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Abstract. A framework for asynchronous stochastic linear control the-
ory is introduced using a simple example motivated by the early
RoboCup soccer server dynamics. Worst and average case scenarios are
studied and it is demonstrated that they fit smoothly into the framework
of standard synchronous control theory.

1 Introduction

In the early versions of the RoboCup Soccer Simulator, a central problem was
the synchronization of the soccer clients with the soccer simulator. The games
were run in real-time, but the UDP/IP protocol used does not guarantee that
the communication packets will reach the other side such as to guarantee a well-
defined temporal relation between the agent state and the soccer server state [11].
An important question was how a consistent world view could be maintained [12].
Commands sent by the agents to the server, as well as the agent world model
might not be synchronized with the server cycle. In tournaments from 1999
onwards, faster machines, networks and better synchronization algorithms, like
that developed by CMU [14] increasingly made this view obsolete and allowed
agents to become synchronized with the simulator.

In the present paper, we will revisit the original problem. But why return to
a problem which seems to be no longer relevant? There are several reasons for
that: First, the existence of precisely timed world states is a model which is a
coarse approximation of physical reality. In newer versions of the soccer server
simulator it is considered to introduce a continuous time, where actions will be
incorporated into the physical dynamics as they arrive; this means that they will
not be buffered to be processed only at the fixed time steps of the simulation
update. Second, although current hardware robots are often organized in syn-
chronized time steps due to technical reasons, it is far from clear that, say, their
sensorics and processing systems should obey this principle of equal and consis-
tent timing. Different concepts of timing and of time processing exist in biological
systems and may, among other aspects, be responsible for the phenomenon of
consciousness [6]. Third, the concept of what constitutes a worldly “reality” is
a generally intriguing question. In the extreme cases of relativity theory, the
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concept of “now” loses all its meaning without additional assumptions. The un-
synchronized relation between world and agent time in the early soccer server
can be interpreted as a kind of “unorganized relativistic system” For this reason,
we believe that the question of studying systems with a stochastic asynchrony
bears an interest in its own right. In the present paper, we will study a linear
control model for a strongly specialized class of stochastic asynchronous control
systems as a starting point for a generalized theory of stochastic asynchronous
control.

Asynchronous systems are of interest in the development of highly integrated
systems where tight timing schedules make asynchrony an integral part of the
dynamics [2]; such systems are usually of digital nature and analyzed using Petri
networks [9]. In continuous systems, the typical approach is linear [13] or non-
linear [10] control theory, typically assumed to be synchronous. Another line of
research studies the dynamics in spiking neural networks [8] exhibiting phenom-
ena of asynchronicity not unlike technical systems. Hassibi et al. [4] introduce a
method for the control of asynchronous dynamical systems. The method consid-
ers asynchronous events in the control loop whose behaviour is only restricted by
an event rate. In their work, few assumptions are made and stochastical aspects
of time delays are not modelled. These, however, will be part of the present work.
The relation between models studied in this paper and switched systems [7] as
well as Markovian jumping systems [1] will be studied in a later paper.

2 A Scenario

2.1 The Synchronization

We concentrate on a simple scenario in the framework of the early soccer server
to illustrate the approach. Assume that at integer times t = 1, 2, 3 . . . the server
world state is updated according to its dynamics [3], taking into account all the
agent action commands that arrived before t. After time t, the server sends out
its updated world state to the agents. Upon receiving this update, the agents
decide on an action to take and send it to the server which will incorporate it
into the simulation step at time t+1. We now make several assumptions: 1. The
server sends out world state information after each simulation step. This does
not conform to the standard setting of the soccer server, but serves to simplify
our present considerations. 2. The world state information sent out at time t
is processed by the agent which then issues an action command. 3. The action
command from 2., called at, has a probability of p of reaching the server in time
for the next simulation step. In that case, it will be included in calculation of
the next world state. at has a probability of q = 1− p of not reaching the server
in time, and instead after time t + 1. What now happens depends on whether
the following action command at+1 reaches the server in time or not. If at+1 is
late again, then at time t + 2 the server performs action at already in its buffer.
If at+1 is in time, though, it will overwrite at in the server buffer and will be
performed at time t + 2 (this is the case shown in Fig. 1).
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Fig. 1. The simulation-control cycle. The arrows from the server time-line to the agent
denote sensor world information sent from server to agent, the arrows from the agent
time-line to the server denote the action commands. With probability p, action at

