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Abstract. Heuristics have been widely used in artificial intelligence related
fields including path finding. In this paper, the author argue that different
heuristics can be integrated to solve the path finding problems and set forward a
solution integrating greedy heuristic, directional heuristic and hierarchical
heuristic. In greedy heuristic, an improved Dijkstra’s algorithm based on quad
heap is set forward. Then an MBR for ellipse is presented to limit the searching
extent. Thirdly, hierarchical spatial reasoning is used to build another heuristic
considering the hierarchical structure of road network, which makes the
optimum path selection completed in higher hierarchies as much as possible. A
case study is carried out with a real road network to verify the efficiency and
validation of the solution integrating the above algorithms.

1 Introduction

The single source optimum path with nonnegative arc weights is one of the most
natural network optimization problems. A variety of algorithms for single source
optimum path has been designed and implemented[1][2]. Many of them use heuristic
strategies. Heuristic indicates literally learning by experience, or more generally in the
artificial intelligence literature, a heuristic is a ‘rule of thumb’ and as such is the
approach used by almost any human in conducting a searching [3]. In the context of
searching algorithms, heuristic implies simply search specific knowledge. The
optimum path algorithms based on heuristics include costing algorithm[3], branch-
and-bound algorithm[4], hill-climbing algorithms [4], greedy algorithms [5][6][7] and
A* algorithm[8]. etc.

Among the known optimum path algorithms, many of them use a kind of heuristic
named greedy searching as searching strategies and explore how to design delicate
running data structures and searching algorithms, so as to improve the running
efficiency of sequential optimum path algorithms under the uniform time complexity.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 964-971, 2004.
© Springer-Verlag Berlin Heidelberg 2004



An Optimum Vehicular Path Solution with Multi-heuristics 965

Literature [1][2][7][9] have made detailed analysis and comparison for the optimum
path algorithms. Because the real networks do not concern negative weights,
Dijkstra’s algorithm, a famous label setting algorithm adopting greedy heuristic, has
got wide applications. Dijkstra’s algorithm is the most mature optimum path
algorithm theoretically up to date and the most robust one in practice[2][6][10].
Further work on fine-tuning Dijkstra’s algorithm has been conducted by many
researchers and has formed a large family of Dijkstra’s algorithms.

There are many kinds of heuristics besides greedy strategy and they can be integrated
to solve the optimum path problems. In this paper, the author showed the advantages
of integrating the greedy heuristic, directional heuristic and hierarchical heuristic to
get the optimum vehicular path in complicated road networks.

The remainder of this paper is organized as follows. Section 2 sets forward an
improved Dijkstra’s algorithm with quad heap priority queue. Section 3 introduces
how to adopt spatial relationship between geographical objects to limit the path
searching scale and speedup the searching procedure. Section 4 shows the hierarchical
division of road networks and develops a hierarchy selection algorithm. Section 5
illustrates the integration of the above techniques with a case study. Finally Section 6
makes a discussion and draws some conclusions.

2 Quad Heaps and Fine-Tuned Dijkstra’s Algorithm

Dijkstra’s algorithm uses a heuristic based on greedy strategy. More details about
Dijkstra’s algorithm can be found in [11][12]. Theoretically, it is difficult to further
improve the worst case time bound of Dijkstra’s algorithm within the serial algorithm
framework, and current research concentrates on how to improve the operational
efficiency in practice.

Heap priority queues have been proved excellent data structures for Dijkstra’s
algorithms [2][6][7][13]. K-ary heaps, binomial heaps, Fabonacci heaps and radix
heaps were discussed more. It has been argued that k-ary heaps are more suitable than
binomial heaps and Fabonacci heaps to implement the priority queues for Dijkstra’s
algorithm in road networks [10]. A k-ary heap can be regarded as a complete k-ary
tree. Every node on the corresponding complete k-ary tree corresponds to the element
of an array that suffixed the node. The root correspond to the minimum (maximum)
element of the k-ary heap, and the node elements of a sub tree rooted from one node
are greater than (less than) the node element. The heights of k-ary heaps are [ logn .
The operation time bounds of k-ary heaps are proportional to the tree heights, i.e.,
O(log n).

Dijkstra’s algorithm based on k-ary heaps concerns three kinds of heap operations,
i.e., heap-insert, heap-extract-min and heap-decrease-key. Among these operations,
‘heapify’ operation, which is used to keep the characteristics of k-ary heaps, plays a
major role. Theoretically, the running time of a ‘heapify” operation depends on the k&
value. The optimal %k value will minimize the running time of concerned heap
operations.
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The author had solved the optimal integer solution of & is 4. More detail can be found
in [12]. The fine-tuned Dijkstra’s algorithm implemented with quad heap priority
queue has same time bound as that with binary heaps, namely O((m+n)logn).
According to [10], the time bound is only O((n+log(1+m)-logn)logn. For the sparse
graph such as road networks that hold n<<m<<2n, the bound is O(rlogn).

