
D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 534–542, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Speed-Dependent Obstacle Avoidance
by Dynamic Active Regions

Hans-Ulrich Kobialka and Vlatko Becanovic

Fraunhofer Institute for Autonomous Intelligent Systems, Sankt Augustin, Germany

Abstract. An obstacle avoidance approach is introduced that has dynamic ac-
tive regions. The dynamic regions are adapted to the current speed of the robot
and there are different active regions used, one for speed reduction and one of
turning away from obstacles. The overall strategy of this approach is that the
robot can drive with high speed which will be reduced in front of an obstacle in
order to do a sharper turn.

1 Introduction

Successful obstacle avoidance has to consider the abilities of the vehicle to slow down
and turn. When driving at high speed, a robot needs more time to stop and making
sharp curves becomes impossible. So if the robot slows down, the amount of possible
trajectories increases. In presence of an obstacle, it has to be decided whether the
robot should slow down and turn more sharply closer to the obstacle, or keep its speed
but deviate more from the desired path.

The potential field method [8, 6] is commonly used for autonomous mobile robots
in recent years. Basically it builds up an artificial potential field consisting of repul-
sive forces which pull the robot away from obstacles, and an attractive force directed
towards a target direction. If the position of obstacles and target(s) is well-known and
stable, the potential field can be used for planning a trajectory towards the target, e.g.
[15]. In case of unknown environments where the robot can sense obstacles only in its
near vicinity, the potential field method can only be used for local obstacle avoidance,
i.e. compute the next direction to go for. The same holds true for dynamic environ-
ments, like RoboCup [1], where obstacles (e.g. robots) change their positions con-
tinuously.

The potential field method regards the robot to be holonomic, i.e. it can drive at
any moment in any direction. Obviously this is not true for robots depending on their
speed and mass. Non-holonomic, e.g. differentially steered, robots have to turn first
before they can move in the desired direction. Obstacle avoidance methods, like
VFH+ [14] and the Curvature Velocity method [11], consider this by cost functions.
Using these cost functions the costs for each direction is computed. The dynamics and
kinematics of a robot are considered as only feasible directions are evaluated using
the cost function. A differentially steered robot can drive only small curvatures at
high speed, so only these directions are considered. Finally, the direction with mini-
mal cost is selected.

Speed-Dependent Obstacle Avoidance by Dynamic Active Regions 535

In VFH+, cost increases if a direction leads towards obstacles, deviates from the
goal direction, or deviates from the current steering direction. The robot only slows
down if every direction is blocked. So if a robot should drive along a corridor and turn
into a narrow door, it may miss it because the speed isn’t reduced. The same problem
has been experienced for the Curvature Velocity method [9], and in [12] for the Dy-
namic Window approach [5].

The Lane Curvature method [9] chooses a free lane by minimizing an objective
function which has to implement the trade-off between avoiding obstacles, heading
for a target position, and maximizing speed. Among these three aspects, speed has the
lowest priority, so the direction with minimum costs may demand to slow down the
robot. This is similar to the effects of our approach.

In our approach, collisions are avoided by reducing the linear speed which again
enables the robot to turn away from obstacles and towards the target direction. Both,
speed reduction and turning, influence each other:

• speed reduction enables the robot to turn sharper, and
• turning to free space enables the robot to increase its speed again.

Speed dependency is mainly introduced by enlarging/shrinking the active region. The
active region is an area that moves with the robot, usually a circle around the robot,
see e.g. [6, 13]. In [12], a channel around a path (produced by a A* planner) is used.
Only obstacles within the active region are considered for obstacle avoidance. An
obstacle outside the active region is ignored as it is not regarded as a possible hazard.

Speed reduction and turning use different active regions. This is another out-
standing characteristic of our approach. This brings the advantage that they can be
tuned independently.

Speed reduction and turning are implemented as distinct behavior modules. In
compliance with the Dual Dynamics architecture [7, 10, 3, 2], each module has a so
called activation dynamics and a target dynamics. The target dynamics computes the
motor commands by which the module wants to pursue its goals. The activation dy-
namics computes the activation value of this behavior, ranging in from 0 to 1. The
activation value is used as a weight in order to superimpose concurrently active be-
havior modules. An activation value of 0 means that the module is not active, i.e. it
should not influence the motors in any way. The activation of an obstacle avoidance
module expresses the danger of having a collision; when approaching an obstacle it
rises continuously from 0 to 1 and, after turning away, back to 0 again.

