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Abstract. Due to the complexity and sophistication of the skills needed in real
world tasks, the development of autonomous robot controllers requires an ever
increasing application of learning techniques. To date, however, learning steps
are mainly executed in isolation and only the learned code pieces become part of
the controller. This approach has several drawbacks: the learning steps themselves
are undocumented and not executable.
In this paper, we extend an existing control language with constructs for specify-
ing control tasks, process models, learning problems, exploration strategies, etc.
Using these constructs, the learning problems can be represented explicitly and
transparently and, as they are part of the overall program implementation, become
executable. With the extended language we rationally reconstruct large parts of
the action selection module of the AGILO2001 autonomous soccer robots.

1 Introduction

Programming sophisticated low-level control skills as well as action selection strategies
for autonomous robots acting in dynamic and partially observable environments is both
tedious and error prone. Autonomous robot soccer, which has become a standard “real-
world” test-bed for multi robot control, provides a good case in point. In robot soccer
(mid-size league) two teams of four autonomous robots – one goal keeper and three
field players – play soccer against each other. The key characteristics of mid-size robot
soccer is that all sensing and action selection is done on-board.

Competent soccer play entails, besides other capabilities, the skillful execution of
various navigation tasks such as defending, dribbling, moving past opponents, and inter-
cepting the ball. To realize them, robots could use computational means to infer which
control signal should be issued to arrive at a desired state, how long it will take to get
there, and how promising it is in the current situation to try to arrive at this state.

Because of the dynamical and adversarial nature of a soccer play and physical sub-
tleties such as friction on different surfaces and the weight of the robot, programming
procedures for these reasoning tasks is very difficult. An attractive alternative is the
development of control systems that can acquire and adapt such procedures automat-
ically. Obviously, such a control system must learn at various levels of abstraction. It
must learn process models from sensory data such as the effects of control signals on
the dynamical state, and optimize control laws, e.g. for approaching the ball. It must
acquire models of control routines including their success rates and time requirements
to decide whether or not to go for a ball or defend the goal. Finally, it must learn the
situation-specific selection of appropriate actions.
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In current practice, such learning tasks are typically considered and solved in iso-
lation. A programmer gathers a set of examples for learning or provides an exploration
strategy. Then a learning system, a feature language in which the acquired data are to
be encoded, and a suitable parameterization of the learning system are selected. Subse-
quently, the learning step is executed, the learned routine transformed into an executable
piece of code, and provided as part of a software library. The controller can then use the
learned routine by calling it as a subroutine. This approach has several disadvantages:
the learning steps themselves are undocumented and not automatically executable, and
therefore difficult to reproduce.

In this paper, we extend an existing control language to automate this process. Us-
ing the constructs of this language, the system model can be specified, and the learning
problems can be represented explicitly and transparently, both becoming an integrated
part of the overall program. Therefore, the learning problems become executable, doc-
umentation of models is integrated in the program, modularity is higher, and analysis
of the system is simplified.

Several programming languages have been proposed and extended to provide learn-
ing capabilities. Thrun [8] has proposed CES, a C++ software library that provides prob-
abilistic inference mechanisms and function approximators. Unlike our approach a main
objective of CES is the compact implementation of robot controllers. Programmable
Reinforcement Learning Agents [2] is a language that combines reinforcement learning
with constructs from programming language such as loops, parameterization, aborts,
interrupts, and memory variables. A difference with our method is that learning tasks
can also be specified in our language, and that the learning methods are not confined to
reinforcement learning only.

In the remainder of this paper we proceed as follows. The next section describes
how process models can be specified. In section 3 it is shown how learning problems
can be specified, and in section 4 we give a case example: the AGILO2001 controller.
We conclude with a detailed outlook on our future research investigations.

2 Modeling the System

In this section we specify models of different components of the robot and its environ-
ment, and show how they can be made explicit in our language. The first class of models
we present are process models, such as the robot’s dynamics and sensing processes. The
second class models the robot’s control routines.

2.1 Specifying the Environment Process
define controlled process robot field process

static environment field model
environment process ball proc., robot proc., team-mate proc. 1,2,3, opponent proc. 1,2,3,4

sensing process state → camera-image × odometry-reading × message

The construct above specifies that the “robot field process” is a controlled process
(we use the dynamic system model, described in [6]), consisting of a static field model
and environment and sensing process. These two processes can themselves be decom-
posed into subprocesses. In the model of the AGILO RoboCup control system the envi-
ronment process consists of the dynamics of the robot, which specifies how the control



594 Michael Beetz et al.

inputs change the physical state of the robot. The other subprocesses of the environ-
ment process are those that change the physical states of the team mates, the ball, and
the opponent robots. All these processes are largely independent of each other. The only
interactions between them are collisions and shooting the ball.