reaches the server in time for the update at t + 1, with probability q = 1 − p, it is
too late and stays in the buffer until after t + 1. If the following command at+1 is late
again, at in the buffer will be processed at time t + 2. The present figure, however,
shows the case where at+1 reaches the server in time and overwrites at in the buffer;
thus, at time t + 2 at+1 will be carried out.

2.2 An Example for a Control Variable

As example, let us assume that we wish to control the orientation φ of the agent,
in approximation for small angles so that we can assume that φ ∈ R. The goal
is now a linear control rule that will stabilize φ to 0. Consider the synchronous
control case. If the orientation after time t is φt, then sending at = ∆φt results
in a new orientation φt+1 = φt + ∆φt after the next update. The control rule
is linear in φ: at := −cφt, the update rule φt+1 = φt − cφt. The best possible
control is achieved setting c := 1, immediately stabilizing the angle at 0.

Consider now the asynchronous case with a synchronization pattern as in
Sec. 2.1. Represent the state of the system by the vector (φt, φ

B
t )T . Here, φB

t is
the possible action from before time t stored in the server buffer. If no action is
stored set φB

t to 0. φB
t is not known to the agent. As in the synchronous case,

set at := −cφt. Now there are two possibilities: 1. With probability p, the action
will reach the server in time to be processed at t + 1. The new system state will
now be (φt+1, φ

B
t+1)T = (φt − cφt, 0)T . The 0 in the second component indicates

the empty action buffer. 2. With probability q = 1−p, the action will be late for
the update at t + 1. Thus, the new orientation will be obtained using the action
in the server action buffer, and the present command will end up in the action
buffer: (φt+1, φ

B
t+1)

T = (φt + φB
t+1,−cφt)T In case 1., the transition matrix for

the states is given by Tp =
(

1−c 0
0 0

)
In case 2., the transition matrix is given by

Tq =
(

1 1−c 0

)
.
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Fig. 2. Example for asynchronous control of the orientation if the probability p that
the action command reaches the server in time is p = 0.1. The time axis is t = 0 to
t = 20 from bottom to top; the diagram shows the probability that the agent has a
certain orientation if it issues a change orientation command −cφ in each step. For
more details, see text.

2.3 Solving the Control Problem: Example

The linear control of a single variable is the simplest possible control scenario in
the synchronous case and a special instance of a control problem. In our example
c := 1 solves the problem. In the asynchronous case, this is not anymore the case.
Assume an extreme delay probability, e.g., that the probability that the action
command is received in time p = 0.1.

Figure 2(a) shows the dynamics of the system. From bottom to top the
state information for times t = 0, . . . , t = 20 are shown. The graphs show the
probability distribution that the agent has a given orientation at a certain time.
The bottommost line shows the probability distribution at time t = 0. The agent
starts with the orientation φ0 := 0 and the server with an empty action buffer.
The command to correct the orientation by −cφ reaches the server in time only
with probability p = 0.1. We see that in the second graph from the bottom. With
probability 0.1, the agent has assumed the desired orientation of 0. In the rest
of the cases, the agent has remained in its original orientation since the action
command has not reached the server.

