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Abstract. The purpose of this paper is to study the efficiency of sim-
plified weak schemes for stochastic differential equations. We present a
numerical comparison between weak Taylor schemes and their simplified
versions. In the simplified schemes discrete random variables, instead of
Gaussian ones, are generated to approximate multiple stochastic inte-
grals. We show that an implementation of simplified schemes based on
random bits generators significantly increases the computational speed.
The efficiency of the proposed schemes is demonstrated.

1 Introduction

As described, for instance, in [[7] to price an option via simulation, one does not
require a pathwise approximation of the solution of the underlying stochastic
differential equation (SDE). Only an approximation of its probability distribu-
tion has to be considered. Thus the appropriate notion of convergence for such
a Monte Carlo simulation should be the weak one, instead of the strong con-
vergence, as described in [6]. It is well known that in order to achieve a certain
order of weak convergence one can approximate the random variables in a weak
Taylor scheme by appropriate discrete random variables. For instance, instead
of a Gaussian increment we can employ in an Euler scheme a much simpler two
point distributed random variable. In general, the simplified random variables
have to coincide only for certain lower order moments with those of the random
variables appearing in the Taylor schemes. In the case of a weak Taylor scheme
of second order, to construct a second order simplified method we can use a
three point distributed random variable. The aim of this paper is to show that
an implementation of such simplified schemes based on random bits generators
significantly increases the computational efficiency.

It should be noticed that the simplified Euler method is equivalent to some
random walk, which again is approximately equivalent to a binomial tree. The
possible states of the tree and of the simplified Euler scheme are approximately
the same. Small differences arise only for the level of these states depending on
the chosen parametrization of the binomial tree. However, while the tree is a
deterministic backward algorithm, the simplified method is a forward method
which generates paths. As we will report in Section @ the numerical behaviour
of simplified methods is similar to that of trees. For instance, we will obtain
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an oscillatory convergence in the case of a European call payoff. This is a well-
known effect of tree methods, but as will be shown, not limited to this class of
methods, see, for instance, [2].

The widespread application of the tree methodology in finance motivates the
application of the simplified schemes that will be presented in this note. The
similarity between simplified schemes and tree methods is important for the un-
derstanding of the numerical properties for both types of methods.

Simplified schemes, being forward algorithms, are not easily suitable to price
American options, even that corresponding algorithms have been developed, see
for instance [§]. Moreover, with the simplified methods we always have to face
the typical statistical error from Monte Carlo simulations. Major advantages of
simplified schemes over tree methods are that of flexibility and general applica-
bility in high dimensions.

The implementation of random bits generators will be proposed in this note. It
makes simplified methods highly efficient. As shown in [5], implicit simplified
methods can overcome certain numerical instability. Most importantly, random
bits generators can be efficiently applied to implicit schemes, while tree me-
thods cannot be made implicit. Note that simplified implicit schemes can be
understood as being equivalent to implicit finite difference partial differential
equation(PDE) methods. However, PDE methods cannot be easily implemented
for higher dimensions.

The order of convergence of simplified schemes is independent of the dimen-
sion of the problem. As shown in [I], around dimension three or four simulation
methods typically become more efficient than tree or PDE methods. It will be
shown that simplified methods with random bits generators outperform signifi-
cantly Taylor schemes, which are based on Gaussian and other random variables.
This makes simplified methods with random bits generators efficient tools for
high dimensional problems.

2 Weak Taylor Schemes and Simplified Methods

For the dynamics of the underlying security let us consider the following SDE:
dXt = a(t, Xt>dt + b(t, Xt)th (1)

for t € [0,T], with X, € R. A derivative pricing problem consists in computing
an expectation of a payoff function g(Xr) of the solution of the SDE (). For
the numerical approximation of such an expectation we require only an appro-
ximation of the probability distribution X7. Therefore, the appropriate notion
of convergence is that of weak convergence, see [6].

Let us assume an equidistant time dicretisation with nth discretisation time
tn, =nAforn € {0,1,..., N} where A = % and N € {1,2,...}. As a set of test
functions we use the space Cb of the [ times continuously differentiable functions
g which, together with their partial derivatives of orders up to and including I,
have polynomial growth.