By using this construct the model of the environment is an explicit part of the overall
program. This ensures that documentation about the model is integrated, and that mod-
ularity of different processes is enforced. Not only does this construct model the real
environment, it can also be used as an environment simulator specification. To realize
this simulator, the process models need to be implemented. A straight-forward method
of realizing this is by manually implementing procedures for each process. If these pro-
cess models suffice for predicting the effects of control signals on the game situation
then they constitute an ideal simulator for the system. In section 3 it will be shown
that by using learning task constructs, the manual implementation can be replaced by a
learning procedure, which can be integrated into the overall program as well.

2.2 Specifying the Control Process

In this section we provide the control system with models of its control routines. These
models enable the robot to do more sophisticated action selection and thereby improve
its behavior with respect to the given performance measure. We provide this model in
two pieces. First, the control task that specifies what has to be done and second, the
control routine that specifies how it has to be done. The rationale behind separating
these two aspects is that a task can be accomplished by different routines that have
different performance characteristics.

Control Tasks specify what the robot should be capable of doing. For example,
the robot should be capable of going to the ball, intercepting a ball, and defending. A
control task can be specified in two ways: first, we can specify it using a start state
and a description of goal states. An example of such a control task is the following
one: reach the position of the ball facing the opponent goal, which we represent as
〈x = xball, y = yball, θ = θtoball〉. The set of possible control tasks can be constrained
as {〈is, gs〉|is ∈ IS ∧ gs ∈ GS}. For example, we might constrain this control task
to situations where the ball is not in the own penalty area. In addition, we can specify
a probability distribution over the possible set of tasks. This probability distribution
affects the expected performance of the control routines.

An alternative way of stating a control task is to specify it using the start state and
an objective function, a performance measure that the robot should try to maximize.
For example, for attacking, an appropriate performance measure might be the expected
time needed to shoot a goal, which should be minimized.

control task achieve-dynamic-state
task specification 〈x = xball, y = yball, θ = θtoball〉
process signature 〈x, y, θ〉 × 〈xg, yg, θg〉 → 〈vtra, vrot〉
control process specification

goal (〈xg, yg, θg〉) ∧ achievable(〈xg , yg, θg〉) ⇒ active (navigate (〈xg, yg, θg〉))
goal (〈xg, yg, θg〉) ∧ ¬achievable(〈xg , yg, θg〉) ⇒ fails (navigate (〈xg, yg, θg〉))
active (navigate (〈xg, yg, θg〉)) ∧ timed out ⇒ fails (navigate (〈xg, yg, θg〉))
active (navigate (〈xg, yg, θg〉)) ∧ 〈x, y, θ〉 = 〈xg, yg, θg〉

⇒ succeeds (navigate (〈xg, yg, θg〉))
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Let us consider, as an example, the control task specification shown above. The task
specification states the desired values for the state variables x, y, and θ. The process
signature indicates that the current dynamic state and the desired dynamic state are
mapped into control inputs for the translational and rotational velocity of the robot. The
control process specification then states when the control task should be activated and
the different possible outcomes of performing the control task.

Control Routines specify how the robot is to respond to sensory input or changes
in the estimated state in order to accomplish a given control task. We might have differ-
ent routines for a given control task, which have different performance characteristics.
Control routines first of all consist of an implementation, a procedure that maps the es-
timated state into the appropriate control signals. Besides the implementation we have
the possibility to specify models for the control routine, encapsulating the procedural
routine within a declarative construct which can be used for reasoning and manipulat-
ing. Suppose we had a model consisting of decision rules that can identify situations
in which the control routine is very likely to succeed and very likely to fail. We could
then apply these rules in order to decide whether to activate the routine in the current
situation or terminate it if the routine is likely to fail. This is not possible with only a
procedural representation of the control routine.

3 Adding Learning Capabilities

In the last section we have specified process models and implemented them as pro-
cedures. However, it is often difficult and tedious to program them manually. In this
section we will describe how the corresponding learning problems and the mechanisms
for solving them can be specified. There are a number of program pieces that can be
learned rather than being specified by programmers. In our robot soccer application,
the robot learns, for example, the process model for its dynamics. Also, there are many
opportunities for learning the implementation as well as the models of control routines.

We will restrict ourselves to learning problems that can be solved by function ap-
proximation. In particular, we will look at problems that can be learned by artificial
neural networks and by decision tree learning algorithms. Our primary example will be
learning how to achieve a given dynamic state, which is representative for learning in
the context of control routines.

