction force from the floor
and a CCD camera with a fish-eye lens is attached at the top of the torso.

2.2 Rhythmic Walking Controller Based on CPG Principle

Tsujita and Tsuchiya [13] designed a rhythmic walking controller based on CPG
principle and generated walking motions adaptive to the environment through
the mutual entrainment between non-linear neural oscillators. Following their
design principle, we build a controller which consists of trajectory and phase
ones to control reciprocation of each leg. (see Fig. 2). The former drives motors
attached to joints according to the motor command from the latter which consists
of two oscillators. The phase controller receives the feedback signal of reaction
force from the floor through the FSRs attached at the soles.

The stable walking motion is realized as follows.

1. Each leg motion has two kinds of modes: a free leg mode and a support leg
one both of which trajectories are specified by the designer in advance (see
Fig. 4).

2. In each mode, the joint trajectories are given as a phase function in terms
of the corresponding neural oscillators.

3. Mode switching is triggered by phase shift of the free leg caused by the
ground contact information from the FSRs. That is, if the free leg contacts
with the floor, the phase of the free leg (the support leg, too) is accelerated,
and mode switch (free leg ←→ support leg) happens.

4. Various kinds of walking are generated with two parameters: a forward step
length β and a turning angle α (see Fig. 5).
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3 Reinforcement Learning
with Rhythmic Walking Parameters

3.1 Principle of Reinforcement Learning

Recently, reinforcement learning has been receiving increased attention as a
method for robot learning with little or no a priori knowledge and higher ca-
pability of reactive and adaptive behaviors. Fig. 6 shows the basic model of
robot-environment interaction [10], where a robot and an environment are mod-
elled by two synchronized finite state automatons interacting in a discrete time
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Fig. 6. Basic model of agent-environment interaction

cyclical processes. The robot senses the current state st ∈ S of the environment
and selects an action at ∈ A. Based on the state and action, the environment
makes a transition to a new state st+1 and generates a reward rt+1 that is passed
back to the robot. Through these interactions, the robot learns a purposive be-
havior to achieve a given goal. In order for the learning to converge correctly, the
environment should satisfy the Markovian assumption that the state transition
depends on only the current state and the taken action. The state transition
is modelled by a stochastic function T which maps a pair of the current state
and the action to take to the next state (T : S ×A → S). Using T , the state
transition probability Pst,st+1(at) is given by

Pst,st+1(at) = Prob(T (st, at) = st+1). (1)

The immediate reward rt is given by the reward function in terms of the
current state by R(st), that is rt = R(st). Generally, Pst,st+1(at) (hereafter Pa

ss′)
and R(st) (hereafter Ra

ss′) are unknown.
The aim of the reinforcement learner is to maximize the accumulated sum-

mation of the given rewards (called return) given by

return(t) =
∞∑

n=0

γnrt+n, (2)

where γ (0 ≤ γ ≤ 1) denotes a discounting factor to give the temporal weight to
the reward.

If the state transition probability is known, the optimal policy which maxi-
mizes the expected return is given by finding the optimal value function V ∗(s)
or the optimal action value function Q∗(s, a) as follows. The derivation of them
can be found elsewhere [10].

V ∗(s) = max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a}
= max

a

∑

s′
Pa

ss′ [Ra
ss′ + γV ∗(s′)] (3)
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Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑

s′
Pa

ss′

[
Ra

ss′ + γ max
a′

Q∗(s′, a′)
]

(4)

In this paper, the learning module examines the state transition when both
feet contact with the ground. The state space, S, consists of the visual informa-
tion sv and the robot posture sp, and the action space consists of two parameters
of rhythmic walking. Details are explained in the following subsections.

