
Predicting Away Robot Control Latency

Sven Behnke2, Anna Egorova1, Alexander Gloye1,
Raúl Rojas1, and Mark Simon1

1 Freie Universität Berlin, Institute for Computer Science
Takustraße 9, 14195 Berlin, Germany

2 International Computer Science Institute
1947 Center St., Berkeley, CA, 94704, USA

http://www.fu-fighters.de

Abstract. This paper describes a method to reduce the effects of the
system immanent control delay for the RoboCup small size league. It
explains how we solved the task by predicting the movement of our robots
using a neural network. Recently sensed robot positions and orientations
as well as the most recent motion commands sent to the robot are used
as input for the prediction. The neural network is trained with data
recorded from real robots.
We have successfully field-tested the system at several RoboCup compe-
titions with our FU-Fighters team. The predictions improve speed and
accuracy of play.

1 Introduction

The time elapsed between making an action decision and perceiving the conse-
quences of that action in the environment is called the control delay. All physical
feedback control loops have a certain delay, depending on the system itself, on
the input and output speed and, of course, on the speed at which the system
processes information.

In the RoboCup small size league a global vision module is used to determine
the positions of all robots on the field. In order to control the behavior of the
robots in a way that is appropriate for the situation on the field we need the exact
positions of them at every moment. Because of the delay inherent in the control
loop, however, the behavior control system actually reacts to the environment
four frames ago (about 132ms). When moving faster – our robots drive at a
speed of up to 2m/s – the delay becomes more significant as the error between
the real position and the position used for control grows up to 20 cm.

In order to correct this immanent error we have developed a neural network
which processes the positions, orientations, and the action commands sent to
the robots during the last six frames. It predicts the actual positions of the
robots. These predictions are used as a basis for control. We use real recorded
preprocessed data of moving robots to train the network.

The concept of motor prediction was first introduced by Helmholtz when
trying to understand how humans localize visual objects (see [6]). His suggestion

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 712–719, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Predicting Away Robot Control Latency 713

was that the brain predicts the gaze position of the eye, rather than sensing it.
In his model the predictions are based on a copy of the motor commands acting
on the eye muscles. In effect, the gaze position of the eye is made available before
sensory signals become available.

The paper is organized as follows. The next section gives a brief description
to our system architecture. Then we explain how the delay is measured and we
present some other approaches to eliminate the dead time. Section 4 describes
architecture and training of the neural network used as a predictor. Finally, we
present some experimental results and some plans for future research.

2 System Architecture

The small size league is the fastest physical robot league in the RoboCup com-
petition relative to the field size. Top robot speeds exceed 2m/s and acceleration
is limited by the traction of the wheels only, hence a robot can cross the entire
field in about 1.5 sec. This is possible, since the sensing is done mainly by a
camera overlooking the field and behavior control is done mainly by an off-the-
field computer. Action commands are sent via a wireless link to the robots that
contain only minimal local intelligence. Thus, the robot designer can focus in
this league on speed, maneuverability, and ball handling.

Our control system is illustrated in Fig. 1. The only physical sensor we use
for behavior control is one S-Video camera1. It looks at the field from above and
produces an output video stream, which is forwarded to the central PC. Images
are captured by a frame grabber and given to the vision module.

The global computer vision module analyzes the images, finds and tracks the
robots and the ball and produces as output the positions and orientations of the
robots, as well as the position of the ball. It is described in detail in [3].

Based on the gathered information, the behavior control module then pro-
duces the commands for the robots: desired rotational velocity, driving speed
and direction, as well as the activation of the kicking device. The central PC
then sends these commands via a wireless communication link to the robots.
The hierarchical reactive behavior control system of the FU-Fighters team is
described in [2].

Each robot contains a microcontroller for omnidirectional motion control.
It receives the commands and controls the movement of the robot using PID
controllers (see [4]). Feedback about the speed of the wheels is provided by the
pulse generators which are integrated in each motor.