Now, if still in state φ = 1, the agent will reissue a reorientation command
while there is already such a command in the queue. In the following step t = 2,
the agent will then have assumed orientation 0, because now the original t = 0
reorientation action has finally reached the server (or, either, it had already
reached φ = 0 and does not need reorientation). However, since in 90% of the
cases the agent had reissued a reorientation command in time step t = 1, the
system overshoots; this process repeats itself in the next cycles. It takes consid-
erable time until the probability for φ = 1 or φ = −1 becomes negligible. While
therefore in the undelayed and synchronous control problem it makes sense to set
c = 1, this setting is too “aggressive” in the asynchronous case. For comparison,
the same control problem is shown in Fig. 2(b) for c = 0.7 .
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3 Towards a Methodology
for Asynchronous Linear Control

Is there a consistent method to handle the asynchronous stochastic control case?
The present paper will demonstrate an approach in the concrete example, be-
cause the concretization is more useful in bringing the point across. The principle
is not limited to the present case and can easily be extended to different and
more general systems. Since we do not have a single-valued system variable like
in deterministic control theory, but a probability distribution of the system vari-
able, we have a variety of choices for the criterium according to which we wish
to control. Here, we will discuss the worst case scenario and the average case
scenario.

3.1 The Worst Case Scenario

The worst case scenario is not concerned with the probability that a certain state
is assumed, as long as it is assumed; the worst possible state (i.e. the state that
is the farthest away from the desired one) determines the quality of the control.
To explain this, consider the case of Fig. 2(a). Here, even for large times t there
is still a nonzero probability for the orientation still to be at φ ∈ {−1, 1}, i.e.
as far away from the target state as in the beginning. Though this probability
decays exponentially, for the worst case scenario this is not relevant. It is the
slowest decaying branch of the probability dynamics that counts. In the worst
case scenario, one is interested to control the system in such a way as to maximize
the decay of the slowest decaying branch. The present section demonstrates the
approach, using the matrix lub-norm (“lub” = lowest upper bound).

Decay Calculation via LUB-Norm in a Simple Case. Assume for a minute
that p were 1, i.e. we had a synchronized system with the transition matrix as
above Tp =

(
1−c 0
0 0

)
. Then, for a general initial state x0, the state at time t is

given by T t
px0 = Tp . . . Tp︸ ︷︷ ︸

t times

x0. An upper bound for the worst case is obtained via

the lub-norm ‖ . ‖ of matrices1. Obviously ‖T t
p‖ = |1 − c|t. The strongest decay

in this case is obtained by c := 1 as done above.

The General Case. In our scenario, neither p nor q vanish. Thus the set
of states that may have a nonzero probability at a time step t is given by
{x | x = TktTkt−1 . . . Tk1x0, with ki ∈ {p, q} for i = 1 . . . t}. This is the set of all
possible states x arising via all possible combinations of t delayed and undelayed
simulation updates. Call such a sequence of updates a simulation run. We now
show how one can obtain increasingly accurate decay boundaries which can be

1 For a matrix A, the lub-norm is defined as ‖A‖ = supx
‖Ax‖2
‖x‖2

with ‖ . ‖2 the Euclidean

metric. One obtains ‖A‖ =
√

λmax with λmax the largest eigenvalue of AT A. The
lub-norm fulfils the criterium of submultiplicativity, ‖AB‖ ≤ ‖A‖‖B‖ [5].
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Fig. 3. The values of ‖Tp‖, ‖Tq‖ and ‖T 3
q ‖for different values of c.

used to determine the optimal control variable c. The coarsest possible boundary
can be calculated via the property of submultiplicativity of the lub norm (Foot-
note 1). We obtain for the state after any possible t-step simulation runs ‖xt‖2 =

‖TktTkt−1 . . . Tk1x0‖ ≤ ‖Tkt‖‖Tkt−1‖ . . . ‖T1‖‖x0‖2 ≤
(
maxk∈{p,q} ‖Tk‖

)t

‖x0‖2.
In this approximation, the decay rate is bounded by maxk∈{p,q} ‖Tk‖. We

know ‖Tp‖ = |1 − c| and have to calculate the lub-norm of Tq =
(

1 1−c 0

)
. One

obtains T T
q Tq =

(
1+c2 1

1 1

)
. This gives the set of eigenvalues { c2

2 +
√

c4+4
2 +1, c2

2 −√
c4+4
2 + 1}, the square root of the larger of the which is the lub-norm of Tq.