We will describe the speed reduction module SlowDown (section2) and the module
TurnAway which makes the robot turning away from an obstacle (section 3). Section
4 tells how the outcome of these two modules is superimposed with the motor values
of the goal-oriented behaviors. Our experience with speed-dependant obstacle avoid-
ance is sketched in section 5.

2 Speed Reduction

2.1 Active Region

The active region of the module SlowDown is in front of the robot regarding its cur-
rent direction of movement. In case of a differentially steered robot this active region

536 Hans-Ulrich Kobialka and Vlatko Becanovic

is either at its front, or, if it moves backwards, at its back. The active region is shaped
like a rectangle because obstacles within this region would collide with the robot as it
moves forward. The length and the width of the active region is computed as follows:

ObstaclemDisttspeedlength RobotAR 2+∆⋅=

ObstaclemDistwidthwidth RobotAR 2+=

(1)

where widthRobot is the robot’s width, speedRobot is the robot’s current speed, �t is some
time span (e.g. 1 sec) and mDist2Obstacle is the minimum distance within which the
robot should react on obstacles.

Fig. 1. The active region of SlowDown

2.2 Collision Danger

While the robot senses its environment (e.g. using ultrasonic distance measurement),
it may detect a number of obstacle points. The possible danger of colliding with an
obstacle point which is measured inside the active region, decreases exponentially
depending on its distance Disti to the robot.

Fig. 2. An obstacle point is viewed with Angle
i
 and Dist

i



 ⋅

=
⋅−

0

)(1
i

DistK

irepulsive
weighte

F
i if Obstaclei is in active region

else

 ⋅

=
⋅−

0

)(1
i

DistK

irepulsive
weighte

F
i if Obstaclei is in active region

else

(2)

The weight of the obstacles is computed during several stages. First, it is propor-
tional to the cosine of the obstacle’s angle Anglei.

 min
**)cos(wAngleKweight iPi +⋅= (3)

where wmin denotes another safety margin.

Speed-Dependent Obstacle Avoidance by Dynamic Active Regions 537

If the robot drives at high speeds, the obstacles at the side (having low values for
cos(Anglei)) should gain more importance. This is achieved by the following step





=
**

**
*),max(

i

icritical
i

weight

weightweight
weight

else

if KRobotSpeedDisti ⋅≤

(4)

Finally, the weight is multiplied with a constant depending on how the obstacle has
been classified. For instance, in the RoboCup domain there used to be a wall which
has to be touched in order to get a ball away from it. So this kind of obstacle should
not repel the robot as much as, for instance, other robots. If the ball lies between the
robot and its own goal, it has to be avoided in order not to shoot self goals; so in this
situation Kball is very high, otherwise zero.









⋅
⋅
⋅

=
*

*

*

irobot

iwall

iball

i

weightK

weightK

weightK

weight

if Obstaclei belongs to the ball

if Obstaclei belongs to a wall

else

(5)

2.3 Activation Dynamics

The activation dynamics of SlowDown computes its activation value which expresses
the need for speed reduction for the current situation. Basically, it is the maximum of
all repulsive “forces” clipped to 1.

))(max,1min(irepulsive

i
target Fa = (6)

This target value is low-passed by an ordinary differential equation

)(SlowDowntargetSlowDown aaTa −⋅=�

 (7)







=
atereactModer

reactFast

reactNow

T

T

T

T

if 70≥RobotSpeed

if

else

4070 ≥> RobotSpeed

where the time constant T (which expresses how fast aSlowdown should follow atarget) de-
pends on the current speed of the robot.

2.4 Target Dynamics

The target dynamics of SlowDown computes the maximum speed which is admissible
for a certain situation. Basically it reduces the maximum Speed Speedmax depending on
aSlowdown; especially if aSlowdown is zero, VelocitySlowDown equals Speedmax. This is done by a
weighted sum where wSlowDown >> wGoal ensures speed reduction in case of high values of
aSlowdown. In situations when turning is dangerous, i.e. will lead to collisions, the robot
has to drive backwards for a short while.

538 Hans-Ulrich Kobialka and Vlatko Becanovic

3 Turning away from an Obstacle

3.1 Active Region

The active region of the module TurnAway is oriented towards the current target di-
rection.This region differs from the active region of SlowDown; especially it is inde-
pendent of the current orientation of the robot.