We say that a time discrete approximation Y4 = {YV,4, ¢t € [0,T]} converges

weakly to X = {X;, t € [0,T]} at time T with order « if for each g € Cf,(wl)
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there exists a positive constant K, which does not depend on A, and a Ay > 0
such that £(A) = |E(g(X7) — E(g(Y#))| < KAY for each A € (0, 4y).

As explained in [6], based on the Wagner-Platen expansion one can construct
the, so called, weak Taylor schemes of any given weak order v € {1,2,...}. The
simplest weak Taylor scheme is the FEuler method, which has the weak order of
convergence v = 1.0. It is given by the scheme

Yn+1 - Yn + a(tna Y;L)A + b(tna Yn)AW’ru (2)

where AW,, = W, ., — W, is the Gaussian increment of the Wiener process W
forn€{0,1,2...,N — 1} and Y = X,.

If one uses in the above Euler scheme instead of Gaussian random variables
simpler multi-point distributed random variables, then one can still obtain the
same weak order of convergence v = 1.0, see Theorem 14.5.2 p. 474 in [6]. For the
Euler method these simpler random variables have to coincide in their first three
moments with those of the Gaussian Wiener process increments. This permits to
replace the Gaussian increment AW, in @), by a two point distributed random
variable A/Wn, where P(Awn =+VA) = % We then obtain the simplified Euler
scheme. Here the /iirst three moments of the Wiener process increments AW,
match those of AW,,.

The same applies to the order 2.0 weak Taylor scheme

Yog1 = Yy + ad + bAW, + %b’b{(AWﬁ) — A} + % <aa’ + ;a”b2) A?

+a'b AZ, + (ab’ + ;b”bQ) {AW, A - AZ,}, (3)

where AZ, represents the double It6 integral AZ, = :"“ [ dW,, dsy. Here
we replace the Gaussian random variables AW, and AZ, by expressions that
use a three point distributed random variable AW,, with P(AW,, = £v/34) = 1
and P(AW,, =0) = 2.

Then we obtain the second order simplified method

—~ 1 N2 1 1
Yo =Y, +alA+bAW, + 5bb’ {(AWn> _ A} + 5 (aa’ + 2a"b2> A2

1 1 —
+ B (a’b +ab + 2b”bQ) AW, A. (4)

Since the three point distributed random variable A/Wn is such that the first five
moments of the increments of the schemes (B) and (@) are matched, the second
order simplified scheme (@) can be shown to achieve the weak order v = 2.0.
By using four or even five point distributed random variables for approximating
the random variables needed, we can obtain simplified weak Taylor schemes of
weak order v = 3 or 4, respectively, as shown in [6] and in [4].

An important issue for simulation methods for SDEs is their numerical stability.
As noticed in [5], when considering test equations with multiplicative noise, the
weak schemes described above show narrow regions of numerical stability. In
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order to improve the numerical stability one needs to introduce implicitness in
the diffusion terms. This leads, for instance, to the fully implicit Fuler scheme

0
Yn+1 = Yn + {a (tn+17 Yn+1) - b(tn+1>Yn+1) ayb(tn+17Yn+1)} A

b (tni, Yog1) AW, (5)

Also in this case one can employ the two point distributed random variable AWn
instead of AW,, in (@) to obtain the simplified fully implicit Euler scheme that
still achieves an order v = 1.0 of weak convergence.

3 Random Bits Generators

We now demonstrate, for simplified schemes, how to implement highly efficient
random bits generators, that exploit the architecture of a digital computer. The
crucial part of the resulting simplified schemes, are the random bits generators.
These substitute the Gaussian random number generators needed for weak Tay-
lor schemes.

A well known and efficient method to generate a pair of independent standard
Gaussian random variables is the polar Marsaglia-Bray method coupled with a
linear congruential random number generator, as described in [9]. In our com-
parative study we use, as our Gaussian random number generator, the routine
gasdev, see p. 293 of [9].

