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Abstract. This paper investigates the effects of using temporal aggrega-
tion rules in the evaluation of the maximum portfolio loss1. In particular,
we propose and compare different time aggregation rules for VaR models.
We implement time-scale transformations for: (i) a EWMA model with
Student’s t conditional distributions, (ii) a stable sub-Gaussian model,
(iii) a stable asymmetric model. All models are subjected to backtest on
out-of-sample data in order to assess their forecasting power and to show
how these aggregation rules perform in practice.

1 Introduction

Several empirical and theoretical studies on the asymptotic behavior of financial
returns (see, among others, [4], [6]) justify the assumption of stable distributed
returns. The joint stable sub-Gaussian family is an elliptical family recently used
in portfolio theory and risk management (see [8], [10], [11]).

Following these studies, our paper presents and compares some alternative
models for the calculation of VaR taking into consideration their time scale
transformations. Firstly, we consider EWMA models with conditional elliptical
distributed returns and finite variance. Secondly, we describe VaR models in
the domain of attraction of stable laws. In particular, we focus our attention
on returns either with conditional multivariate Student’s t-distributions or with
stable Paretian distributions. We describe a time rule for each model and we
analyze and compare each performance considering conditional and unconditio-
nal coverage tests. We also test a particular temporal rule of VaR for the stable
EWMA model in the same way as we did for the elliptical EWMA model with
finite variance. In order to consider the asymmetry of financial series, we assume
conditional jointly α-stable distributed returns. The asymmetric stable model
results from a new conditional version of the stable three fund separation model
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recently proposed in portfolio theory. In this case too, under some regularity con-
ditions, we obtain a time rule of VaR. Finally, we compare the performance of all
symmetric and asymmetric VaR time rules proposed. In particular, we evaluate
VaR estimates of all models considering different temporal horizons, conditional
and unconditional coverage backtesting methods (see, among others, [1]).

The paper is organized as follows: in Section 2 we propose and formalize
time rules for elliptical EWMA models with finite variance. Section 3 introduces
time rules for returns in the domain of attraction of stable laws. In Section 4
we backtest the proposed VaR models assessing their ability to capture extreme
returns. Finally, we briefly summarize the paper.

2 Elliptical EWMA Models with Finite Variance

In some recent approaches (see, among others, [5],[7]) different exponential
weighting moving average (EWMA) models were proposed to compute the value
at risk of a given portfolio. The EWMA models assume that the conditional
distribution of the continuously compounded return is an elliptical law. In par-
ticular, the RiskMetrics model is a EWMA model with conditional Gaussian
distributed returns. The assumption of conditional elliptical distributed returns
simplifies the VaR calculation for those portfolios with many assets. If we denote
with w = [w1, w2, . . . , wn]′ the vector of the positions taken in n assets forming
the portfolio, its return at time t is given by

zP,t =
n∑

i=1

wizi,t, (1)

where zi,t = log
(

Pt,i

Pt−1,i

)
is the (continuously compounded) return of i−th asset

during the period [t−1, t], and Pt,i is the price of i−th asset at time t. Generally
we assume that within a short period of time the expected return is null and
that the return vector

zt = [z1,t, z2,t, . . . , zn,t]′

follows a conditional joint elliptical distribution. We can distinguish two different
types of elliptical EWMA models:

1. models with finite variance,
2. models with infinite variance.

In both cases the conditional characteristic function of the return vector
zt = [z1,t, ..., zn,t]′ is given by

Φzt(u) = Et(eiu′zt) = f
(
u′Qt/t−1u

)
,

and Qt/t−1 =
[
σ2

ij,t/t−1

]
is either the variance covariance matrix (if it exists

as finite), or another dispersion matrix when the return variance is not finite
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(see [9]).That is, every return conditioned by the forecasted volatility level is
distributed like a standardized elliptical distribution: zi,t/σii,t/t−1 ∼ E(0, 1)

and any linear combination of the returns is elliptically distributed, zP,t
d=

E(0, w′Qt/t−1w), where σ2
P,t/t−1 = w′Qt/t−1w is the dispersion of portfolio zP,t

and Qt/t−1 = [σ2
ij,t/t−1] is the forecasted dispersion matrix. When the elliptical

distribution admits a finite variance, then we can estimate the variance and co-
variance matrix Qt/t−1 considering the RiskMetrics’ EWMA recursive formulas
(see [5]).