Xtarget

a wall

Fig. 3. The active reiogn of TurnAway

Also the shape of the active region differs from the one of SlowDown: first, there is
a circle around the robot; if there are no obstacle point within, the robot can turn,
otherwise not. Second, there is an active region oriented towards the target. It is
shaped like a parabola of a width (near the robot) and a length defined like

)2,min(ndestinatiodisttspeedlength RobotAR ∆⋅= (9)

 ObstaclemDistwidthwidth RobotAR 2+=

Similar to the active region of SlowDown, the length of the parabolic active region
depends on the robot’s speed. In addition, the length is clipped to dist2destination, the
distance between the robot and its target. This is because the robot should not care
about obstacles being behind its target. Otherwise such obstacles would cause the
robot to turn away before reaching its target. For instance, in RoboCup, the target may
be the ball and there may be other robots behind the ball. These should not be avoided
if a robot approaches the ball.

For the same reason the parabolic shape was chosen for the active region: the robot
should not turn away (but only slow down), if there are other robots in the vicinity of
the ball. This example illustrates that the active region should be shaped in an applica-
tion specific way. For other applications than RoboCup, other shapes could be advan-
tageous.

Speed-Dependent Obstacle Avoidance by Dynamic Active Regions 539

3.2 Collision Danger and Activation Dynamics

The collision danger and activation dynamics of TurnAway are computed in the same
way as for SlowDown (see equations (2) to (7)). However it should be noted that

• a different active region is used, and
• the used constants are different.

This way, the modules TurnAway and SlowDown can be tuned independently (e.g.
scope, reaction time, the strength of reaction) which helped us a lot while tuning the
system.

3.3 Target Dynamics

The target dynamics of TurnAway computes the direction which is recommended to
the robot by the obstacle avoidance module. Here we use a potential field approach:
Each obstacle point has, beside Disti and Anglei, a directioni which is a unit vector
pointing from the obstacle to the front of the robot.

Fig. 4. Direction
i
 the repulsive unit vector

When computing the weighted vector sum, using Frepulsivei as weights, we get
again a unit vector directionTurnAway, the direction where TurnAway recommends to
turn.

∑

∑ ⋅
=

i

i
TurnAway

repulsive

irepulsive

F

directionF
direction (10)

4 Superposition of Goal-Oriented Behaviors
 and Obstacle Avoidance

After the obstacle avoidance modules have computed their output (activation values
of SlowDown and TurnAway together with the recommended direction and the maxi-
mal admissible linear speed), we have to tell how the final motor commands result
from this.

540 Hans-Ulrich Kobialka and Vlatko Becanovic

In the computation of the maximal admissible linear speed, the activation value of
SlowDown is already used. So, the only thing left to be done is to clip the speed of the
goal-oriented behavior(s) by this speed.

),min(SlowDownGoal VelocityVelocityVelocity = (11)

Compromising between directionTurnAway and the direction wanted by the goal-
oriented behaviors (directionGoal) is done again by a weighted sum of vectors. Giving
directionGoal the weight 1, WeightTurnAway has to be >> 1 in order to let directionTurnAway
dominate if aTurnAway increases. This gives TurnAway the power to suppress ddesired if
obstacles are very close (i.e. if aTurnAway gets close to 1).

TurnAway

TurnAway

aWeight

directionaWeightdirection
direction

TurnAway

TurnAwayTurnAwayGoal

⋅+
⋅⋅+⋅

=
1

1
 (12)

5 Results

The dynamic active region approach has been used since April 2001 by our RoboCup
robots participating in the middle-size league. Each robot is equipped with 5 infrared
distance sensors, two of them can sense obstacles up to 80 cm in front of the robot
while the other three have a range of 50 cm. Obstacle points are remembered up to 1.5
seconds in an occupacy grid; as the robot turns, it gets a scan of obstacle points in its
vicinity. Thus, the robot is quite short-sighted and the sensory input is sometimes
incomplete, i.e. obstacles are not sensed. Even with this limited sensory input, our
approach worked even in very crowded and dynamic situations. We limited the
maximum speed of our robots to 160 cm per second because of the limited scope of
our sensors and due to the fact that other robots also move fast. Under other condi-
tions we expect our approach to work at higher speeds.

Figure 5 shows a scenario where a robot wants to drive behind the ball but finds its
way obstructed by obstacles. The resulting trajectory is shown at the right side of
figure 5: the points are drawn in equidistant time steps; it can be seen that the robot
slows down in the vicinity of obstacles.

