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Abstract. A framework to support multiresolution approximations of
planar generalized Voronoi diagrams is presented. Our proposal is: (1) A
multiresolution model based on a quadtree data structure which encodes
approximations of a generalized Voronoi diagram at different levels of
detail. (2) A user driven refinement strategy which generates from the
quadtree a continuous polygonal approximation of the Voronoi diagram.

1 Introduction

The generalized Voronoi diagram of a set of sites partitions the plane into re-
gions, one per site, such that all points in a region have the same closest site
according to some given distance function [3,4,12]. Voronoi diagrams are widely
used in many scientific fields and application areas, such as computer graphics,
geometric modeling, solid modeling, geographic information systems, . . . (see
[17]). Although there are different algorithms to compute exact generalized pla-
nar Voronoi diagrams, they usually suffer from numerical robustness problems
and are time-consuming. To avoid these problems researchers have proposed
techniques to compute approximated Voronoi diagram within a predetermined
precision. Among the existing techniques, we focus our interest on adaptive Voro-
noi diagram approximation methods based on hierarchical structures [11,16,15,
14,7,8,9].

One of the main advantages of hierarchical methods relies on their ability to
support multiresolution. Multiresolution approaches can effectively control the
tradeoff between quality and speed extracting models in which the resolution
varies over the domain of the dataset. Multiresolution approximations of Voro-
noi diagrams are interesting in their own right. They are useful tools to solve
problems in robot path planning [10,5], curve and surface reconstruction [2], and
region approximation in GIS [1]. Unfortunately, algorithm for obtaining multi-
resolution approximations of Voronoi diagrams are still scarse. In this paper we
propose a method to obtain them. The proposed approach is an extension of the
algorithm we presented for the adaptive approximation of generalized planar
Voronoi diagrams [7]. In this algorithm we built a quadtree, called the Voro-
noi Quadtree (VQ), to encode the information of the boundaries of the Voronoi
regions in its leaf nodes. Then we group leaf nodes into five different patterns
that determine how to generate the polygonal approximation of the part of the
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Voronoi diagram contained in the leaf. This approximation is represented by a
DCEL structure.

Taking into account the capabilities of quadtrees to support multiresolu-
tion, we propose to use the VQ as a multiresolution model, i.e. the model that
maintains the diagram approximations at different levels of detail. Our multire-
solution approach starts with the construction of a VQ. Once all the information
of the diagram is encoded in the VQ leaf nodes we apply a refinement process.
The user defines a region of interest (ROI) and a degree of accuracy. Then, the
process selects or generates, when it is required, the nodes from which the po-
lygonal approximation of the Voronoi diagram satisfiying user requirements has
to be obtained. The method guarantees that the approximation is continuous,
the ROI is represented with the user desired degree of accuracy and out of the
ROI the representation is as simple as possible.

2 Definitions and Notation

In this section we present the definitions and notation used int he paper. Let
S = {s1, · · · , sn} be the set of input sites. Each site s is represented by s =<
Gs, Ds, Ps >, where Gs defines the geometry of the site s, Ds is the function that
gives the distance from any point p to s and Ps (the base point of s) is a point
such that Ds(Ps) = 0 and Ps ∈ K, where K is a rectangle. Each site si ∈ S has
associated a Voronoi region V R(si) = {p | Dsi

(p) ≤ Dsj
(p) for all j �= i}. The

generalized Voronoi diagram of S, denoted V D(S), is defined as the partition of
the plane induced by the Voronoi regions. Our goal is to obtain a multiresolution
approximation of the part of V D(S) included in K.

