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Abstract. We give the rate of mean-square convergence for the Euler
scheme for one-dimensional stochastic differential equations with time
dependent reflecting barriers. Applications to stock prices models with
natural boundaries of Bollinger bands type are considered.

1 Introduction

We consider a market in which fluctuation of stocks prices, and more generally
of some economic goods, is given by a stochastic process S = {S;;t € RT}
living within the upper- and lower barrier processes F = {F;;t € RT} and
G ={Gyt e R}, ie. Gy < Sy < Fy, t € RT. Such models appear for instance
if some institutions may want to prevent prices from leaving interval [Gy, F})
and prices may have some natural boundaries. Recently, in [§] the simplest case
of constant boundaries of the form [l,d] was considered. In this case an option
pricing formula was obtained under the assumption that S is a solution of an
appropriate stochastic differential equation (SDE). Models of prices fluctuation
considered in practice by quantitive analysts are much more general: barriers
are stochastic processes depending on the process S. Typical examples of such
natural boundaries are the so-called Bollinger bands F, G defined by
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and trading bands (envelopes) defined by
Ft = (1 + O[)At, Gt = (1 - Oé)At,

where A is a moving average process A; = ﬁ Z]M:I Si—cj, t €RT and g, > 0,
M € N are some parameters.

In [II] existence and uniqueness of solutions of SDE with time dependent
reflecting barriers driven by a general semimartingale is proved. In the present
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paper we restrict ourselves to a one-dimensional SDE with reflecting barriers of
the form

t t
Xt :X0+/ U(XS)dWS+/ b(Xs) dS+Kt, tER+7 (1)
0 0

where Xg € R, W = {W;;t € RT} is a standard Wiener process, o,b: R — R
are Lipschitz continuous functions and barrier processes F,G are general Lip-
schitz operators with delayed argument depending possibly on X (for a precise
definition see Section 2). Our aim is to define the Euler scheme {X"} for the
SDE (@) and to give its rate of mean-square convergence.

The main result of the paper says that under mild assumptions on reflecting
barrier processes G(°X), F((°X) with delayed argument for every ¢ € RT there
exists C' > 0 such that

- Inn
Esup | X' — X4|* < C(n + Ewi), (G(°X), q) + wa/n(F(sx),q)>, (2)

t<q

where ws(z,q) = sup{|z; — x5, 0 < s <t <q, t—s <4}, foralld >0, qge R
and z € D(RT, R) (D(R", R) is the space of all mappings = : RT — R which
are right continuous and admit left-hand limits).

From (@) we deduce that in both cases of Bollinger and trading bands for
every ¢ € R*, § > 0 there exists C' > 0 such that

- 1
n 2
Esup | X — X2 < C’<n1_5).

t<q

Moreover, in both cases,

7 |
Esup| X} — X, < c(“”)

t<q n

if 0,b are bounded.

Note that if G = —oo, F = 400 then {X"} is the classical Euler scheme
introduced in [6]. In the case G = 0, F' = 400 and G = I, F = d the rate of
mean-square convergence was examined earlier by many authors (see, e.g., [214]
BITOLTT]).

In the paper no attemps has been made to obtain option pricing formulas
for markets with dynamics of prices given by (). This question deserves an
independent study.

2 SDEs with Time Dependent Reflecting Barriers

We begin with a definition of the Skorokhod problem with time dependent re-
flecting barriers.

Definition 1. Let y, f,g € D(RT, R) with ¢ < f and go < yg < fo. We say
that a pair (z, k) € D(RT, R?) is a solution of the Skorokhod problem associated
with y and barriers f, g (and write (z,k) = SP(y, f,g)) if
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(i) z =y + ki, t €RT,

(i) gs <wy < fr, t € RT.

(iii) &k = kg_) - kt(+), t € RY, where k(=) k(+) are nondecreasing, right conti-
nuous functions with ky = ké_) = k(()+) = 0 such that k(=) increases only on
{t;2; = g,} and k) increases only on {t;z; = f;}.

Theorem 1. ([11]) Assume that f,g € D(RT, R) satisfy the condition

inf(f; —g:) >0, q€R".
t<q

Then for every y € D(RY, R) with go < yo < fo, there exists a unique solution
(x,k) of the Skorokhod problem associated with y and barriers f,g.
O

Note that in the case of continuous function y similar definitions of the
Skorokhod problem were earlier given in [3] and [1]. These papers contain also
results on existence and uniqueness of solutions of the Skorokhod problem in the
case of continuous y and continuous barriers f, g (see e.g. [3l Lemma 4.1]).

The following theorem, where Lipschitz continuity of solutions of the Skorok-
hod problem is stated will prove to be very useful in Section 3.

Theorem 2. ([11]) Assume that y', f',g" € D(R*, R), g8 <y < fi and

inf(f{ —g{) >0, geR*
t<q
fori=1,2. Let (2, k%) = SP(y, fi,g%), i = 1,2. Then for every ¢ € R*

sup [z; — 7| < 3sup |y} — y7| +sup |f} — fZ] +suplg; — g7
t<q t<q t<q t<q

and
sup |ky — k7| < 2sup |y — y7| +sup |f} — f2| +suplg — gf|.
t<q 1<q t<q t<q
Let (£2,F,(F), P) be a filtered probability space.