For the simplified Euler scheme (@) and simplified fully implicit Euler scheme
@) we use a two point distributed random variable in each time step, which
is obtained from a random bits generator. This generator is an algorithm that
generates a single bit 0 or 1 with probability 0.5. The method implemented is
based on the theory of primitive polynomials modulo 2. These are polynomials
satisfying particular conditions whose coefficients are zero or one. The impor-
tant property is that every primitive polynomial modulo 2 of order n defines
a recurrence relation for obtaining a new bit from the n preceding ones with
maximal length. This means that the period lenght of the recurrence relation is
equal to 2" — 1. For a study on random number generators based on primitive
polynomials modulo 2 we refer to [I1].

Since the random number generator for the polar Marsaglia-Bray method has a
period of 23! we use a random bits generator based on the following primitive
polynomial modulo 2 of order 31: y(x) = 23! + 2% + 1. The C++ implementation
of this generator is reported in Figure [l see also [9]. This method is extremely
fast and suitable for direct hardware implementation.

On the test computer the CPU time needed to generate 10 million random num-
bers with the polar Marsaglia-Bray method amounts to 4.7 seconds. The two
point random bits generator, described above, is almost 30 times faster using
only 0.16 seconds.

For simplified methods of higher order similar multi-point random bits genera-
tors can be constructed. For the second order simplified method (@) it is sufficient
to use a three point random bits generator. A corresponding code is presented
in Figure Rl It produces three bits coupled with an acceptance-rejection method.
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intirbitlper3l(unsignedlong & iseed)
{ unsigned long newbit;
newbit = ((iseed >> 31) & 1)
((iseed >> 2) & 1);
iseed = (iseed << 1) | newbit;

return int(newbit); }

Fig.1. C++ code of the two point random bits generator.

On the test computer the CPU time needed to generate 10 million random num-
bers with this generator amounts to 0.8 seconds, which is still 5 times less than
the polar Marsaglia-Bray method.

int ranbit3per3l(unsignedlong & iseed)
{ mtxl = 1,22 =1, 23 =0;
while ((z1 ==1&& 22 ==1&& 23 ==0)
(2l ==0&& 22 ==1&& 23 == 1))
{ 21 = irbitlper3l(iseed);
x2 = irbitlper31(iseed);
x3 = irbitlper31(iseed); }

returnzl — x3; }

Fig. 2. C++ code of the three point random bits generator.

4 Numerical Results

Now, we present some numerical results for the Euler, fully implicit Euler and
order 2.0 weak Taylor schemes as well as their simplified versions. As test dy-
namics we choose an SDE with multiplicative noise of the Black-Scholes type,

where
dXt = /LXtdt + O'Xtth (6)

for t € [0,T]. The SDE admits the closed form solution X7 = Xgexp{(u —

%Z)T + oWr}. The CPU times needed to compute 4 million approximate paths
with 64 time steps with the Euler, fully implicit Euler and order 2.0 weak Taylor
scheme amount to 107, 114 and 110 seconds, respectively. The corresponding ap-
proximate simplified versions only require 3.8, 6.2 and 25.6 seconds, respectively.
Thus, for the Euler method the simplified version is roughly 28 times faster than
the Gaussian one. The simplified fully implicit Euler method is about 18 times
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faster than its Gaussian counterpart. For the second order simplified method we
found that it is roughly four times more efficient than the order 2.0 weak Taylor
scheme.

We analyse now the weak convergence of Monte Carlo simulations when using
a smooth payoff function, where we choose the first moment for illustration and
consider later on also a non smooth payoff which will be that of a European call
option.

4.1 A Smooth Payoff Function

At first, we study the weak error for a fixed number of simulations and time
steps. We also compare the CPU time needed to reach a given accuracy. In or-
der to analyse the weak error £(A), we run sufficiently many simulations such
that the statistical error can be neglected. We use the following parameters:
Xo=1,p=15,0=001,T=1.

An important application of Monte Carlo simulation is the calculation of Va-
lue at Risk via the simulation of moments, as applied in Edgeworth expansions
and saddle point methods, see [I0]. Therefore, as test function we use the first
moment EF(Xr) of Xp at time 7. Other moments give similar numerical results
due to the lognormal structure of the Black-Scholes dynamics. We then estimate
the weak error of the first moment by comparing the simulated Monte Carlo
estimate with the exact expectation E(X7) = Xget?.