3 A Multiresolution Framework

Multiresolution representations permit extracting models in which the resolu-
tion varies over the domain of the dataset. In this way the user may choose
to approximate with highest detail only some parts of the dataset, for example
the ones considered of maximal interest. To define a framework able to support
multiresolution Voronoi diagram approximations two issues must be resolved.
First of all, it has to be defined a model capable of maintaining approximati-
ons of the Voronoi diagram at different levels of detail, taking into account that
the level of detail may be different in distinct areas of the diagram. Secondly,
it has to be defined a strategy able to generate from the information encoded
in the multiresolution model the polygonal approximation of the Voronoi dia-
gram that satisfies user requirements. The strategy has also to detect and solve
the cracks (i.e discontinuities typical of domain decompositions that are fine in
certain regions and coarse in the others).
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4 A Quadtree-Based Multiresolution Model

Our multiresolution model must allow us to extract approximations of the Voro-
noi diagram suitable for diverse circumstances and it must also allow us to change
the level of detail without excessive overhead. To satisfy all these requirements
we propose to exploit the capabilities of the Voronoi quadtree data structure
presented in [7]. Thus, the first phase of our approach consist on the creation of
a Voronoi quadtree (VQ).

4.1 The Voronoi Quadtree

The VQ make use of the divide-and-conquer power of binary subdivision of
quadtrees to encode the information required to obtain a polygonal approxima-
tion of a Voronoi diagram. Differently of other adaptive methods, that always
consider all the set of sites, in the VQ approach at each step of the process we
only take into account the sites related to each node, reducing in this manner
the complexity of the diagram approximation with respect to other adaptative
related methods.

To construct the VQ a set of basic definitions is introduced. Let N be a node
and s a site. We say that: (i) s is a I-site with respect to N when Ps ∈ N ∩V R(s);
(ii) s is a V-site with respect to N when some vertex v of N verifies v ∈ V R(s)
and (iii) s is a E-site with respect to N when it is not a V-site and there exist
some edge e of N that verifies e ∩ V R(s) �= ∅.

A node of the VQ is a leaf node when its level is LM (the maximal subdivision
level) or it is completely contained in a Voronoi Region, i.e. the total number of
V-sites, I-sites and E-sites contained in the node is one. The VQ construction
process is based on a breadth first traversal of the quadtree which uses a priority
queue Q. The process starts with the creation of the root node assigning to it
the rectangular region K and all the sites of S as I-sites. Then the V-sites of
the root are computed and the root is sent to Q. In a loop over the Q nodes, for
every node N we actualize its V-sites with the nearest of its sites. To maintain
the coherence of the quadtree we evaluate adjacent nodes of N , modifying the
information of its sites when it is required, and sending the nodes to Q if it is
convenient. The construction process ends when Q is empty [7].

As the VQ encodes the information of the boundaries of the Voronoi regions
in the leaf nodes we consider this phase as the initialization of the multiresolution
model.

5 DCEL Based Multiresolution Polygonal
Approximations of the Voronoi Diagram

To generate the polygonal approximation of the Voronoi diagram we will use
the DCEL data structure [6]. This data structure uses three types of records,
vertices, halfedges and faces, to maintain the adjacency between vertices, edges
and faces of a planar subdivision. In [7] we describe how to obtain a DCEL based
polygonal approximations of the Voronoi Diagram from the information encoded
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in the VQ leaf nodes. We assign a pattern to each VQ leaf node according to the
distribution of its V-sites. This pattern determines the position of the DCEL-
vertices and how they have to be connected (see Fig. 1). The accuracy of the
diagram approximation obtained from leaf nodes of level LM is

√
a2+b2

2LM
, where

a and b are edge lengths of K.

Fig. 1. Leaf node patterns of a Voronoi-Quadtree

To obtain a multiresolution approximation of the Voronoi diagram our idea
is to extend the DCEL generation strategy proposed in [7]. The user defines the
ROI, by a simple subregion of the dataset domain, and introduces the desired
degree of accuracy ε. Then, since the VQ obtained in the previous phase has
all leaf nodes at level LM , we apply a refinement process that determines the
set of nodes of the VQ from which the polygonal approximation of the Voronoi
diagram that satisfies the user requirements has to be obtained.