Definition 2. Let D denote the space of all (F;) adapted processes with tra-
jectories in D(R™, R). We say that an operator H : D — D is Lipschitz if

(i) H(X) € D for any X € D,

(ii) for any X,Y € D and any stopping time T,
X7 = Y™ implies H(X)™~ = H(Y)™",

(iii) there exists L > 0 such that for any X,Y € D

[H(X), — HY):| < Lsup | X, — Vi, t€R*.
s<t
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Given X € D and ¢ > 0 set °X = {X;_.;t € R} (with the convention that
X = Xo for t € [—¢,0)). In what follows barriers of the form F(°X), G(°X),
where F,G are Lipschitz operators we will call barrier operators with delayed
arguments.
Fix € > 0. Let W be an (F;) adapted Wiener process and let F, G be two
Lipschitz operators such that for any X € D
tigf(F(EX)t —~G(X)) >0, geRT. (3)
<q
We will say that a pair (X, K) of (F;) adapted processes is a strong solution

of the SDE () with barrier operators F(°X), G(°X) with delayed argument if
(X,K)=SP(Y,F(°X),G(°X)), where

t t
Yt:Xng/ a(Xs)dWSJr/ b(X,)ds, teRY. (4)
0 0

Theorem 3. ([11]) Let € > 0. Assume that o, b are Lipschitz continuous fun-
ctions and F,G are Lipschitz operators satisfying (3) with G(Xp)o < Xo <
F(Xo)o. Then there exists a unique strong solution (X, K) of the SDE (1l).

O

Theorem 4. Lete > 0 and let 0,b, F, G, X satisfy the assumptions of Theorem
3 1

Esup(|F(Xo)e| +|G(Xo):|)*” < +o0, qeRT, peN

t<q
then
(i) Esup,c,|X; — Xo|*” <400, peN, g e RT,
(ii) if moreover, F(°X)s = F(°X*®); and G(°X)s = G(°X?®); for any 0 < s < t,
then for every p € N, g € R™ there exists C > 0 such that
E|X; — X, < C(t — s)P

fors <t <gq.
O

Corollary 1. Under assumptions of Theorems[3 and[] for any ¢ € RT, § > 0
there exists C' > 0 such that

B ju(F(X),0) + Bloya(@(X), ) < O). o)
If moreover, o,b are bounded then
Bl (FOX),0))° + Bl n(G0X), ) < 020 (©
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3 Euler Scheme for SDEs with Time Dependent
Reflecting Barrier Operators

Let (F{') denote the discretization of (F;), i.e. F{* = Fy/y, for t € [k/n, (k+1)/n)
and let F™, G™ denote the discretizations of operators F, G, i.e. any process X,
F(X), = F(X)p/n, G*(X); = G(X )1/ for any ¢ € [k/n, (k + 1)/n).
The Euler scheme for the SDE ([I) is given by the following recurrent formula
Xp = Xo,
X(T;chl)/n = max [min (X]?/n + O'(XIQL/”)(W(;C+1)/” — Wk/n)
BT ) 30 F XM ) 1y n) GEX™H) gy ]

n’

Xt = Xpp tE€[k/n,(k+1)/n),
where X;"*/™ == X7 if t < k/n and <X]"*/" ="X}), if t > k/n. Set

t t
Y;”:XOJr/ 0<Xg_>dwg+/ bXI)dp?, tERY,
0 0

where pi = k/n for t € [k/n,(k +1)/n) and W™ is a disretization of Wiener
process W, that is W = Wn, t € RT. Note that (X", K" = X™ —Y") is a pair
of (F*) adapted processes such that (X", K™) = SP(Y"™ F"(¢X"), G"(°X™)).

Theorem 5. Assume that o,b are Lipschitz continuous functions and F,G are
Lipschitz operators satysfying (3) such that G(Xo)o < Xo <F(Xo)o

Esup(|F(Xo)e| +|G(X0))*** < 400, ¢ €RY,
t<q
for some § > 0. If (X, K) is a solution of the SDE (@) then for every q € R
there exists C > 0 such that {2) holds true.
Proof. We begin by proving that

sup Esup | X' — X < 0. (7)
<q

n t<
Without loss of generality we may and will assume that

supE sup | X! — Xo|*" < 0.
n t<q—e

Since (Xo,0) = SP(Xo, F"(X0)o, G"(X0)o), it follows from Theorem [Z that

t t
/ o(X2) AW + / b(X )"
0 0

+sup([F"(X")e = F*(Xo)e| + [G"(X™)y = G™(Xo)e|) + H,,

t<q

sup | X' — Xo| < 3sup
t<q t<q

where H, = sup,,(|G"(Xo): — G"(Xo)o| + [F"(Xo): — F™(Xo)o|). Clearly
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Esgp(lF”(E)_{")t — F"(Xo)e| + |G™(5X™)y — G™(Xo)e)***
t<q

