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Abstract. An obstacle avoidance approach is introduced that has dynamic ac-
tive regions. The dynamic regions are adapted to the current speed of the robot 
and there are different active regions used, one for speed reduction and one of 
turning away from obstacles. The overall strategy of this approach is that the 
robot can drive with high speed which will be reduced in front of an obstacle in 
order to do a sharper turn. 

1   Introduction 

Successful obstacle avoidance has to consider the abilities of the vehicle to slow down 
and turn. When driving at high speed, a robot needs more time to stop and making 
sharp curves becomes impossible. So if the robot slows down, the amount of possible 
trajectories increases. In presence of an obstacle, it has to be decided whether the 
robot should slow down and turn more sharply closer to the obstacle, or keep its speed 
but deviate more from the desired path. 

The potential field method [8, 6] is commonly used for autonomous mobile robots 
in recent years. Basically it builds up an artificial potential field consisting of repul-
sive forces which pull the robot away from obstacles, and an attractive force directed 
towards a target direction. If the position of obstacles and target(s) is well-known and 
stable, the potential field can be used for planning a trajectory towards the target, e.g. 
[15]. In case of unknown environments where the robot can sense obstacles only in its 
near vicinity, the potential field method can only be used for local obstacle avoidance, 
i.e. compute the next direction to go for. The same holds true for dynamic environ-
ments, like RoboCup [1], where obstacles (e.g. robots) change their positions con-
tinuously. 

The potential field method regards the robot to be holonomic, i.e. it can drive at 
any moment in any direction. Obviously this is not true for robots depending on their 
speed and mass. Non-holonomic, e.g. differentially steered, robots have to turn first 
before they can move in the desired direction. Obstacle avoidance methods, like 
VFH+ [14] and the Curvature Velocity method [11], consider this by cost functions. 
Using these cost functions the costs for each direction is computed. The dynamics and 
kinematics of a robot are considered as only feasible directions are evaluated using 
the cost function. A differentially steered robot can drive only small curvatures at 
high speed, so only these directions are considered. Finally, the direction with mini-
mal cost is selected. 
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In VFH+, cost increases if a direction leads towards obstacles, deviates from the 
goal direction, or deviates from the current steering direction. The robot only slows 
down if every direction is blocked. So if a robot should drive along a corridor and turn 
into a narrow door, it may miss it because the speed isn’t reduced. The same problem 
has been experienced for the Curvature Velocity method [9], and in [12] for the Dy-
namic Window approach [5]. 

The Lane Curvature method [9] chooses a free lane by minimizing an objective 
function which has to implement the trade-off between avoiding obstacles, heading 
for a target position, and maximizing speed. Among these three aspects, speed has the 
lowest priority, so the direction with minimum costs may demand to slow down the 
robot. This is similar to the effects of our approach. 

In our approach, collisions are avoided by reducing the linear speed which again 
enables the robot to turn away from obstacles and towards the target direction. Both, 
speed reduction and turning, influence each other: 

 

• speed reduction enables the robot to turn sharper, and  
• turning to free space enables the robot to increase its speed again. 
 

Speed dependency is mainly introduced by enlarging/shrinking the active region. The 
active region is an area that moves with the robot, usually a circle around the robot, 
see e.g. [6, 13]. In [12], a channel around a path (produced by a A* planner) is used. 
Only obstacles within the active region are considered for obstacle avoidance. An 
obstacle outside the active region is ignored as it is not regarded as a possible hazard.  

Speed reduction and turning use different active regions. This is another out-
standing characteristic of our approach. This brings the advantage that they can be 
tuned independently.  

Speed reduction and turning are implemented as distinct behavior modules. In 
compliance with the Dual Dynamics architecture [7, 10, 3, 2], each module has a so 
called activation dynamics and a target dynamics. The target dynamics computes the 
motor commands by which the module wants to pursue its goals. The activation dy-
namics computes the activation value of this behavior, ranging in from 0 to 1. The 
activation value is used as a weight in order to superimpose concurrently active be-
havior modules. An activation value of 0 means that the module is not active, i.e. it 
should not influence the motors in any way. The activation of an obstacle avoidance 
module expresses the danger of having a collision; when approaching an obstacle it 
rises continuously from 0 to 1 and, after turning away, back to 0 again. 