3.2 Construction of Action Space Based on Rhythmic Parameters

The learning process has two stages. The first one is to construct the action space
consisting of feasible combinations of two rhythmic walking parameters (α, β).
To do that, we prepared the three-dimensional posture space sp in terms of the
forward length β (quantized into four lengths: 0, 10, 35 60 [mm]), the turning
angle α (quantized into three angles: -10, 0, 10 [deg].) both of which correspond to
the result of the execution of the previous action command, and the leg side (left
or right). Therefore, we have 24 kinds of postures. First, we have constructed the
action space of the feasible combinations of (α, β) excluding the infeasible ones
which cause collisions with its own body. Then, various combinations of actions
are examined for stable walking in the real robot. Fig. 7 shows the feasible actions
(empty boxes) for each leg corresponding to the action, which determines the
resultant posture of the next step. Due to the differences in physical properties
between two legs, the constructed action space was not symmetric although it
should be theoretically.

3.3 Reinforcement Learning with Visual Information

Fig. 8 shows an overview of the whole system which consists of two layers:
adjusting walking based on the visual information and generating walking based
on neural oscillators. The state space consists of the visual information sv and
the robot posture sp, and adjusted action a is learned by dynamic programming
method based on the rhythmic walking parameters (α, β). In a case of ball
shooting task, sv consists of ball substates and goal substates both of which are
quantized as shown in Fig. 9. In addition to these substates, we add two more
substates, that is, “the ball is missing” and “the goal is missing” because they
are necessary to recover from loosing their sight.

Learning module consists of a planner which determines an action a based on
the current state s, a state transition model which estimates the state transition
probability Pa

ss′ through the interactions, and a reward model (see Fig. 10).
Based on DP, the action value function Q(s, a) is updated and the learning
stops when no more changes in the summation of action values.

Q(s, a) =
∑

s′
Pa

ss′ [Rs + γ max
a′

Q(s′, a′)], (5)

where Rs denotes the expected reward at the state s.
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Fig. 7. Experimental result of action rule
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4 Experiments

4.1 Robot Platform and Environment Set-Up

Here, we use a humanoid platform HOAP-1 by Fujitsu Automation LTD. [9]
attaching a CCD camera with a fish-eye lens at the head. Figs. 11 and 12 show a
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picture and a system configuration, respectively. The height and the weight are
about 480[mm] and 6[kg], and each leg (arm) has six (four) DoFs. Joint encoders
have high resolution of 0.001[deg/pulse] and reaction force sensors (FSRs) are
attached at soles. The colour image processing to detect an orange ball and a
blue goal is performed on the CPU (Pentium3 800MHz) under RT-Linux. Fig.
13 shows the on-board image.

The experimental set-up is shown in Fig. 14 where the initial robot position
is inside the circle whose center and radius are the ball position and 1000 [mm],
respectively, and the initial ball position is located less than 1500 [mm] from
the goal of which width and height are 1800 [mm] and 900 [mm], respectively.
The task is to take a position just before the ball so that the robot can shoot
a ball into the goal. Each episode ends when the robot succeeds in getting such
positions or fails (touches the ball or the pre-specified time period expires).
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Fig. 13. Robot’s view (CCD camera
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4.2 Experimental Results

One of the most serious issues in applying the reinforcement learning method
to real robot tasks is how to accelerate the learning process. Instead of using
Q-learning that is most typically used in many applications, we use a DP ap-
proach based on the state transition model Pa

ss′ that is obtained separately from
the behavior learning itself. Further, we give the instructions to start up the
learning, more correctly, during the first 50 episodes (about a half hour), the
human instructor avoids the useless exploration by directly specifying the action
command to the learner about 10 times per one episode. After that, the learner
experienced about 1500 episodes.

Owing to the state transition model and initial instructions, the learning
converged in 15 hours, and the robot learned to get the right position from any
initial positions inside the half field. Fig. 15 shows the learned behaviors from
different initial positions. In Fig. 15, the robot can capture the image including
both the ball and the goal from the initial position while in Fig. 15 (f) the robot
cannot see the ball or the goal from the initial position.

5 Concluding Remarks

A vision-based behavior of humanoid was generated by reinforcement learn-
ing with rhythmic walking parameters. Since the humanoid generally has many
DoFs, it is very hard to control all of them. Instead of using these DoFs as ac-
tion space, we adopted rhythmic walking parameters, which drastically reduces
the search space and therefore the real robot learning was enabled in reasonable
time. In this study, the designer specified the state space consisting of visual
features and robot postures. State space construction by learning is one of the
future issues.
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