3 Extent Restriction for Path Searching

Most of the optimum path algorithms ignore the spatial distribution characteristics of
networks, which make the searching free. Even if the procedure ends once reaching
the destination nodes, there is still a lot of redundant searching. For road networks,
Location information of nodes can be used to make it up.

3.1 Ellipse Restriction

In a network, approximate maximum distance or cost Mp can be determined once the
source and the destination are defined. Then an extent can be constructed to limit the
searching. The nodes outside the extent will not be considered during the searching
for they are beyond the maximum distance or cost estimated.

If Euclid distance from a node N to the source S and to the destination T is |SN| and
|NT] respectively, the limiting condition can be defined as |SN|+|N7| < M), The critical
points of N form an ellipse focused at S and 7, with the major axis M), as shown in
figure 1.

Ellipse limiting was firstly introduced in [14] to implement a primitive depth-first tree
searching method. A suitable major axis M can be calculated statistically.

First, a lot of nodes can be extracted systematically from road networks to construct
node sets 4, B and their Cartesian product C. Every element in C can be regarded as
the source and destination node between which the optimum path needs determined.

Supposing Euclid distance between them is e,;, the optimum path distance is p,;, a set
R of ratio r,;, = p./e., can be formed for the extracted sample. Then a special value 7
can be acquired which makes the elements in R have values not higher than 7under a
special confidence. With 7 as a product coefficient, the major axis M) of the ellipse
can be calculated using the coordinates of the source and the destination.

Ellipse limiting restricts the searching extent and reduces the scale of optimum path
searching. But the procedure judging whether the current nodes are located in the
ellipse is time consuming, which offsets the benefit brought through the reduced
searching scale. When the destination is far away from the source, the ellipse limiting
is sometimes worse than the free searching.
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= O I

VU

3.2 MBR Restriction

To make up the deficiency of ellipse limiting, we set forward a rectangle limiting
method. It avoids the great deal of product and evolution calculation. The major idea
is to build the minimum bounding rectangle (MBR) for the ellipse and taking the
MBR as a restricted area to reduce the searching scale.

In the ellipse method introduced above, when the product coefficient 7is acquired, the
ellipse equation can be expressed as

where

After getting the ellipse equation, we can get the extremums of x and y through the
differential equations

The tangents formed by the extremums of x and y compose the MBR for the ellipse,
as shown in figure 2.
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Taking the MBR as the restricted area, judging the nodes processed only need
compare whose coordinates with the bounds of the MBR. No complex calculation is
needed.

When the azimuth between the source and the destination €= km/2, the MBR gets the
minimum area, i.e., 44B. And the area ratio of the MBR to the ellipse is 4/t =1.2732.
When 6= (2k+1)n/4, the MBR gets the maximum area, i.e., 2(4*+B%). And the ratio
of the area of MBR to that of the ellipse is
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4 Hierarchical Path Selection

Human cognition to the world has a distinct property of spatial hierarchies, and every
hierarchy contains some necessary information to solve specific problems. For
example, facing a road traffic map, a person can quickly find an optimum path
between two spots chosen arbitrarily on the map. Even if the path is not a shortest
path, it is also a good alternate to be referenced. Here the human thinking is none
other but a procedure of typical hierarchical spatial reasoning. It does not need to
carry out complicated calculation on the completely unwrapped detail, but make
judgement on a generalized hierarchy, and decide the optimum path in this way.

4.1 Hierarchical Structure of Road Network

Roads in the network are divided into different classes according to their grades.
Hierarchies are composed of classes. Every hierarchy contains the roads within higher
hierarchies. Network is divided into sub-regions with boundary formed by the road
sections in lower hierarchy. A sub-region is a grid in sub-region with higher
hierarchy. Adjacent sub-regions share the boundaries. Adjacent hierarchies share
some common nodes, i.e. all the nodes in the higher hierarchy. These nodes are the
connector between the hierarchies and lower hierarchies.

The rule of hierarchical division was set forward in [15] and get improved in this
paper through keeping the shared nodes in adjacent hierarchies to facilitate
backtracking from the lower to the higher hierarchies during the recursion procedure.

4.2 Hierarchy Based Optimum Vehicular Path Selection

Given the source and destination nodes S and 7, supposed i and j are the highest
hierarchies that contain S and 7, S and T  are marked as S; and 7}, then the optimum
path algorithm can run on the sub-network level decided by min(i,j). Although such a
lossy algorithm can not guarantee the resulted path is all to nothing the shortest path,
it is a preferable path. Furthermore, such a hierarchical spatial reasoning is coincident
with the drivers’ thinking manner.