We will describe the speed reduction module SlowDown (section2) and the module 
TurnAway which makes the robot turning away from an obstacle (section 3). Section 
4 tells how the outcome of these two modules is superimposed with the motor values 
of the goal-oriented behaviors. Our experience with speed-dependant obstacle avoid-
ance is sketched in section 5. 

2   Speed Reduction 

2.1   Active Region 

The active region of the module SlowDown is in front of the robot regarding its cur-
rent direction of movement. In case of a differentially steered robot this active region 
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is either at its front, or, if it moves backwards, at its back. The active region is shaped 
like a rectangle because obstacles within this region would collide with the robot as it 
moves forward. The length and the width of the active region is computed as follows: 

ObstaclemDisttspeedlength RobotAR 2+∆⋅=  

ObstaclemDistwidthwidth RobotAR 2+=  

 

(1) 

where widthRobot is the robot’s width, speedRobot is the robot’s current speed, �t is some 
time span (e.g. 1 sec) and mDist2Obstacle is the minimum distance within which the 
robot should react on obstacles.  

 

 

Fig. 1. The active region of SlowDown 

2.2   Collision Danger 

While the robot senses its environment (e.g. using ultrasonic distance measurement), 
it may detect a number of obstacle points. The possible danger of colliding with an 
obstacle point which is measured inside the active region, decreases exponentially 
depending on its distance Disti to the robot. 

 

 

Fig. 2. An obstacle point is viewed with Angle
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The weight of the obstacles is computed during several stages. First, it is propor-
tional to the cosine of the obstacle’s angle Anglei.  

       min
** )cos( wAngleKweight iPi +⋅=  (3) 

where wmin denotes another safety margin.  
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If the robot drives at high speeds, the obstacles at the side (having low values for 
cos(Anglei) ) should gain more importance. This is achieved by the following step 
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Finally, the weight is multiplied with a constant depending on how the obstacle has 
been classified. For instance, in the RoboCup domain there used to be a wall which 
has to be touched in order to get a ball away from it. So this kind of obstacle should 
not repel the robot as much as, for instance, other robots. If the ball lies between the 
robot and its own goal, it has to be avoided in order not to shoot self goals; so in this 
situation Kball is very high, otherwise zero. 
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2.3   Activation Dynamics 

The activation dynamics of SlowDown computes its activation value which expresses 
the need for speed reduction for the current situation. Basically, it is the maximum of 
all repulsive “forces” clipped to 1.  

       
))(max,1min( irepulsive

i
target Fa =  (6) 

This target value is low-passed by an ordinary differential equation  
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where the time constant T (which expresses how fast aSlowdown should follow atarget) de-
pends on the current speed of the robot. 

2.4   Target Dynamics 

The target dynamics of SlowDown computes the maximum speed which is admissible 
for a certain situation. Basically it reduces the maximum Speed Speedmax depending on 
aSlowdown; especially if aSlowdown is zero, VelocitySlowDown equals Speedmax. This is done by a 
weighted sum where wSlowDown >> wGoal ensures speed reduction in case of high values of 
aSlowdown. In situations when turning is dangerous, i.e. will lead to collisions, the robot 
has to drive backwards for a short while. 
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3   Turning away from an Obstacle 

3.1   Active Region 

The active region of the module TurnAway is oriented towards the current target di-
rection.This region differs from the active region of SlowDown; especially it is inde-
pendent of the current orientation of the robot. 

 

Xtarget

a wall

 

Fig. 3. The active reiogn of TurnAway 

Also the shape of the active region differs from the one of SlowDown: first, there is 
a circle around the robot; if there are no obstacle point within, the robot can turn, 
otherwise not. Second, there is an active region oriented towards the target. It is 
shaped like a parabola of a width (near the robot) and a length defined like 

 )2,min( ndestinatiodisttspeedlength RobotAR ∆⋅=                   (9) 

       ObstaclemDistwidthwidth RobotAR 2+=  

Similar to the active region of SlowDown, the length of the parabolic active region 
depends on the robot’s speed. In addition, the length is clipped to dist2destination, the 
distance between the robot and its target. This is because the robot should not care 
about obstacles being behind its target. Otherwise such obstacles would cause the 
robot to turn away before reaching its target. For instance, in RoboCup, the target may 
be the ball and there may be other robots behind the ball. These should not be avoided 
if a robot approaches the ball. 