6 Conclusions

A novel obstacle avoidance approach is introduced that has dynamic active regions.
The dynamic regions are adapted to the current speed of the robot. There are different
active regions used, one for speed reduction and one of turning away from obstacles.
The overall strategy of this approach is that the robot can drive with high speed which
will be reduced in front of an obstacle in order to do a sharper turn.

The obstacle avoidance module is placed in the system architecture in a way that it
can not be overruled by the behavior system. Also, the behavior system may choose
among several possible paths by using the obstacle avoidance module as an oracle.
This creates a highly flexible system that has shown good results in experiments, even
with low dimensional sensor data of limited range.

Speed-Dependent Obstacle Avoidance by Dynamic Active Regions 541

Fig. 5. A robot going for a ball while avoiding obstacles. The two snapshots at the left show the
robot at positions (A and B) marked in the robot’s trajectory shown at the right hand side

References

1. http://www.robocup.org
2. S. Behnke, R. Rojas, G. Wagner, ’A Hierarchy of Reactive Behaviors handles Complex-

ity’, Workshop ’Balancing Reactivity and Social Deliberation in Multi-Agent Systems’ at
the 14th European Conference on Artificial Intelligence (ECAI), 2000.

3. A. Bredenfeld, H.-U. Kobialka, ’Team Cooperation Using Dual Dynamics’ Balancing re-
activity and social deliberation in multi-agent systems, Lecture notes in computer science
2103, pp. 111 - 124, Springer, 2001.

4. A. Bredenfeld, G. Indiveri, ’Robot Behavior Engineering using DD-Designer’, Proc IEEE
International Conference on Robotics and Automation (ICRA 2001), pp. 205-210, 2001.

5. D. Fox ,W. Burgard, S. Thurn, ’The Dynamic Window Approach to Collision Avoidance’
IEEE Transactions on Robotics and Automation, 4:1, 1997.

6. S.S. Ge, Y.J. Cui, ’Dynamics Motion Planing for Mobile Robots Using Potential Field
Method’, Autonomous Robots 13, 207-222, 2002.

7. H. Jaeger, T. Christaller, ’Dual Dynamics: Designing behavior systems for autonomous
robots’, Artificial Life and Robotics, 2:108-112, 1998.

8. O. Khatib, ’Real-time obstacle avoidance for manipulators and mobile robots’, The Inter-
national Journal of Robotics Research 5(1):90-98, 1986.

9. N.Y. Ko, R. Simmons, ’The Lane-Curvature Method for Local Obstacle Avoidance’,
Proc. Intelligent Robots and Systems (IROS), 1998.

10. H.-U. Kobialka, H. Jaeger, ’Experiences Using the Dynamical System Paradigm for Pro-
gramming RoboCup Robots’, Proc. AMiRE 2003 (2nd International Symposium on
Autonomous Minirobots for Research and Edutainment), pp 193-202, 2003.

11. R. Simmons, ’The Curvature-Velocity Method for Local Obstacle Avoidance’, Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA 1996), pp. 3375-3382, 1996.

542 Hans-Ulrich Kobialka and Vlatko Becanovic

12. C. Stachniss, W. Burgard, ’An Integrated Approach to Goal-directed Obstacle Avoidance
under Dynamic Constraints for Dynamic Environments’, Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002), 2002.

13. I. Ulrich, J. Borenstein, ’VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots’,
IEEE Int. Conf. Robotics and Automation (ICRA 1998), pp. 1572-1577, 1998.

14. I. Ulrich, J. Borenstein, ’VFH*: Local Obstacle Avoidance with Look-Ahead Verifica-
tion’, IEEE Int. Conf. Robotics and Automation (ICRA 2000), pp. 2505-2511, 2000.

15. T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, B. Nebel, ’CS-Freiburg: Coordinating
Robots for Successful Soccer Playing’, IEEE Transactions on Robotics and Automation
18(5):685-699, October 2002.

	1 Introduction
	2 Speed Reduction
	2.1 Active Region
	2.2 Collision Danger
	2.3 Activation Dynamics
	2.4 Target Dynamics

	3 Turning away from an Obstacle
	3.1 Active Region
	3.2 Collision Danger and Activation Dynamics
	3.3 Target Dynamics

	4 Superposition of Goal-Oriented Behaviors and Obstacle Avoidance
	5 Results
	6 Conclusions
	References