3 Delay: Measurement, Consequences, and Approaches

As with all control systems, there is some delay between making an action de-
cision and perceiving the consequences of that action in the environment. All
1 There are various other sensors on the robots and in the system, but they aren’t

used for behavior control. For example, the encoders on the robots are only used for
their motion control.



714 Sven Behnke et al.

Fig. 1. The feedback control system. All stages have a different delay. But only the
overall delay is essential for the prediction.

stages of the control loop contribute to the control delay that is also known as
dead time. Although image capture, computer vision, and behavior control run
at a rate of 30Hz, motion control runs at 80Hz, and the entire system is opti-
mized to minimize delay, all the small delays caused by the individual stages add
up to about 100 to 150ms. For the purposes of control, all delays can be aggre-
gated to a single dead time. This is illustrated in Fig. 2(a). If a robot moves at
2m/s and the dead time is 100ms, the robot will travel a distance of 20 cm before
we perceive the consequences of an action decision. This causes problems when
robots move fast, producing overshooting or oscillations in movement control.

In order to measure the system delay, we use the following simple technique.
We let the robot drive along the field with a speed that is determined by a
sinusoidal function. This means, the robot moves back and forth with maximum
speed in the middle of the path, slowing down and changing direction at both
turning points. We then measure the time between sending the command to
change the direction of motion and perceiving a direction change of the robot’s
movement.

There are many possibilities to counter the adverse effects of the control delay.
The easiest way would be to move slower, but this is frequently not desirable,
since fast movement is a decisive advantage in play. Another possibility would be
to reduce precision requirements, but this would lead to unnecessary collisions
with other players and uncontrolled ball handling.

Control researchers have made many attempts to overcome the effects of de-
lays. One classical approach is known as Smith Predictor [8]. It uses a forward-
model of the plant, the controlled object, without delays to predict the con-



Predicting Away Robot Control Latency 715

(a)

Controller Plant

Delay

Target
Action State

Sensed State

(b)

Controller Plant
Target

Action State

DelayPredictor Sensed statePredicted
state

Fig. 2. Control with dead time: (a) control is difficult if the consequences of the con-
troller actions are sensed with significant delay; (b) a predictor that is trained to output
the state of the plant can reduce the delay of the sensed signal and simplify control.

sequences of actions. These predictions are used in an inner control loop to
generate sequences of actions that steer the plant towards a target state. Since
this cannot account for disturbances, the plant predictions are delayed by the
estimated dead time and compared to the sensed plant state. The deviations re-
flect disturbances that are fed back into the controller via an outer loop. The fast
internal loop is functionally equivalent to an inverse-dynamic model that con-
trols a plant without feedback. The Smith Predictor can greatly improve control
performance if the plant model is correct and the delay time matches the dead
time. It has been suggested that the cerebellum operates as a Smith Predictor to
cancel the significant feedback delays in the human sensory system [7]. However,
if the delay exceeds the dead time or the process model is inaccurate, the Smith
Predictor can become unstable.

Ideally, one could cancel the effects of the dead time by inserting a negative
delay of matching size into the feedback loop. This situation is illustrated in
Fig. 2(b), where a predictor module approximates a negative delay. It has access
to the delayed plant state as well as to the undelayed controller actions and is
trained to output the undelayed plant state. The predictor contains a forward
model of the plant and provides instantaneous feedback about the consequences
of action commands to the controller. If the behavior of the plant is predictable,
this strategy can simplify controller design and improve control performance.

A simple approach to implement the predictor would be to use a Kalman
filter. This method is very effective to handle linear effects, for instance the
motion of a free rolling ball [5]. It is however inappropriate for plants that contain
significant non-linear effects, e.g. caused by the slippage of the robot wheels or by
the behavior of its motion controller. For this reason, some teams use a Extended
Kalman-Bucy Filter [9] to predict non-linear systems. But this approach requires
a good model of the plant. We propose to use a neural network as a predictor
for the robot motion, because this approach doesn’t require an explicit model



716 Sven Behnke et al.

and can easily use robot commands as additional input for the prediction. This
allows predicting future movement changes before any of them could be detected
from the visual feedback.