< CFE sup |X!' — X;|**° < 400,
t<qg—e

and FH, 3*5 < 00. Therefore, by the Burkholder-Davis—-Gundy and Hélder ine-
qualities we have

— q —
Esup | X! — Xo|**° < C{/ Esup|X" — Xo[*"0ds+1},
t<q 0 u<s

and hence (). Since o, b are Lipschitz continuous () yields

sup Esup |o(X™)|**° < 0o, sup Esup [b(X"),*T < cc. (8)
n t<q n t<T

Set

¢ ¢
Y = Xo +/ o(X™ ) dW, +/ b(X! )ds, teRT,

0 0
and (X" K") = SP(Y"™, F"(X™), G"(°X™)). Then

V=Y = o(X5) (We = Wign) +0(X7,) (8 = k/n) (9)
for t € [k/n, (k + 1)/n). Therefore, by Theorem 2,[{&),([@) and [, Lemma A4]

Esup |X]" — X['[* < 9Esup|V;" — V" |?
t<q t<q
< 9{(E sup \a()_(f_)\2+5)2/(2+5)(E(wl/n(W, q))(25+4)/5)5/(6+2)
t<q

1 _
+(=)*Esup [b(X])|*}
n t<q

(B ) <eh), (10

Clearly
Esup X' — X, < C{Esup |V - Y, ?
t<q t<q
+E(sup [F"(X™)e = F*(5X)e] + |G ((X™)e = G" (X )e)?
t<q
+E(sup |[F" (X )y — F(°X)| + |G™(°X)e — G(X)e))? }

t<q

q — —
SC’{/O Esup\Xﬁ—Xu|2ds+Etiup X! — Xe|* + 6, ), (11)
<g—e

u<s

where ¢,, = wa/n(F(EX), q)+ wa/n(G(EX), q). Since without loss of generality
we may and will assume

- 1
E sup | X' - X,* < C(% +wa/n(G(5X)7q —¢€) —i—wa/n(F(EX),q—s)),

t<qg—e

from (@) and () we obtain
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Esup | X' — Xi|* < 2Esup | X — Xt”|2 + 2F sup |th - X4?
t<q t<q

In i .
<C{ nn / EsupXﬁXU|2du+5n}.
n 0

u<s

To complete the proof it suffices now to use Gronwall’s lemma. a

Corollary 2. Assume that o, b are Lipschitz continuous functions and F', G are
(F:) adapted processes such that Gy < Xo < Fy, inf;<,(F; — G¢) > 0, ¢ € RT
and

Esup(|Fy| + |Gt|)2+6 < 400, ¢q€RT,
t<q

for some § > 0. If (X, K) is a solution of the SDE (d|) then for every q € RT
there exists C > 0 such that

- Inn
Eigp X7 — X, * < C(— + Ewl/n(G q) + Ewl/n(F q))
<q

O
Corollary 3. If 0,b are Lipschitz continuous and F,G are Bollinger or trading
bands then for every ¢ € RY, § > 0 there exists C > 0 such that

- 1
Esup | X" — Xy|? <C’< T 5)
t<q

Proof. Due to Theorem [B] and (B) it is sufficient to prove that the respective
barrier operators F, G are Lipschitz.

First we will consider the case of Bolinger bands. We restrict our attention
to the operator F'. Observe that it has the following form:

M—1
1
F(X)e = BOO+ (37 2 (Xiey = BEII
where B(X); = 37 Z Xt ¢, t € R, X € D. From the above formula it
follows immediately that F posseses the properties (i) and (ii) of Definition 2
Moreover, for any X,Y € D and t < ¢ € RT,

|F(X)e = F(Y)¢| < |B(X): — B(Y)q]

1 M—1 1 M—1
tal(g7 Do (Kieey = B - (Yiee) = BOY))H?)
=0 3:0

M-1
< sup|X; ~ Y| + o Z (Xi—ej = Yiee + B(X), = BY))?)/?
t<q -0

< PR . —
< sup| X — 1@|+a0<]rrg}5; Xeej =Ygy + B(X)e = B(Y )|

< (14 2a)sup |X; — Yy,
t<q

which shows that F' is Lipschitz.
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In the case of trading bands F’ has the form:
F(X);=(1+a)B(X),, teRT.

Hence F posseses properties (i) and (ii) of DefinitionP and for X, Y € D, g € RT
we have

sup |F(X);: — F(Y)] < (14 a)sup|X; — Yy,

t<q t<q

so I is Lipschitz. a

Corollary 4. If 0,b are Lipschitz continuous and bounded functions and F,G
are Bollinger or trading bands then for every q € R there exists C > 0 such
that

- 1
Esup | X' — Xi|* < C<ﬂ>

t<q n

Proof. 1t follows from (), Theorem [ and the fact that in both cases F, G are
Lipschitz. a
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