To state learning problems we must provide several pieces of information. The type
of function that is to be learned, whether it is a process model or a control task. We must
also specify the robot to be controlled and the environment it is to act in. In addition, the
learning problem specification contains a specification of a problem specific learning
system, and the data gathering process. This information is provided using the macro
define-learning-problem.

define learning problem achieve-dynamic-state
control-routine achieve-dynamic-state-3
control-task achieve (〈x = xball, y = yball, θ = θtoball〉)
dynamic system agilo-robot-controller
data-collector achieve-state-data-collector
learning-system achieve-state-learner
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The learning problem specification shown above specifies these information pieces
for the task achieve dynamic state. In the remainder of this section, we introduce the
representational structures for specifying the different components of learning problems
and then discuss issues in the implementation of these constructs.

3.1 Specifying Data Collection

The first step in learning is the data collection. To specify data collection we must state
a control task or sample distribution and we have to provide monitoring and exception
handling methods for controlling data collection. CLIP [1] is a macro extension of LISP,
which supports the collection of experimental data. The user can specify where data
should be collected, but not how.

In order to acquire samples we have to define a sample distribution from which sam-
ples are generated. During data collection the perception, control signals, and control
tasks of each cycle are written to a log file. The data records in the log files can then be
used for the learning steps.

define task distribution achieve-dynamic-state
with global vars

translation-tolerance← 0.03
max-time-steps ← 20

for initial state 〈x, y, θ, vtra, vrot〉 ← 〈 -4.5, 1.5, 0.3, [0-0.6], [0-0.7] 〉
for goal state 〈vtra:g, vrot:g〉 ← 〈 [0-0.6], [0-0.7] 〉

with setup setstate 〈 x, y, θ, vtra , vrot 〉, setgoal 〈 vtra:g, vrot:g 〉
The task distribution specification above defines a distribution for the initial state

consisting of the robot’s pose and translational and rotational velocity, as well as the
goal state of an episode, which consists of the desired translational and rotational ve-
locity. The body of the episode consists of setting the robot in its initial state and then
setting the desired dynamic state as a goal for the controlled process.

The data collection cycle starts with an initialization phase in which a task is sam-
pled from the task distribution. In the distribution above this is the setstate command
in the with setup statement. The data collector monitors the initialization to detect
whether or not it has been successful. Unsuccessful initialization is particularly likely
when the learning task is performed using the real robots. Upon successful initializa-
tion the data collection phase is activated. In the data collection phase the perception
and control signals are collected. The data collector then detects the end of the episode
and decides whether or not the episode is informative and should be recorded.

Thus, in order to collect data reliably and efficiently it is necessary to specify special
purpose code for the initialization phase, for failure handling, and resetting the robot.
These code pieces can be provided using the define data collection functions .

3.2 Specifying Learning Systems

Learning problems can be solved with very different learning systems such as artificial
neural networks or decision tree learners. In order to specify a task-specific learning
systems three pieces of information must be provided. First, we have to specify how the
collected data are to be transformed into patterns that are used as input for the learn-
ing system. An example is the transformation of global coordinates to an robot-centric
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coordinate system. Second, a function for parameterizing the learning system. For an
artificial neural network for instance we have to define the topological structure of the
network. Finally, we must provide a function that transforms the output of the learning
system into an executable function that can be employed within the robot control pro-
gram. Thus, the input patterns for the achieve-dynamic-state control task can be defined
as follows:

define state space achieve-dynamic-state
input-features ( (vtra:0 (percept:vtra :time t))

(vtra:g goal-state:vtra ) )
output-values ( (vtra:1 (percept:vtra :time (t + 1))) )
output-function (v1 float)

The macro declares the training pattern to consist of the feature vtra:0, which is
taken to be the vtra of the percept component of a log file entry and vtra:g that is the
vtra of the goal state of the log file entry. The output value of the pattern, called vtra:1, is
the translation velocity of the subsequent entry in the log file. The output of the learned
function will be vtra:1.

3.3 From Partial Specification to Executable Program

We have implemented our representational structures using LISP’s macro facilities and
provided them in the context of Structured Reactive Controllers (SRCs) [3]. The LISP-
based parts are equipped with an abstract robot interface consisting of C libraries loaded
as shared objects. The system uses shared memory communication as a coupling to the
low-level control processes. To date, we have provided the functionality of two learning
systems: the decision tree learning algorithm C4.5 and the Stuttgart Neural Network
Simulator (SNNS).

An important implementational aspect is how we get from declarative problem spec-
ifications to executable and effective learning processes. For this and other purposes
control routines, process models, and control routine models are represented as first
class objects that computer programs can reason about and manipulate. One property
of these objects is that they can have an implementational status, such as to-be-learned.
The distinct characteristic of this program is that in the beginning it only partially spec-
ifies the behaviour, leaving unspecified behaviour to be learned at a later stage.