The refinement process classifies VQ leaf nodes as outer ROI nodes if their
four V-sites are out of the ROI and as inner ROI nodes on the contrary. The ε

parameter determines the level Lε =
⌈
log2

(√
a2+b2

ε

)⌉
of the quadtree at which

nodes of the ROI have to be represented. Obtain the inner ROI representation
is straightforward, it is only required the same subdivision process applied for
the VQ construction described in the previous section.

The main difficulty of the refinement process is on the representation of
outer ROI nodes, its representation has to be simplified as much as possible
while preserving the continuity. Hence, the critical point is how to guarantee the
continuity of the diagram approximation. To solve this problem we propose the
crack solving strategy presented in the next section.

5.1 Crack Solving

To generate the DCEL approximation we apply the policy based on a set of
predefined patterns (see Fig. 1) and the location of DCEL-vertices always on the
midpoint of the intersected edges of the node or on the node’s center. When an
intersected edge is common to nodes of different level a crack situation arises. To
define the crack solving strategy we have analyzed the possible crack situations.
We detect three different cases, each one characterized by the distribution of the
V-sites onto the intersected edge that contains the crack.
Case 1. The first case is given when the V-sites of the edge from one side are
the same that the V-sites of the other one, the edge has a unique DCEL-vertex
and the nodes that contain this DCEL-vertex have different levels. This case has
been illustrated in Fig. 2(a.1). In this case to solve the crack we force the coarse
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Fig. 2. (a.1) If the DCEL vertex is computed with respect to N has a different position
that if it is computed with respect to N3. (a.2) To solve the crack we always force the
coarse leaf node representation to meet with the finer one.(b.1) Observe that all the
V-sites located on the intersected edge are A or B. (b.2) Onto the common edge node
there are different DCEL-vertices, one if we consider the edge from the N side, another
another for the N1 side, another for N3 and another for N4. To solve this crack node
N has to be subdivided. (c.1) Node N has V-sites A and B while nodes N1 and N2

have V-sites A, E and B. (c.2) Onto the common edge there are three DCEL-vertices.
To solve the crack the V-site E has to be introduced as an E-site of N , and N has to
be subdivided

leaf node representation to meet with the finer one (see Fig. 2(a.2)).
Case 2. The second situation is given when, although the set of V-sites located
on a common edge are the same, we identify more than one intersection point.
This case has been illustrated in Figs. 2(b.1), 2(b.2). The correct approximation
of the DCEL only can be obtained if the node of upper level is subdivided.
Case 3. The last case is given when the set of V-sites located on the common
edge are different from one side to the other. This case has been illustrated in
Fig. 2(c.1). To solve the discontinuity generated by this configuration (see Fig.
2(c.2)) the V-site not common to the two nodes has to be introduced as an E-site
and the node has to be subdivided.

5.2 VQ Refinement Process

Once the situations of crack have been detected and we know how to solve them
we define the refinement strategy. This refinement strategy uses a new leaf node
criterion which varies according the position of the node with respect to the
ROI. If the node is inside the ROI the criterion is the same used in the VQ
construction phase, i.e. the node is a leaf if its number of sites is one. A node
outside the ROI is a leaf if it has no E-sites.

Driven by this new leaf node criterion the refinement process starts with an
initialization phase that detects all the VQ leaf nodes contained in the ROI and
sends them to the queue Q. In a loop over Q nodes, for every node N its V-sites
are actualized with the nearest of its sites. Then: (i) if N is a leaf node we apply
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to it the propagation procedure. This procedure sends to Q the adjacent nodes of
each vertex v of N that have to be reprocessed. Let N ′ be one of these nodes. N ′

has to be reprocessed if one of three situations represented in Fig. 3 is given. At
the end of the propagation procedure if N and its brothers contain only one site,
they are pruned. (ii)If N is not a leaf its four son nodes are created, the I-sites
and E-sites of N are properly distributed to them and the V-sites of the sons
are computed considering the sites of N . The propagation procedure is applied
to each one of the descendant nodes and if a son is not a leaf either it is send to
Q. The process ends when Q is empty.

