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Abstract. We give the rate of mean-square convergence for the Euler
scheme for one-dimensional stochastic differential equations with time
dependent reflecting barriers. Applications to stock prices models with
natural boundaries of Bollinger bands type are considered.

1 Introduction

We consider a market in which fluctuation of stocks prices, and more generally
of some economic goods, is given by a stochastic process S = {St; t ∈ R

+}
living within the upper- and lower barrier processes F = {Ft; t ∈ R

+} and
G = {Gt; t ∈ R

+}, i.e. Gt ≤ St ≤ Ft, t ∈ R
+. Such models appear for instance

if some institutions may want to prevent prices from leaving interval [Gt, Ft]
and prices may have some natural boundaries. Recently, in [8] the simplest case
of constant boundaries of the form [l, d] was considered. In this case an option
pricing formula was obtained under the assumption that S is a solution of an
appropriate stochastic differential equation (SDE). Models of prices fluctuation
considered in practice by quantitive analysts are much more general: barriers
are stochastic processes depending on the process S. Typical examples of such
natural boundaries are the so-called Bollinger bands F, G defined by

Ft = At + α(
1
M

M∑

j=1

(St−εj − At)2)1/2, Gt = At − α(
1
M

M∑

j=1

(St−εj − At)2)1/2

and trading bands (envelopes) defined by

Ft = (1 + α)At, Gt = (1 − α)At,

where A is a moving average process At = 1
M

∑M
j=1 St−εj , t ∈ R

+, and ε, α > 0,
M ∈ N are some parameters.

In [11] existence and uniqueness of solutions of SDE with time dependent
reflecting barriers driven by a general semimartingale is proved. In the present
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paper we restrict ourselves to a one-dimensional SDE with reflecting barriers of
the form

Xt = X0 +
∫ t

0
σ(Xs) dWs +

∫ t

0
b(Xs) ds + Kt, t ∈ R

+, (1)

where X0 ∈ R, W = {Wt; t ∈ R
+} is a standard Wiener process, σ, b : R → R

are Lipschitz continuous functions and barrier processes F, G are general Lip-
schitz operators with delayed argument depending possibly on X (for a precise
definition see Section 2). Our aim is to define the Euler scheme {X̄n} for the
SDE (1) and to give its rate of mean-square convergence.

The main result of the paper says that under mild assumptions on reflecting
barrier processes G(εX), F (εX) with delayed argument for every q ∈ R

+ there
exists C > 0 such that

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
ln n

n
+ Eω2

1/n(G(εX), q) + Eω2
1/n(F (εX), q)

)
, (2)

where ωδ(x, q) = sup{|xt − xs|, 0 ≤ s < t ≤ q, t − s < δ}, for all δ > 0, q ∈ R
+

and x ∈ D(R+ , R) (D(R+ , R) is the space of all mappings x : R
+ → R which

are right continuous and admit left-hand limits).
From (2) we deduce that in both cases of Bollinger and trading bands for

every q ∈ R
+, δ > 0 there exists C > 0 such that

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
1

n1−δ

)
.

Moreover, in both cases,

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
ln n

n

)

if σ, b are bounded.
Note that if G = −∞, F = +∞ then {X̄n} is the classical Euler scheme

introduced in [6]. In the case G = 0, F = +∞ and G = l, F = d the rate of
mean-square convergence was examined earlier by many authors (see, e.g., [2,4,
5,7,9,10]).

In the paper no attemps has been made to obtain option pricing formulas
for markets with dynamics of prices given by (1). This question deserves an
independent study.

2 SDEs with Time Dependent Reflecting Barriers

We begin with a definition of the Skorokhod problem with time dependent re-
flecting barriers.

Definition 1. Let y, f, g ∈ D(R+ , R) with g ≤ f and g0 ≤ y0 ≤ f0. We say
that a pair (x, k) ∈ D(R+ , R

2) is a solution of the Skorokhod problem associated
with y and barriers f, g (and write (x, k) = SP (y, f, g)) if
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(i) xt = yt + kt, t ∈ R
+,

(ii) gt ≤ xt ≤ ft, t ∈ R
+.

(iii) kt = k
(−)
t − k

(+)
t , t ∈ R

+, where k(−), k(+) are nondecreasing, right conti-
nuous functions with k0 = k

(−)
0 = k

(+)
0 = 0 such that k(−) increases only on

{t; xt = gt} and k(+) increases only on {t; xt = ft}.

Theorem 1. ([11]) Assume that f, g ∈ D(R+ , R) satisfy the condition

inf
t≤q

(ft − gt) > 0, q ∈ R
+.

Then for every y ∈ D(R+ , R) with g0 ≤ y0 ≤ f0, there exists a unique solution
(x, k) of the Skorokhod problem associated with y and barriers f, g.