Road networks can be divided into several hierarchies, e.g., trunk roads (including
superhighways), ordinary road and alley. Adjacent lists are established for the nodes
in the three hierarchies respectively. The path searching is performed as follows.

1) Searching the nearest node to S; and 7; to find out the highest hierarchies that
contain S;and 7}, so as to determine the beginning hierarchy; We have k = min(i,/|i 3
&j 3);
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2) Confirming the hierarchical zones that S, and T} are located;

3) If Sk and Tk are located in the same zone of hierarchy two, then the optimum path
is calculated directly on hierarchy one;

4) Otherwise, if Sy and T} are located in the same zone of hierarchy three, we can find
out the nearest nodes to S; and 7} on hierarchy two, marked as S, and 7,. The
optimum paths S;—S, and 7,—T} are calculated on hierarchy one. Then the optimum
path S,—T, is calculated on hierarchy two. §;—S,, S,—7>, T,—T} are linked to get the
required paths;

5) Otherwise, if S; and T} are not located in the same zone of hierarchy three, we can
first find out the nearest nodes S, and 75 to Sy and T} on hierarchy two according to the
method in 4), then calculate the optimum paths S,—S, and 7,—7} on hierarchy one.
Also we can find out the nearest nodes S; and 75 to S, and 7, on hierarchy three,
calculate the optimum paths S,—Sj; and 75—75 on hierarchy two. Lastly, the optimum
path S3—7; is calculated directly on hierarchy three, and the all of the resulted paths,
i.e., $;—8,, $,8;, S3—o715, T5—T, and T,— T are linked to get the final result.

5 A Case Study

A real urban road network with 12,800 nodes and 17,800 lines, and a PC(with single
Pentium 2.4G CPU and 256M memory) are adopted to verify the efficiency of the
above algorithms and the integrated solution.

Firstly, a Dijkstra’s algorithm is implemented with quad heap priority queue. It uses a
greedy heuristic to find the shortest path. Secondly, a directional heuristic with MBR
restriction is added onto the greedy heuristic. 400 nodes are extracted from the
network systematically to form sets 4, B and their Cartesian product set C.
Calculating e, p,, and r,, for each element in C and statistically analyzing set R
formed with all r,,, we get 7= 1.379 under a 95% confidence. It can be resulted from
section 3.2 and equation 4 that the MBR limit increases the searching extent to
27.32%~36.29%, compared with the ellipse limit. In spite of the seeming deficiency,
the following analysis shows it is still worthy of such an expense.

Nodes are picked up to form five sets from the upper left (1241 nodes), lower left
(1155 nodes), upper right (1366 nodes), lower right (1143 nodes) and center (1307
nodes) part of the network randomly to compare the average CPU time of calculating
the shortest path between the nodes in the sets with free searching, ellipse limiting and
rectangle limiting. The node sets are marked as Ry, Ry, Ry, Ry, and R, The result is
shown in table 1.

It shows that MBR limit always performs better than free searching method, and at
most circumstance better than ellipse limit. Moreover, MBR limit increases the
confidence of resulted path for its bigger searching area.
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Table 1. Average time consumption of the shortest path searching with extent restriction
(millisecond)

SearChing methOd Rul'Rur Rul'Rcc 1{ul'lill Rul'er Rcc'er Rcc'Rcc RII'Rur

free searching 12.49 11.57 17.12 20.05 23.88 8.26 22.82
ellipse limit 6.32 9.10 17.10 20.98 9.41 4.36 25.48
MBR limit 5.86 8.95 14.65 18.51 9.64 4.13 21.87

Thirdly the hierarchical selection heuristic is added onto the greedy and directional
heuristics. Figure 3a gets the shortest path only on a single hierarchy. It can be noticed
half the path is made of ordinary roads. Figure 3b presents a three-hierarchy division
of the network. Figure 3¢ shows the optimum path with hierarchical path selection.
Although the resulted path may not be the shortest path, most of that is located on
trunk roads. It decreases the factors difficult to expect or quantify and makes the path
more robust.
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Fig. 3. Hierarchical optimum path selection

6 Conclusion

Different heuristics have different advantages and can be integrated to solve optimum
path problems. Such an idea is experimented in this paper with integrating greedy
heuristic, directional heuristic and hierarchical heuristic, with a real urban road
network. A Dijkstra’s algorithm implemented with quad heap priority queue
establishes a perfect basis for the real road network optimum path searching. The
spatial distribution characteristic of road networks can be used to form a directional
heuristic to limit the searching scale. An MBR for ellipse limit is preferable to free
searching and ellipse limit in path searching. The spatially hierarchical structure of
road network can be used to build another heuristic to make the optimum path
selection completed in higher hierarchies as much as possible, and improves the fault
tolerance for the input data and the applicability of the resulted path. On the basis of
the presented solution, other kinds of heuristics can also be integrated to contribute to
the optimum path problems.
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