s1 �= s2 or s1 �= s3

(c) N ′ outside ROI

s1 �= s4 and s1 �= s5

N

N ′

v

v N ′ v
N ′

s1s2 s3

s1

s2 s2

s3

s4

s1
s5NN

N ′ inside ROI(a) s1 �= s2 (b)

Fig. 3. N ′ has to be reprocessed if: (a) N ′ has a different V-site in v; (b) v lies on
an edge of N ′, N ′ is inside the ROI, and the N V-site of v is different to one of the
N ′ V-sites on the edge; (c) v lies on an edge of N ′, N ′ is outside the ROI, and the N
V-site of v is different to each one of the nearest V-sites to v on the edge

At the end of the refinement process, leaf nodes of the ROI are all at level
Lε while nodes outside the ROI may be distributed at different levels of the
quadtree. The different distribution of leaf nodes affects the DCEL obtainment.
Now when a DCEL-vertex is common to leaf nodes of different level nodes we
always force the coarse leaf node representation to meet with the finer one.

6 Computational Cost

In this section the computational costs of the processes related with the proposed
method are summarized.

Let n be the number of sites, nROI be the number of sites whose Voronoi
region intersects the ROI, ∂V D(S)K be the length of the part boundary of
V D(S) included in K, and ∂V D(S)ROI be the length of the part boundary
of V D(S) included in the ROI. There are some important considerations to
be observed in order to obtain the computational cost of the VQ construction
algorithm and the refinement process: (i) The algorithm applies the subdivision
process to nodes that contain a piece of V D(S). (ii)A curve of length C generates
O(C 2l) nodes of level l in a quadtree, and O(C 2LM+1) nodes in a quadtree of
maximum level LM [13]. (iii) For each level we distribute the n sites to some
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nodes as I-sites. (iv) For each node we need to locate its neighbor nodes. This
can be done in LM worst time, but the expecting time for locating neighbors is
approximately O(4) [13].

According to the previous considerations we have the next results.
The number of nodes generated by the VQ construction algorithm is:
O(∂V D(S)K2LM+1). The running time of the VQ construction algorithm is:
o(nLM + ∂V D(S)K2LM+1). The number of nodes generated by the refinement
process in a the ROI with accuracy ε is: O(∂V D(S)ROI2

Lε−LM ). The running
time of the refinement process in the ROI with accuracy ε is: o(nROI(Lε −LM )+
∂V D(S)ROI2

Lε−LM ).

(a) (c) (e)

(b) (d) (f)

Fig. 4. Voronoi diagrams approximations obtained with the proposed approach are
represented in the first row. The last row represents the distribution of nodes used to
generate these polygonal approximation

7 Results

In this section we present the results obtained with our proposed approach when
experimenting with a set of 13 sites. All these results have been represented in
Fig. 4. The first image (see Figs. 4(a)) corresponds to the polygonal approxima-
tion of the Voronoi diagram obtained at the end of the VQ initialization phase.
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In Fig. 4(b) we have also illustrated the distribution of leaf nodes. Next figures
(see Figs. 4(c)(d)) correspond to the approximations of the diagram once a ROI
has been defined. Observe that the refinement process only affects nodes of the
ROI and some on the boundary of the ROI. It can be seen that there are no
cracks on the polygonal approximation. We want to remark that our multire-
solution approach supports dynamic maintenance, under insertion and deletion
of sites, by using the strategy we describe in [9]. To illustrate this property we
have introduced a new site to the diagram and once the method has properly
updated the Voronoi diagram approximation we have selected a ROI around the
new site. The obtained diagrams are represented in Figs. 4(e)(f)).
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