The explicit modeling of the volatility series captures the time–varying persi-
stent volatility observed in real financial markets. Under the elliptical assumption
for the conditional returns, the Value at Risk of zP,t+1 = w′zt+1 at (1 − θ)%
(denoted by V aRθ,t+1) is given by simply multiplying the volatility σP,t+1/t fo-
recast in the period [t, t + 1], times the tabulated value of the corresponding
standard elliptical percentile k1−θ of E(0, 1). Therefore,

V aRθ,t+1/t(zP,t+1) = k1−θσP,t+1/t. (2)

When both vectors of returns zt = [z1,t, . . . , zn,t]′ and Zt+T =

[Z1,t+T , ..., Zn,t+T ]′ (where Zi,t+T = log
(

Pt+T,i

Pt,i

)
=
∑T

s=1 zi,t+s) follow the
Gaussian EWMA model, then, under further regularity assumptions, the (1−θ)%
VaR in the period [t, t + T ] is given by

V aRθ,t+T/t =
√

TV aRθ,t+1/t. (3)

This time rule simplifies the computation of the maximum loss that could occur
for a given level of confidence in a temporal horizon greater than the unity. In
addition, among the elliptical EWMA models with finite variance, the RiskMe-
trics model is the only one for which the temporal rule (3) can be used. As a
matter of fact, the Gaussian law is the unique elliptical distribution with finite
variance such that the sum of elliptical i.i.d. random variables belongs to the
same family of elliptical random variables, that is, vectors zt = [z1,t, . . . , zn,t]′

and Zt+T = [Z1,t+T , ..., Zn,t+T ]′ could follow the same elliptical EWMA mo-
del only if Zi,t+T =

∑T
s=1 zi,t+s and zi,m = σii,m/m−1εi,m (i = 1, ..., n and

m = t + 1, ..., t + T ) are conditional Gaussian distributed. Thus, the temporal
rule (3) cannot be extended to the EWMA models with conditional elliptical non
Gaussian distributed returns and finite variance as well as it cannot be extended
to the GARCH-type model (see [2]). However, in [7] it is proved a further time
aggregation rule when zt = [z1,t, z2,t, . . . , zn,t]′ and Zt+T = [Z1,t+T , ..., Zn,t+T ]′

follow different EWMA models with conditional elliptical returns
zi,m

d= E1(0, σii,m/m−1), and Zi,t+T
d= E2(0, σii,t+T/t). Under these assumpti-

ons,

V aRθ,t+T/t =
√

TMV aRθ,t+1/t, (4)
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where M = k̃2,1−θ

k̃1,1−θ
and k̃1,1−θ, k̃2,1−θ are respectively the corresponding 1 − θ

elliptical E1(0, 1), E2(0, 1) percentiles. Recall that the sum of elliptical i.i.d.
random variables is elliptical distributed but it does not necessarily belong to
the same elliptical family (see [3]). Then, the sum of q i.i.d. elliptical distribu-
tions E1 (0, 1) gives another elliptical distribution with variance equal to q, i.e.
∑q

s=1 E1 (0, 1) d=
√

qE2(0, 1).
A typical multivariate elliptical distribution with null mean and finite vari-

ance is the multivariate Student’s t-distribution with v > 2 degrees of freedom
MV-t(0,

∑
v). These distributions were often used in literature in order to ju-

stify the leptokurtic behavior of conditional returns (see, among others, [3]).
Therefore, we can assume that the return vector zs = [z1,s, ..., zn,s]′ follows a
EWMA model with conditional t-distributed returns and v > 2 degrees of fre-
edom. Under this assumption every return zi,s admits the following conditional
density function

t(x/σii,s/s−1, v) =
Γ
(

v+1
2

)

σii,s/s−1 ((v − 2)π)1/2
Γ
(

v
2

)

(
1 +

x2

σ2
ii,s/s−1(v − 2)

)− v+1
2

.

We refer to [7] for further details about the properties of the EWMA model with
conditional t-distributed returns.

