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Abstract. Progress in integrated circuits and packaging design has made
significant changes in the requirements for modeling tools. In this paper
described algorithm of parallelization of Krylov subspace model order
reduction technique for “full-wave” electromagnetic simulation.

1 Introduction

The topic of model order reduction appears in many disciplines. In control systems,
perhaps the most well known approaches are Truncated Balanced realizations and
Hankel singular values. Other popular approaches are based on the modal properties
of the system, such as the method of Selective Modal Analysis, which is widely used
in power systems applications. Unfortunately, most of these methods require O(n3),
where n is the number of unknowns, operations to generate reduced model since they
require explicit knowledge of the entire eigenspectrum of the system as in selective
modal analysis or the hankel singular values as in truncated balanced realization. In
complicated packaging and interconnect problems for which n can be quite large,
these methods would require days and gigabytes of memory to compute.

In the area of circuit simulation, asymptotic waveform evaluation has popularized
the use of model order reduction. A robust approach for deriving moment matching
reduced order models is the Arnoldi process. The Arnoldi process has its origin in
eigenvalues computation but was used recently to generate moment matching reduced
order models.

In this paper we will give a brief overview of Arnoldi-based passive algorithm for
reduction of ‘full-wave’ electromagnetic models [2, 3] and then introduce MPI-based
parallelization strategy.

2 Overview of Krylov Subspace Model Order Reduction

Lets consider a single input – single output linear system, where A is the system
matrix
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= +

=
 (1.1)

A here is m x m matrix and mRcb ∈, .
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From (1.1) the relation for the transfer function H(s) in Laplace space can be written
as

1( ) ( )tH s c I sA b−= − − (1.2)
Transfer function H(s) can be expanded in a Taylor series around zero frequency,
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where mi, the coefficient of the i-th term in the Taylor series, is known as the i-th
moment of the transfer function. Most commonly used model order reduction
algorithms utilize the Arnoldi method of fast generation of orthogonal basis for
Krylov subspace defined as

2 1( , ) { , , ... }q
qK A b span b Ab A b A b−= (1.4)

The general idea of this method is to generate k-th order orthogonalized Krylov
subspace from the (k-1)-th order orthogonalized Krylov subspace. The last vector of
(k-1)-th order from the orthogonalized subspace is multiplied by A and then the
resulting vector is orthogonalized with respect to the rest of the basis. After n steps
this algorithm returns a set of n orthogonal vectors and we can construct a matrix

m n
nV R ×∈ and an n x n upper Hessenberg matrix nH  such as

1, 1
t

n n n n n n nAV V H h v e+ += + (1.5)

It’s easy see that for k<n

1 12 2

k k k
n n nA b b A V e b V H e= = (1.6)

With this relation we can write that moments can be related to nH  by

12

t k t k t k
k n n n n nm c A b b c V H e c A b= = = (1.7)

and the n-th order Arnoldi based approximation to H(s) can be written as
1

1( ) ( )t
n nH s b c V I sH e−≈ − (1.8)

corresponding to the steady state representation n nA H= , 1nb e=  and
t

n nc b V c= .

And substitution to the representation of original system we will result in following
equation:

t t t
n n n n

t t
n

dx
V AV V x V bu

dt
y c V x

= +

=
(1.9)

And it is easy to see that

y y≈ (1.10)
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3 Guarantee Passive Algorithm for Full Wave Model

Now lets assume that A is frequency dependent and that the transfer function is
positive definite for all s with non-negative real part; i.e. Re(i,H(s)i) ε  for some

0>ε . This kind of problem is quite common in modeling of interconnect circuits or
packaging devices at high frequencies when we have to use the ‘full-wave’ kernel to
generate integral equation formulation. The standard Arnoldi based model order
reduction algorithm, such as PRIMA, are unable to handle this type of problem, and
has been a lot of work done in this field. We will introduce here a passive algorithm
for Arnoldi based reduction of such systems.

In order to generate a reduced order model A(s) will be presented in a from:

1
( )

1 1
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A s A A

s s
= +

+ +
(2.1),

where tA  is the power series expansion of A(s) with infinite radii of convergence.
And first order infinite dimension matrix will be generated in a way similar to the
formulation described in [1].
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where xk=skx and 1
~ 1

0 += −
kAAkA  for k+1<p and )( 11
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Arnoldi process can be used for the new systems with 
1

~
+

=
ps

s
s . And model

order reduction algorithm can be formalized as follows:

1. Calculate A0

2. Set n=0 and set some p>1
3. Calculate zero order transfer function
4. Increase n by 1

5. Calculate nA

6. Update p such as 1,
~

,
max~ <jiA

ji
s  for any nA  and s
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7. Update lA  for all l from 0 to n

8. Calculate n-th order transfer function
9. Check convergence of transfer function
10. If converge calculate reduced model else back to step 4

Using the properties of power series expansion with infinite radii of convergence
and the definition of passivity, it’s possible to show that the introduced algorithm will
produce a passive reduced model. Proof is based on the fact that we do not have to
truncate the expansion of A(s) in order to calculate the n-th order of the reduced

model and that expansion of transfer function will converge for any value of s .

4 Parallelization Strategy

Is it can clearly can be seen from the matrix structure in Eq. (2.2) the problem has
intuitive and easy to observe block structure. First and the easiest way of
parallelization would be assigning each block to the separate processor and using one
processor to reconstruct the reduced matrix. The disadvantage of this strategy is that it
requires explicit computation of submatrixes Ai,j and vector matrix products and is
quite costly in terms of memory and processor time. The alternative approach does
not require explicit computation of all Ai,j utilizes the fact that right hand side has only
n none zero entries. Each submatrix Ai,j is divided in to block and each block is
assigned to the processor. Each processor performs computations within it’s own
block to calculate matrix vector product and then while receiving data from neighbors
it computes boundary data for the processors with adjusted blocks. Thus we will get
optimal performance as we are doing computations at the same time as waiting for
new data.

5 Computational Results and Conclusions

Above-mentioned parallelization was implemented using MPI standard libraries for
easy portability. Parallel performance results can be seen on Fig. 1. The test was
performed on a cluster of Sun Sparc processors with shared memory. We used
transmition line simulation in a frequency range from 1MHz to 7GHz for the test
runs.

The results indicate that electromagnetic and signal integrity analysis can be
performed faster and it makes simulation of large and complex 3D structures possible.
The approach described in this paper requires minimal changes to the serial algorithm.
We are currently are working on developing new more effective parallelization
strategies.
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Fig. 1. Computational time vs. number of processors
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