The results are shown in Fig. 3. The larger of the two values ‖Tp‖ and ‖Tq‖ is
the estimate for the worst-case decay factor achievable by selecting a given value
c. The figure shows that for no choice of c, ‖Tq‖ becomes smaller than 1. I.e.,
it is not possible to construct a decay rate below 1 considering only a one-step
lookahead. However, by iterating Tq three times, there are, in fact, values of c
for which the lub norm of T 3

q drops below 1 (Fig. 32).
We therefore see that the lub-norm provides us only with an upper bound

for the worst case scenario; if we wish more accurate boundaries, one has to
construct the possible simulation runs (sequences of ps and qs) and calculate the
pertinent lub-norms. Calculating the lub-norms for TpTpTp, TpTpTq, TpTqTp,
TpTqTq, TqTpTp, TqTpTq, TqTqTp, TqTqTq gives the plot shown in Fig. 4. This
procedure can be extended to longer sequences of p and q and used to determine
the pertinent control coefficient c.

2 An alternative way of showing that would have been to consider the eigenvalues of
Tq and seeing that their modulus is smaller than 1; however, this does not allow us
to identify the best value of c.
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Reduction to State Variable. The above calculation has still not exploited
further options to reduce the boundary. Since we are not actually interested
in having the total norm ‖x‖ of the state vector decaying, but actually only
the first component, x1 which is the orientation (the second component is the
buffered action which we are not interested in), what we are actually seeking is to
maximize the worst case decay for PTktTkt−1 . . . Tk1 where P is the projection
of the current total state vector onto the orientation component. For a more
accurate estimate, the control variable c should minimize the lub-norm of above
term. We will not proceed to do that here, but the idea is analogous to Sec. 3.1.

3.2 The Average Case Scenario

The average case scenario differs from the worst case one that probabilities
are incorporated in calculating the state vector whose behavior is going to be
controlled. A simulation with t updates results in a vector TktTkt−1 . . . Tk1x0

with probability ktkt−1 . . . k1 with ki ∈ {p, q} (note that we abuse notation by
using p and q as index names for the T , but as numerical values for the k).

For the expectation value for the state vector we have to sum up over
all the possible probabilities and combination of p and q, obtaining Ex =∑

(kt,...,k1)∈{p,q}t kt . . . k1Tkt . . . Tk1x0 = (pTp + qTq)tx0, where the first equa-
tion is the probability-weighted sum over all possible mutually disjoint t-step
histories and the second equation arises from the binomial theorem. This quan-
tity is a matrix operator obtained by averaging Tp and Tq according to their
weight and iterating it t times. To this operator, the methods from Sec. 3.1 can
be applied again in a straightforward manner. Thus, we can smoothly incorpo-
rate the average case scenario in the methodology developed above. The same
holds for the projection P of the average state on the orientation component.

4 Conclusion

The methodology developed here to describe and solve the linear stochastic
asynchronous control problem has been described given a specific example, to
make it more accessible, but is not restricted to it. It smoothly encompasses
both description of worst case and average case. Standard analysis methods
from linear control control theory [13] can be easily applied to the formalism,
thus making available the toolbox of standard control theory to the stochastic
asynchronous case, thereby complementing the formalism of standard control
theory.

5 Summary and Outlook

A formalism to solve a linear stochastic asynchronous control problem was pre-
sented in the framework of a simple, but paradigmatic case. It was discussed in
view of the worst and average case scenario. Future work will study the relation
of the present framework to existing work on switched systems and Markovian
jumping models [7, 1]. In addition, it will focus on the relation of information
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Fig. 4. Plot of the lub-norms for all three-step simulation runs. Since it is difficult to
distinguish the varieties of different graphs, it should be mentioned that the maximum
of the lub-norms is dominated by TqTpTq for smaller values of c and by TqTqTq for
larger values of c.

theory, control and time and combine it to extend the information-theoretic
perspective of control theory from [16, 15] towards a better understanding of
how information and time are related in a control loop. We believe that these
questions are not just of mainly academic interest, but will instead lead to a
better fundamental understanding of the role of time in intelligent information
processing.
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