��
Note that in the case of continuous function y similar definitions of the

Skorokhod problem were earlier given in [3] and [1]. These papers contain also
results on existence and uniqueness of solutions of the Skorokhod problem in the
case of continuous y and continuous barriers f, g (see e.g. [3, Lemma 4.1]).

The following theorem, where Lipschitz continuity of solutions of the Skorok-
hod problem is stated will prove to be very useful in Section 3.

Theorem 2. ([11]) Assume that yi, f i, gi ∈ D(R+ , R), gi
0 ≤ yi

0 ≤ f i
0 and

inf
t≤q

(f i
t − gi

t) > 0, q ∈ R
+

for i = 1, 2. Let (xi, ki) = SP (yi, f i, gi), i = 1, 2. Then for every q ∈ R
+

sup
t≤q

|x1
t − x2

t | ≤ 3 sup
t≤q

|y1
t − y2

t | + sup
t≤q

|f1
t − f2

t | + sup
t≤q

|g1
t − g2

t |

and

sup
t≤q

|k1
t − k2

t | ≤ 2 sup
t≤q

|y1
t − y2

t | + sup
t≤q

|f1
t − f2

t | + sup
t≤q

|g1
t − g2

t |.
��

Let (Ω, F , (Ft), P ) be a filtered probability space.

Definition 2. Let D denote the space of all (Ft) adapted processes with tra-
jectories in D(R+ , R). We say that an operator H : D → D is Lipschitz if

(i) H(X) ∈ D for any X ∈ D,
(ii) for any X, Y ∈ D and any stopping time τ ,

Xτ− = Y τ− implies H(X)τ− = H(Y )τ−,
(iii) there exists L > 0 such that for any X, Y ∈ D

|H(X)t − H(Y )t| ≤ L sup
s≤t

|Xt − Yt|, t ∈ R
+.
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Given X ∈ D and ε > 0 set εX = {Xt−ε; t ∈ R
+} (with the convention that

Xt = X0 for t ∈ [−ε, 0)). In what follows barriers of the form F (εX), G(εX),
where F, G are Lipschitz operators we will call barrier operators with delayed
arguments.

Fix ε > 0. Let W be an (Ft) adapted Wiener process and let F, G be two
Lipschitz operators such that for any X ∈ D

inf
t≤q

(F (εX)t − G(εX)t) > 0, q ∈ R
+. (3)

We will say that a pair (X, K) of (Ft) adapted processes is a strong solution
of the SDE (1) with barrier operators F (εX), G(εX) with delayed argument if
(X, K) = SP (Y, F (εX), G(εX)), where

Yt = X0 +
∫ t

0
σ(Xs) dWs +

∫ t

0
b(Xs) ds, t ∈ R

+. (4)

Theorem 3. ([11]) Let ε > 0. Assume that σ, b are Lipschitz continuous fun-
ctions and F, G are Lipschitz operators satisfying (3) with G(X0)0 ≤ X0 ≤
F (X0)0. Then there exists a unique strong solution (X, K) of the SDE (1).

��
Theorem 4. Let ε > 0 and let σ, b, F, G, X0 satisfy the assumptions of Theorem
3. If

E sup
t≤q

(|F (X0)t| + |G(X0)t|)2p < +∞, q ∈ R
+, p ∈ N

then

(i) E supt≤q |Xt − X0|2p < +∞, p ∈ N, q ∈ R
+,

(ii) if moreover, F (εX)s = F (εXs)t and G(εX)s = G(εXs)t for any 0 ≤ s ≤ t,
then for every p ∈ N, q ∈ R

+ there exists C > 0 such that

E|Xt − Xs|2p ≤ C(t − s)p

for s ≤ t ≤ q.
��

Corollary 1. Under assumptions of Theorems 3 and 4 for any q ∈ R
+, δ > 0

there exists C > 0 such that

E(ω1/n(F (εX), q))2 + E(ω1/n(G(εX), q))2 ≤ C(
1

n1−δ
). (5)

If moreover, σ, b are bounded then

E(ω1/n(F (εX), q))2 + E(ω1/n(G(εX), q))2 ≤ C(
ln n

n
). (6)

��
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3 Euler Scheme for SDEs with Time Dependent
Reflecting Barrier Operators

Let (Fn
t ) denote the discretization of (Ft), i.e. Fn

t = Fk/n for t ∈ [k/n, (k+1)/n)
and let Fn, Gn denote the discretizations of operators F, G, i.e. any process X,
Fn(X)t = F (X)k/n, Gn(X)t = G(X)k/n for any t ∈ [k/n, (k + 1)/n).