For the same reason the parabolic shape was chosen for the active region: the robot 
should not turn away (but only slow down), if there are other robots in the vicinity of 
the ball. This example illustrates that the active region should be shaped in an applica-
tion specific way. For other applications than RoboCup, other shapes could be advan-
tageous. 
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3.2   Collision Danger and Activation Dynamics 

The collision danger and activation dynamics of TurnAway are computed in the same 
way as for SlowDown (see equations (2) to (7)). However it should be noted that 

 

• a different active region is used, and 
• the used constants are different. 
 

This way, the modules TurnAway and SlowDown can be tuned independently (e.g. 
scope, reaction time, the strength of reaction) which helped us a lot while tuning the 
system. 

3.3   Target Dynamics 

The target dynamics of TurnAway computes the direction which is recommended to 
the robot by the obstacle avoidance module. Here we use a potential field approach: 
Each obstacle point has, beside Disti and Anglei, a directioni which is a unit vector 
pointing from the obstacle to the front of the robot. 

 

 

Fig. 4. Direction
i
 the repulsive unit vector 

When computing the weighted vector sum, using Frepulsivei as weights, we get 
again a unit vector directionTurnAway, the direction where TurnAway recommends to 
turn. 
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4   Superposition of Goal-Oriented Behaviors   
  and Obstacle Avoidance 

After the obstacle avoidance modules have computed their output (activation values 
of SlowDown and TurnAway together with the recommended direction and the maxi-
mal admissible linear speed), we have to tell how the final motor commands result 
from this. 
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In the computation of the maximal admissible linear speed, the activation value of 
SlowDown is already used. So, the only thing left to be done is to clip the speed of the 
goal-oriented behavior(s) by this speed. 

),min( SlowDownGoal VelocityVelocityVelocity =                                (11) 

Compromising between directionTurnAway and the direction wanted by the goal-
oriented behaviors (directionGoal) is done again by a weighted sum of vectors. Giving 
directionGoal the weight 1, WeightTurnAway has to be >> 1 in order to let directionTurnAway 
dominate if aTurnAway increases. This gives TurnAway the power to suppress ddesired if 
obstacles are very close (i.e. if aTurnAway gets close to 1). 
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5   Results 

The dynamic active region approach has been used since April 2001 by our RoboCup 
robots participating in the middle-size league. Each robot is equipped with 5 infrared 
distance sensors, two of them can sense obstacles up to 80 cm in front of the robot 
while the other three have a range of 50 cm. Obstacle points are remembered up to 1.5 
seconds in an occupacy grid; as the robot turns, it gets a scan of obstacle points in its 
vicinity. Thus, the robot is quite short-sighted and the sensory input is sometimes 
incomplete, i.e. obstacles are not sensed. Even with this limited sensory input, our 
approach worked even in very crowded and dynamic situations. We limited the 
maximum speed of our robots to 160 cm per second because of the limited scope of 
our sensors and due to the fact that other robots also move fast. Under other condi-
tions we expect our approach to work at higher speeds. 

Figure 5 shows a scenario where a robot wants to drive behind the ball but finds its 
way obstructed by obstacles. The resulting trajectory is shown at the right side of 
figure 5: the points are drawn in equidistant time steps; it can be seen that the robot 
slows down in the vicinity of obstacles.  

6   Conclusions 

A novel obstacle avoidance approach is introduced that has dynamic active regions. 
The dynamic regions are adapted to the current speed of the robot. There are different 
active regions used, one for speed reduction and one of turning away from obstacles. 
The overall strategy of this approach is that the robot can drive with high speed which 
will be reduced in front of an obstacle in order to do a sharper turn. 

The obstacle avoidance module is placed in the system architecture in a way that it 
can not be overruled by the behavior system. Also, the behavior system may choose 
among several possible paths by using the obstacle avoidance module as an oracle. 
This creates a highly flexible system that has shown good results in experiments, even 
with low dimensional sensor data of limited range. 
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Fig. 5. A robot going for a ball while avoiding obstacles. The two snapshots at the left show the 
robot at positions (A and B) marked in the robot’s trajectory shown at the right hand side 
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