4 Neural Network Design

Since we have no precise physical model of the robot, we train a three layer
feed-forward network to predict the robot motion. The network has 42 input
units, 10 hidden units, and 4 output units. The hidden units have a sigmoidal
transfer function while the transfer function of the output units is linear.

We train the network with recorded data using the standard backpropagation
algorithm [1]. A great advantage of the neural network is that it can be easily
trained again if something in the system changes, for example if a PID controller
on board the robot is modified. In this case, new data must be recorded. However,
if the delay itself changes we only have to adjust the selection of the target data
(see below) before retraining.

4.1 Input Vector

The input presented to the neural network is based on position and orientation of
the robot as perceived by the vision module during the last six frames, as well as
the last few motion commands sent to the robot. Some preprocessing is needed
to simplify the prediction task. The preprocessing assumes translational and
rotational invariance. This means that the robot’s reaction to motion commands
does not depend on its position or orientation on the field. Hence, we can encode
its perceived state history in a robot-centered coordinate system.

The position data consists of six vectors – the difference vectors between the
current frame and the other six frames in the past, given as (x, y)-coordinates.
The orientation data consists of six angles, given as difference of the robot’s
orientation between the current frame and the other six ones in the past. They
are specified as their sine and cosine. This is important because of the required
continuity and smoothness of the data. If we would encode the angle with a single
number, a discontinuity between −π and π would complicate the training. The
action commands are also given in a robot-centered coordinate system. They
consist of the driving direction and speed as well as the rotational velocity. The
driving direction and velocity are given as one vector with (x, y)-coordinates,
normalized by the velocity.

Preprocessing produces seven float values per frame, which leads to a total
of 7 ∗ 6 = 42 input values for the neural network.

4.2 Target Vector

The target vector we are using for training the network consists of two compo-
nents: the difference vector between the current position and the position four
frames forward in the future and the difference between the current orientation



Predicting Away Robot Control Latency 717

and the orientation four frames ahead. They are encoded in the same format as
the input data.

4.3 Data Collection and Constraints

Data for training the network is generated by moving a robot along the field.
This can be done by manual control using a joystick or a mouse pointer, or by
specialized behaviors developed for this purpose.

To cover all regions of the input space, the robot must encounter all situations
that could happen during game play. They include changing speed over a wide
range, rotating and stopping rapidly, and standing still. We also must make sure
that the robot drives without collisions, e.g. by avoiding walls. This is necessary
because the neural network has no information about obstacles and hence can
not be trained to handle them. If we would include such cases in the training
set, the network would be confused by conflicting targets for the same input.
For example driving freely along the field or driving against a wall produce the
same input data with completely different target data.

We could solve this problem by including additional input features for the
neural network, e.g. a sensor for obstacles, and thus handle also this situation,
but this would complicate network design and would require more training data
to estimate additional parameters.

5 Results

We have extensively tested the neural network for the prediction of the position
and orientation of the robots since its first integration into the FU-Fighters’
system. It performs very well and we have nearly eliminated the influence of the
delay on the system.

To demonstrate the effect of the prediction on robot behavior, we have tested
one particular behavior of the robot: drive in a loop around the free kick points.
We compare the performance of the neural predictor to a linear predictor that
has been trained on the same data.

The histograms in Fig. 3 show that the neural network prediction has much
more samples with small errors than the linear prediction. The average position
error for the linear prediction is 5.0471 cm and 2.8030 cm for the neural network
prediction. The average orientation error for the linear prediction is 0.1704 rad
(9.76◦) and 0.0969 rad (5.55◦) for the neural network prediction.