The Euler scheme for the SDE (1) is given by the following recurrent formula





X̄n
0 = X0,

X̄n
(k+1)/n = max

[
min

(
X̄n

k/n + σ(X̄n
k/n)(W(k+1)/n − Wk/n)

+b(X̄n
k/n) 1

n , F (εX̄n,k/n)(k+1)/n

)
, G(εX̄n,k/n)(k+1)/n

]
,

X̄n
t = X̄n

k/n, t ∈ [k/n, (k + 1)/n),

where εX̄
n,k/n
t =εX̄n

t if t ≤ k/n and εX̄
n,k/n
t =εX̄n

k/n if t > k/n. Set

Ȳ n
t = X0 +

∫ t

0
σ(X̄n

s−) dWn
s +

∫ t

0
b(X̄n

s−) dρn
s , t ∈ R

+,

where ρn
t = k/n for t ∈ [k/n, (k + 1)/n) and Wn is a disretization of Wiener

process W , that is Wn
t = Wρn

t
, t ∈ R

+. Note that (X̄n, K̄n = X̄n − Ȳ n) is a pair
of (Fn

t ) adapted processes such that (X̄n, K̄n) = SP (Ȳ n, Fn(εX̄n), Gn(εX̄n)).

Theorem 5. Assume that σ, b are Lipschitz continuous functions and F, G are
Lipschitz operators satysfying (3) such that G(X0)0 ≤ X0 ≤F (X0)0

E sup
t≤q

(|F (X0)t| + |G(X0)t|)2+δ < +∞, q ∈ R
+,

for some δ > 0. If (X, K) is a solution of the SDE (1) then for every q ∈ R
+

there exists C > 0 such that (2) holds true.

Proof. We begin by proving that

sup
n

E sup
t≤q

|X̄n
t − X0|2+δ < ∞. (7)

Without loss of generality we may and will assume that

sup
n

E sup
t≤q−ε

|X̄n
t − X0|2+δ < ∞.

Since (X0, 0) = SP (X0, F
n(X0)0, Gn(X0)0), it follows from Theorem 2 that

sup
t≤q

|X̄n
t − X0| ≤ 3 sup

t≤q

∣∣∣∣
∫ t

0
σ(X̄n

s−) dWn
s +

∫ t

0
b(X̄n

s−)dρn
s

∣∣∣∣

+ sup
t≤q

(|Fn(εX̄n)t − Fn(X0)t| + |Gn(εX̄n)t − Gn(X0)t|) + Hq,

where Hq = supt≤q(|Gn(X0)t − Gn(X0)0| + |Fn(X0)t − Fn(X0)0|). Clearly
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E sup
t≤q

(|Fn(εX̄n)t − Fn(X0)t| + |Gn(εX̄n)t − Gn(X0)t|)2+δ

≤ CE sup
t≤q−ε

|X̄n
t − Xt|2+δ < +∞,

and EH2+δ
q < ∞. Therefore, by the Burkholder–Davis–Gundy and Hölder ine-

qualities we have

E sup
t≤q

|X̄n
t − X0|2+δ ≤ C{

∫ q

0
E sup

u≤s
|X̄n

u− − X0|2+δ ds + 1},

and hence (7). Since σ, b are Lipschitz continuous (7) yields

sup
n

E sup
t≤q

|σ(X̄n)t|2+δ < ∞, sup
n

E sup
t≤T

|b(X̄n)t|2+δ < ∞. (8)

Set

Ŷ n
t = X0 +

∫ t

0
σ(X̄n

s−) dWs +
∫ t

0
b(X̄n

s−) ds, t ∈ R
+,

and (X̂n, K̂n) = SP (Ŷ n, Fn(εX̄n), Gn(εX̄n)). Then

Ŷ n
t − Ȳ n

t = σ(X̄n
k/n)(Wt − Wk/n) + b(X̄n

k/n)(t − k/n) (9)

for t ∈ [k/n, (k + 1)/n). Therefore, by Theorem 2,(8),(9) and [9, Lemma A4]

E sup
t≤q

|X̄n
t − X̂n

t |2 ≤ 9E sup
t≤q

|Ȳ n
t − Ŷ n

t |2

≤ 9
{

(E sup
t≤q

|σ(X̄n
t−)|2+δ)2/(2+δ)(E(ω1/n(W, q))(2δ+4)/δ)δ/(δ+2)

+(
1
n

)2E sup
t≤q

|b(X̄n
t−)|2}

≤ C
( ln n

n
+ (

1
n

)2
) ≤ C

( ln n

n

)
. (10)