3 Alternative Models with Stable Distributions

In this section we present some alternative models to compute VaR. In parti-
cular, we focus our attention on two different stable models for the profit/loss
distribution:

1. the stable sub-Gaussian EWMA (SEWMA) model,
2. the stable asymmetric model.

3.1 The SEWMA Model

The SEWMA model assumes that the conditional distribution of the conti-
nuously compounded returns vector zt = [z1,t, ..., zn,t]′ is α-stable sub-Gaussian
(α > 1) with characteristic function

Φzt(u) = Et(eiu′zt) = exp
(
− (u′Qt/t−1u

)α/2 + iu′µt

)
,

where Qt/t−1 =
[
σ2

ij,t/t−1

]
is the conditional dispersion matrix, and µt = E(zt),

even if we assume that within a short period of time the expected return is null.
This model is an elliptical EWMA model with infinite variance. In particular,
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we observe that for any i, j = 1, ..., n the elements of the dispersion matrix can
be defined

σ2
ij,t/t−1 = (A(α, p))

2
p f(p, z̃i,t, z̃j,t) for every p ∈ [1, α)

where z̃i,t = zi,t − µi,t, A(α, p) =
Γ(1− p

2 )√
π

2pΓ(1− p
α )Γ( p+1

2 ) , z̃j
〈p−1〉 = sgn (z̃j) |z̃j |p−1

and f(p, zi,t, zj,t) = Et−1

(
z̃i,t (z̃j,t)

〈p−1〉
)

(Et−1(|z̃j,t|p))
2−p

p . We refer to [7]
for further details on the estimation of the elements of the dispersion matrix
Qt/t−1. Under the assumptions of the SEWMA model, the (1 − θ)% VaR in
the period [t − 1, t] is obtained by multiplying the corresponding percentile,
k1−θ,α, of the standardized α-stable Sα(1, 0, 0), times the forecast volatility
σP,t/t−1 =

√
w′Qt/t−1w , that is

V aRθ,t/t−1 = k1−θ,ασP,t/t−1. (5)

Moreover, just like in the case of the elliptical EWMA model , we obtain a time
rule for the dispersion measure Qt+T/t =

[
σ2

ij,t+T/t

]
= T

2
α Qt+1/t and under

some regularity conditions, it follows the temporal aggregation rule :

V aRθ,t+T/t = T
1
α V aRθ,t+1/t. (6)

Observe that among the elliptical distributions, the α−stable sub-Gaussian dis-
tributions with α ∈ (0, 2] (where with α = 2 we obtain the Gaussian case) are
the unique elliptical distributions such that the sum of i.i.d. elliptical random
variables belongs to the same family of elliptical random variables. That is, vec-
tors zt = [z1,t, ..., zn,t]′ and Zt+T = [Z1,t+T , ..., Zn,t+T ]′ could follow the same
elliptical EWMA model only if Zi,t+T =

∑T
s=1 zi,t+s and zi,m = σii,m/m−1εi,m

(i = 1, ..., n and m = t + 1, ..., t + T ) are conditional α−stable sub-Gaussian
distributed with α ∈ (0, 2].

3.2 An α-Stable Model with Asymmetric Distributed Returns

As an alternative to the previous model, we can consider the asymmetry of
stable distributions generalizing the model proposed in [8]. In particular, we
can consider the following three-fund separation model of conditional centered
returns:

z̃i,t = zi,t − µi,t = bi,tYt + σii,t/t−1εi,t; i = 1, ..., n, (7)

where µi,t = E(zi,t), the values bi,t will be determined with an OLS method,
while the random vector εt = (ε1,t, ε2,t, ..., εn,t)′ is α-stable sub-Gaussian dis-
tributed with zero mean and it is independent of Yt ∼ Sα (σYt , βYt , 0) . In par-
ticular, we assume that the centered return vector z̃t+1 = [z̃1,t+1, ..., z̃n,t+1]′ is
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conditional jointly α-stable distributed with conditional characteristic function

Φz̃t+1(u) = Et(eiu′zt+1) = exp
(
−
((

u′Qt+1/tu
)α/2 +

∣∣u′bt+1σYt+1

∣∣α
)

× (8)