6 Conclusion and Future Work

We have successfully developed, implemented, and tested a small neural network
for predicting the motion of our robots. The prediction compensates for the
system delay and thus allows more precise motion control, ball handling, and
obstacle avoidance. To make the perception of the world consistent, predictions



718 Sven Behnke et al.

0 5 10 15
0

200

400

600

800

1000

Error between the real and predicted position [cm]

N
um

be
r 

of
 s

am
pl

es
 o

ve
r 

th
e 

er
ro

r Linear Prediction
Neural Network Prediction

0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

Error between real and predicted orientation [rad]

N
um

be
r 

of
 s

am
pl

es
 o

ve
r 

th
e 

er
ro

r Linear Prediction
Neural Network Prediction

Fig. 3. Comparison between the histograms of linear and neural network predicted
robot position (left) and orientation (right) error. Both histograms have about 3000
samples.

are not only used for own robots, but also for robots of the opponent team and
the ball. However, here the action commands are not known and hence simpler
predictors are used. We employ Kalman filters to model linear effects.

For advanced play, it would be beneficial to anticipate the actions of opponent
robots, but this would require learning during a game. Such online learning is
dangerous though, because it is hard to automatically filter out artifacts from
the training data, caused e.g., by collisions or dead robots.

Another possible line of research would be to apply predictions not only to
basic robot motion, but also to higher levels of our control hierarchy, where
delays are even longer.

Finally, one could also integrate the neural predictor into a simulator as a
replacement for a physical robot model. A simulator allows quick assessment of
the consequences of actions without interacting with the external world. If there
are multiple action options during a game, this ’mental simulation’ could be used
to decide which action to take.

References

1. Rojas, Raúl: Neural Networks – A Systematic Introduction. Springer Verlag, Hei-
delberg, 1996.

2. Behnke, Sven; Frötschl, Bernhard; Rojas, Raúl; Ackers, Peter; Lindstrot, Wolf; de
Melo, Manuel; Schebesch, Andreas; Simon, Mark; Spengel, Martin; Tenchio, Oliver:
Using Hierarchical Dynamical Systems to Control Reactive Behavior. Lecture Notes
in Artificial Intelligence 1856 (2000) 186–195.

3. Simon, Mark; Behnke, Sven; Rojas, Raúl: Robust Real Time Color Tracking. Lecture
Notes in Artificial Intelligence 2019 (2001) 239–248.

4. Rojas, Raúl; Behnke, Sven; Liers, Achim; Knipping, Lars: FU-Fighters 2001 (Global
Vision). Lecture Notes in Artificial Intelligence 2377 (2002) 571–574.



Predicting Away Robot Control Latency 719

5. Veloso, Manuela; Bowling, Michael; Achim, Sorin; Han, Kwun; Stone, Peter: CMU-
nited98: RoboCup98 SmallRobot World Champion Team. RoboCup-98: Robot Soc-
cer World Cup II, pp. 61–76, Springer, 1999.

6. Wolpert, Daniel M.; Flanagan, J. Randall: Motor Prediction. Current Biology Mag-
azine, vol. 11, no. 18.

7. Miall, R.C.; Weir, D.J.; Wolpert, D.M.; Stein, J.F.: Is the Cerebellum a Smith
Predictor? Journal of Motor Behavior, vol. 25, no. 3, pp. 203–216, 1993.

8. Smith, O.J.M.: A controller to overcome dead-time. Instrument Society of America
Journal, vol. 6, no. 2, pp. 28–33, 1959.

9. Browning, B.; Bowling, M.; Veloso, M.M.: Improbability Filtering for Rejecting
False Positives. Proceedings of ICRA-02, the 2002 IEEE International Conference
on Robotics and Automation, 2002.


	1 Introduction
	2 System Architecture
	3 Delay: Measurement, Consequences, and Approaches
	4 Neural Network Design
	4.1 Input Vector
	4.2 Target Vector
	4.3 Data Collection and Constraints

	5 Results
	6 Conclusion and Future Work
	References