In the first plot of Figure[d we show the logarithm logs(e(A)) of the weak error
for the Euler, fully implicit Euler, and order 2.0 weak Taylor method versus
the logarithm logs(A) of the time step size. The errors for the corresponding
simplified versions are almost identical and therefore omitted. The number of
simulated paths amounted to 16 million, which resulted in extremely small con-
fidence intervals that practically do not show up in Figure

We emphasize the important observation that the simplified methods achieve
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Fig. 3. Log-log plots of weak error versus time step size and CPU time versus the
weak error for the Euler, fully implicit Euler and order 2.0 weak Taylor schemes.

almost exactly the same accuracy of their Taylor counterparts. Note in Figure[3
that the Euler and the fully implicit Euler scheme reproduce in the log-log plot
the theoretically predicted weak order v = 1.0. Furthermore, the order 2.0 weak
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Taylor scheme achieves a weak order of about v = 2.0, as expected. Moreover, we
note in Figure Bl that the fully implicit Euler scheme shows poor results for very
large step sizes. However, as shown in [5], the fully implicit method has better
stability properties than the explicit schemes once the time step size becomes
sufficiently small.

What really matters in practice is the time needed to reach a given level of ac-
curacy. In the second plot of Figure [3 we show the logarithm of the CPU time
versus the negative of the logarithm of the weak error observed for the three
methods described above and their simplified versions. Since the accuracy for a
given time step size is almost identical for the schemes of the same order, the
increase in efficiency simply reflects the fact that the simplified schemes are com-
putationally less intensive than their Gaussian counterparts. We recall that, for
instance, the simplified Euler scheme is 28 times faster than the Euler scheme.

By comparing all six methods, we conclude that the second order simplified
scheme is significantly more efficient for the given example than any other of
the considered schemes. This result is rather important in simulations of Black-
Scholes dynamics since it points out efficient Monte Carlo simulation algorithms
for smooth payoffs.

4.2 An Option Payoff

In option pricing we are confronted with the computation of expectations of non
smooth payoffs. To give a simple example, let us compute the price of a Euro-
pean call option. Here we have a continuous but only piecewise differentiable
payoff (X7 — K)* = max(Xr — K,0) with strike price K and the well known
Black-Scholes formula as closed form solution for the option price at time ¢t = 0.
For this non smooth payoff we study the weak error for the Euler and the sim-
plified Euler method, assuming the volatility ¢ = 0.2 and the short rate . = 0.1.
We observed no major gain by using higher order methods, which is likely to be
due to the non smooth option payoff. Since the second order simplified method

@) is approximately equivalent to a trinomial tree, as discussed in Section [
this is consistent with an observation in [3]. In [3] it was observed that in option
pricing the order of convergence of trinomial trees is not superior to that of bi-
nomial trees.

In the first plot of Figure ] we show the log-log weak error plot for an at the
money-forward option, with strike K = Xy e*T. The Euler method generates
a weak order v = 1.0 with the log error forming a perfect line in dependence
on the log time step size. As mentioned earlier, the simplified Euler method is
approximately equivalent to a binomial tree. This method still achieves a weak
order v = 1.0. However, its log-log error plot does not exhibit a perfect line,
which is due to the discrete nature of the random variables used. This appears
to be the same effect as noticed for tree methods, see [2]. We observed for in the
money and out of the money options a similar order of convergence with similar
log error patterns.

In the second plot of Figure l]l we show the logarithm of the CPU time versus
the negative logarithm of the weak error. For the considered non smooth payoff
the increase in computational speed is still about 28 times. The simplified Euler
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Fig. 4. Log-log plots of weak error versus time step size and CPU time versus the weak
error for call option with Euler and simplified Euler scheme.

method is significantly more efficient than the Euler scheme, for every level of
accuracy. We observed similar results also for in the money and out of the money
options. In summary, one can say that the proposed rather simple random bits
generators when combined with simplified schemes can significantly enhance the
efficiency of typical Monte Carlo simulations in finance.
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