×
(

1 − i

∣∣u′bt+1σYt+1

∣∣α sgn(u′bt+1)βYt+1(
u′Qt+1/tu

)α/2 +
∣∣u′bt+1σYt+1

∣∣α
tan

(πα

2

)))
,

where σYt+1 and βYt+1 are respectively the dispersion and the skewness of the

factor Yt+1
d= Sα

(
σYt+1 , βYt+1 , 0

)
, that is an α-stable asymmetric (i.e. βYt+1 �= 0)

centered index return. Moreover, just like for the SEWMA model, we obtain the
following time rule when the parameters α, βYt

, σYt
, bt are constant over the

time

V aRθ,t+T/t = T
1
α V aRθ,t+1/t. (9)

We again refer to [7] for further details on properties of this stable VaR model.

4 Backtest Models

This section presents an analysis through backtest in order to assess the reliabi-
lity of the models proposed to compute VaR. We propose three different methods
for evaluating the Value at Risk estimates of 25 random portfolios and they are:
a basic backtest method to verify if the average coverage of the VaR is equal
to the nominal coverage; the conditional and the unconditional coverage tests
proposed by [1].

During the period 15/11/93–30/01/98 we have examined daily, 10 days, and
60 days returns of Gaussian distribution, Student’s t distributions, Stable sub-
Gaussian distribution, stable asymmetric distribution and distributions in the
domain of attraction of stable laws. We use some of the most representative index
returns of the international market (Brent crude, CAC40, Corn n.2, DAX100,
Dow Jones Industrial, FTSE all Share, Goldman Sachs, Nikkei 500, S&P500,
Reuters) and their relative exchange rates whose values we converted into USD.
Over a period of 769 days, we have computed the interval forecasts using the
time aggregation rules and considering θ = 95% and θ = 99%.

4.1 The Basic Backtest Method

In the first backtest analysis proposed we determined how many times during the
period taken into account the profits/losses fall outside the confidence interval.
In particular, for θ = 95% and θ = 99%, the expected number of observations
outside the confidence interval must not exceed respectively 5% and 1%.

The first empirical analysis compares the results obtained from the backtest
carried out among the elliptical EWMA models and the stable asymmetric model
for θ = 95% and θ = 99%. In view of this comparison, we assume the same
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parameters of daily models analyzed in [7]. Then, we apply the different time
rules (3), (4), (6), and (9) in order to forecast VaR estimates and compare their
performance.

Among the alternative models for the VaR calculation, we could observe
that the stable and the Student’s models and their time rules are more reliable
than the RiskMetrics one, in terms of confidence interval θ = 99% and 10 days
returns particularly. The advantage of using stable models as an alternative to
the normal one is reduced when the percentiles are higher than 5% and we
consider three months returns.

4.2 Conditional and Unconditional Coverage Tests

Under every distributional hypothesis and for every portfolio zP,t+1 we have eva-
luated daily V aRθ,t+1/t(zP,t+1). Following the interval forecast method proposed
in [1], we can propose the following tests:

1. a likelihood ratio test for unconditional coverage LRuc with an asymptotic
χ2(1) distribution,

2. a likelihood ratio test for conditional coverage LRcc with an asymptotic
χ2(2) distribution.

These tests partially confirm the previous basic backtest analysis. In par-
ticular, we observe that generally the Gaussian time rule does not offer good
performance, whilst the time rules (4) and (6) present the best performance.
Further tables describing our empirical analysis in details are available by the
authors if requested 2.

5 Concluding Remarks

This paper proposes and compares alternative models for the VaR calculation.
In the first part we describe several elliptical and stable Paretian exponential
weighted moving average models. In the second part, we compare the efficiency
of different time aggregation rules to forecast VaR . The empirical comparison
confirms that when the percentiles are below 5%, the hypothesis of normality
of the conditional return distribution determines intervals of confidence whose
forecast ability is low. In particular, the stable Paretian and the Student’s t time
aggregation rules have shown very good performance to predict future losses
when we assume a temporal horizon of 10 days. Whereas, when we consider 60
days returns all the models do not present very good performances.

2 For tables reporting conditional and unconditional tests on the above time aggrega-
tion rules, please refer to the following e-mail address: sol@unibg.it.
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