Clearly

E sup
t≤q

|X̂n
t − Xt|2 ≤ C

{
E sup

t≤q
|Ŷ n

t − Yt|2

+E(sup
t≤q

|Fn(εX̄n)t − Fn(εX)t| + |Gn(εX̄n)t − Gn(εX)t|)2

+E(sup
t≤q

|Fn(εX)t − F (εX)t| + |Gn(εX)t − G(εX)t|)2
}

≤ C
{ ∫ q

0
E sup

u≤s
|X̄n

u − Xu|2 ds + E sup
t≤q−ε

|X̄n
t − Xt|2 + δn

}
, (11)

where δn = Eω2
1/n(F (εX), q) +Eω2

1/n(G(εX), q). Since without loss of generality
we may and will assume

E sup
t≤q−ε

|X̄n
t − Xt|2 ≤ C

(
ln n

n
+ Eω2

1/n(G(εX), q − ε) + Eω2
1/n(F (εX), q − ε)

)
,

from (10) and (11) we obtain
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E sup
t≤q

|X̄n
t − Xt|2 ≤ 2E sup

t≤q
|X̄n

t − X̂n
t |2 + 2E sup

t≤q
|X̂n

t − Xt|2

≤ C

{
ln n

n
+

∫ t

0
E sup

u≤s
|X̄n

u − Xu|2du + δn

}
.

To complete the proof it suffices now to use Gronwall’s lemma. ��
Corollary 2. Assume that σ, b are Lipschitz continuous functions and F , G are
(Ft) adapted processes such that G0 ≤ X0 ≤ F0, inft≤q(Ft − Gt) > 0, q ∈ R

+

and

E sup
t≤q

(|Ft| + |Gt|)2+δ < +∞, q ∈ R
+,

for some δ > 0. If (X, K) is a solution of the SDE (1) then for every q ∈ R
+

there exists C > 0 such that

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
ln n

n
+ Eω2

1/n(G, q) + Eω2
1/n(F, q)

)
,

��
Corollary 3. If σ, b are Lipschitz continuous and F, G are Bollinger or trading
bands then for every q ∈ R

+, δ > 0 there exists C > 0 such that

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
1

n1−δ

)
.

Proof. Due to Theorem 5 and (5) it is sufficient to prove that the respective
barrier operators F, G are Lipschitz.

First we will consider the case of Bolinger bands. We restrict our attention
to the operator F . Observe that it has the following form:

F (X)t = B(X)t + α(
1
M

M−1∑

j=0

(Xt−εj − B(X)t)2)1/2,

where B(X)t = 1
M

∑M−1
j=0 Xt−εj , t ∈ R

+, X ∈ D. From the above formula it
follows immediately that F posseses the properties (i) and (ii) of Definition 2.
Moreover, for any X, Y ∈ D and t ≤ q ∈ R

+,

|F (X)t − F (Y )t| ≤ |B(X)t − B(Y )t|

+α|( 1
M

M−1∑

j=0

(Xt−εj − B(X)t)2)1/2 − (
1
M

M−1∑

j=0

(Yt−εj − B(Y )t)2)1/2|

≤ sup
t≤q

|Xt − Yt| + α(
1
M

M−1∑

j=0

(Xt−εj − Yt−εj + B(X)t − B(Y )t)2)1/2

≤ sup
t≤q

|Xt − Yt| + α max
0≤j≤M−1

|Xt−εj − Yt−εj + B(X)t − B(Y )t|

≤ (1 + 2α) sup
t≤q

|Xt − Yt|,

which shows that F is Lipschitz.
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In the case of trading bands F has the form:

F (X)t = (1 + α)B(X)t, t ∈ R
+.

Hence F posseses properties (i) and (ii) of Definition 2 and for X, Y ∈ D, q ∈ R
+

we have

sup
t≤q

|F (X)t − F (Y )t| ≤ (1 + α) sup
t≤q

|Xt − Yt|,

so F is Lipschitz. ��

Corollary 4. If σ, b are Lipschitz continuous and bounded functions and F, G
are Bollinger or trading bands then for every q ∈ R

+ there exists C > 0 such
that

E sup
t≤q

|X̄n
t − Xt|2 ≤ C

(
ln n

n

)
.

Proof. It follows from (6), Theorem 5 and the fact that in both cases F, G are
Lipschitz. ��
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5. D. Lépingle, Euler scheme for reflected stochastic differential equations, Mathe-

matics and Computers in Simulations, 38 (1995), 119–126.
6. G. Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ.

Mat. Palermo, 4, (1955), 48–90.
7. R. Pettersson, Approximations for stochastic differential equations with reflecting

convex boundaries, Stochastic Process. Appl. 59, (1995), 295–308.
8. S. Rady, Option pricing in the presence of natural boundaries and quadratic diffu-

sion term, Finance and Stochastics, 1 (1997), 331-344.
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