Transforming this partial specification to an executable control program proceeds in
three steps. In the first phase a problem collector traverses the top-level control routine
and collects all references to procedures with the status to-be-learned and stores them in
the set of learning problems. In the second phase, the routines are learned. We consider
a routine as learnable if it is to-be-learned and does not call any code to-be-learned.
Therefore, the procedures are learned in an order that respects the dependencies be-
tween them, until all routines are learned. Finally, the complete program can be run to
produce the behaviour, for instance playing robot soccer.

4 A Rational Reconstruction of the AGILO2001 Controller

With the extended language we have rationally reconstructed large parts of the action
selection module of the AGILO autonomous soccer robots, with processes, data collec-
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tion, learning system generation specified in constructs. The control program resulting
from this reconstruction can automatically learn a repertoire of routines for playing
robot soccer competently. In this section the learning process is demonstrated.

In the bootstrap learning phase the first learning task that is tackled is the learning of
the robot dynamics. This learning task acquires a process model for the environment and
does not depend on the solution of any other learning problems. To learn the dynamics
we use the log files obtained from earlier RoboCup games and transform them into a
pattern file for the learning system. For learning, we train an artificial neural network
using the SNNS system in order to approximate the mapping: statei × actioni �→
statei+1. In [4] this procedure is described in more detail.

The next learning task that the robot can address is how navigation tasks are to be
achieved. We have already seen in the specification of this task in section 2.2. This is
learned in a simulated environment, which only requires the learned robot dynamics. To
solve the learning task as a function approximation problem we provide the robot with
streams of control signals that generate good navigation trajectories. From this data the
robot learns the mapping statecurrent×stategoal �→ actioncurrent, using a multi layer
neural network. For a more detailed description see [5].

Once the controller can execute the navigation task, the robot learns a model of
the task. Given the simulated dynamics and the controller learned in the two previous
steps, the robot is given many automatically generated navigation tasks to execute. The
duration of the task is recorded, and this training data is used to learn the mapping
statecurrent × stategoal �→ time to complete, again using a multi layer neural net-
work. This mapping is necessary to coordinate the behaviour of our robots, the next
step in creating the complete AGILO controller. How this is done is discussed in [5].

Since all these learning tasks are specified with constructs in the program, adapta-
tion of the program is simplified. Learning tasks can be exchanged, without requiring a
redesign of the program structure. The program just needs to check if any constructs are
to-be-learned, and relearn them and any depending constructs. Another case example
that shows the strength of making learning tasks explicit is when hardware is upgraded.
Recently our robots have received new control-boards. Instead of having to repeat all
learning steps to model these new boards manually (involving undocumented scripts,
manual data copying and transformation, and so forth), we only have to provide the
system with a log-file, and set all relevant learning tasks to to-be-learned. The depen-
dencies between the learning tasks ensure that first the robot dynamics will be learned.
Given these dynamics, which can be used in the simulator, the navigation tasks can
be relearned. Given the navigation routines, models of the navigation routines can be
learned, and so on, until the complete executable AGILO2001 controller is acquired. We
are currently testing these procedures. Furthermore, the scope of learning tasks is being
extended beyond the AGILO2001 controller, to include additional control tasks such as
dribbling with fake movements, defending, shooting, and others. In addition, we are
starting to tackle reinforcement learning problems.

5 Conclusions

In this paper, we have extended a control language with constructs for explicitly rep-
resenting (1) the physical system that is to be controlled and (2) the learning problems
to be solved. In the extended language entities such as control tasks, process models,
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learning problems, and data collection strategies can be represented explicitly and trans-
parently, and become executable. In the learning and execution phase, the entities are
first class objects that control programs cannot only execute but also reason about and
manipulate. These capabilities enable robot learning systems to dynamically redesign
learning problems. We have also sketched the implementation of the learning phase and
showed how a bootstrap learning method can automatically complete a partially de-
fined control program by solving the stated learning problems. The extensions that we
have presented are expressive enough to rationally reconstruct most of the AGILO2001
action selector. Other complex control systems need to be implemented using our ap-
proach and the conciseness and expressivity of our constructs need to be assessed and
analyzed. We are just starting to incorporate optimizing learning techniques such as
reinforcement learning into our approach.

We see the main impact of our framework along two important dimensions. From a
software engineering perspective, the language extensions allow for transparent imple-
mentation of learning steps and abstract representation of complex physical systems.
These aspects are typically not adequately addressed in current control systems, which
makes them hard to understand and adapt to new requirements and conditions. The sec-
ond dimension, which we find much more exciting, is the use of the framework as a
tool for investigating more general and powerful computational models of autonomous
robot learning. The programmability of learning systems, the modifiability of state rep-
resentations, the possibility of reparameterizing learning systems, and the executability
of learning specifications within the framework enables us to solve complex robot learn-
ing tasks without human interaction. The framework thereby enables us to investigate
adaptive robot control systems that can autonomously acquire sophisticated skills and
competent task control mechanisms for a variety of performance tasks.
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