
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 107–114, 2004.
© Springer-Verlag Berlin Heidelberg 2004

LodStrips: Level of Detail Strips

J.F. Ramos and M. Chover

Departamento de Lenguajes y Sistemas Informáticos
Universitat Jaume I, Campus de Riu Sec, 12071, Castellón, Spain

{jromero,chover}@uji.es

Abstract. Meshes representation at different levels of detail is an important tool
in the rendering of complex geometric environments. Most works have been
addressed to the multiresolution model representation by means of triangle
meshes. Nowadays, models that exploit connectivity have been developed, in
this paper a multiresolution model that uses triangle strips as primitive is pre-
sented. This primitive is used both in the data structure and in the rendering
stage, decreasing the storage cost and accelerating the rendering time. Model
efficiency is measured by means of a set of tests and results compared to Pro-
gressive Meshes and Multiresolution Triangle Strips multiresolution models,
obtaining better rendering times and spatial cost.

1 Introduction

One of the main problems in graphics applications is the bottlenecks that take place in
the graphics pipeline. These bottlenecks reduce the performance of the application
and can vary even from frame to frame. The identification and elimination of these
bottlenecks will be fundamental for the optimization of the application.

In each stage of the rendering process from the CPU to the GPU, there are different
locations where these problems can appear. If the problem is analyzed from the point
of view of geometry, the basic drawback is how to draw a huge number of triangles
per frame. In this case, the problem is the number of vertices that are sent to the GPU.
The traditional solution to this problem has been to use discrete level of detail (LOD),
in an attempt to avoid overloading the CPU. Nevertheless, the use of discrete LODs
has the disadvantage of popping and the need to use blending techniques.

In this paper, we present a continuous multiresolution model, called LodStrips,
which has the following characteristics:

- Continuity. Transitions between levels of detail are smooth. The changes
mean eliminating or adding one vertex.

- Connectivity exploitation. The model is based on the use of triangle strips.
This leads to reduction in the storage and rendering costs.

- Fast extraction. It avoids the intensive use of the CPU that usually takes
place with the continuous multiresolution models.

- Cache use. The use of strips means having at least one cache of two vertices.

108 J.F. Ramos and M. Chover

 2 Previous Work

 Continuous multiresolution models are widely used because they are able to solve the
problems of interactive rendering, progressive transmission, geometric compression
and variable resolution. These models have been developed to represent, chiefly,
triangle meshes. A characterization of these models can be found in [10]. Neverthe-
less, at the present time, some of the models presented exploit connectivity informa-
tion using primitives like triangle strips or triangle fans. Fast rendering and a smaller
storage cost can be achieved using these primitives. The rendering time decreases
when fewer vertices are sent to the GPU and the connectivity of the mesh is stored
implicitly.

 One of the first models to use triangle strips is VDPM by Hoppe [6] After calcu-
lating the set of triangles to be rendered, this model performs an on-the-fly determina-
tion of the strips to be rendered. This is a time-consuming task but the final rendering
time is reduced because triangle strips are faster than triangles.

 Later, El-Sana et al. introduces the Skip-Strips model [2]. This is the first model to
maintain a data structure to store strips, thus avoiding the need to calculate them on-
the-fly.

 Ribelles et al. introduced the MOM-Fan[9] This is the first model that no longer
uses triangles, but instead another primitive that exploits connectivity. This model
uses the triangle fan primitive both in the data structure and in the rendering stage.
The main drawback of this model is the high number of degenerated triangles used in
the representation. Another drawback to the model is that the average number of tri-
angles in each triangle fan is small.

 Following this approach, MTS by Belmonte et al. appeared. This is a model that
uses the strip primitive in the storage and in the rendering stage [1]. The model is
made up of a collection of multiresolution strips. Each multiresolution strip represents
a triangle strip at every LOD, and this is coded as a graph. Only the strips that are
modified between two consecutive LOD extractions are updated before rendering.

 Recently, some works based on the triangle strip primitive have been presented.
These focus on the dynamic simplification of the triangle strips for each demanded
LOD. The model by Shafae et al. called DStrips [11] manages the triangle strips in
such a way that only those triangle strips that are being modified are processed, while
the rest of the triangle strips in the model remain unmodified. This updating mecha-
nism reduces the extraction time. However, results published from this work still show
a high extraction time.

 Another approach to the use of triangle strips in a multiresolution model is the work
carried out by A. James Stewart [12], and extended by Porcu [7]. This work uses a
tunneling algorithm to connect isolated triangle strips, thus obtaining triangle strips
with high numbers of triangles while reducing the number of triangle strips in the
model as it is simplified. Again, its main drawback is the time consumed by the stripi-
fication algorithm.

 Improvements of multiresolution models are applied in many ways. In [15] vertex
connectivity exploitation is applied to implement a multiresolution scheme and in [14]
a method is applied to maximize vertex reuse.

LodStrips: Level of Detail Strips 109

 3 The LodStrips Model

 The LodStrips model represents a mesh as a set of multiresolution strips. We denote a
triangle strip mesh M as a tuple (V;S), where V is a set of vertices vi with positions vi

∈ R3, and S is a collection of sub-triangulations s1,…,sm, so each si ∈ S is an ordered
vertex sequence (1) also called a strip

 { }1
i i

qs s
 { }

1 1

1

1

1

. . .

. . .

. . .

k

n

m m

r

S V v v
s s

s s

 
  = = 
 
  

 (1)

 Each row inside the S matrix represents a triangle strip. After some modifications,
this matrix will be adapted to become a multiresolution triangle strip data structure in
order to be used in our model. In this way, this data structure will change during level
of detail transitions, as described in the sections below.

 The model has been built in order to optimize data access as well as the vertices
sent to the graphics pipeline. In this way, it manages the triangle strips both in the data
structure and in the rendering stage.

 A set of vertices with their 3D coordinates and a set of multiresolution strips are
needed to support the multiresolution model. Moreover, an auxiliary structure is used
to improve level of detail transitions.

 3.1 Data Structures

 The purpose of the data structure is to store all the information necessary to recover
every level of detail on demand. Three data structures are used: lVerts, lStrips and
lChanges.

 We denote a lVerts structure as a set V which contains an ordered vertex sequence
and where each vi ∈ V consists of four items (2). The first three items are vertex posi-
tions: (xi,, yi, zi) ∈ R3 and the last one,

ikv , is the vertex into which vi collapses, where

k > i.

 { } ()1 , ..., , , ,
in i i i i kV v v v x y z v= = (2)

 Thus, the lVerts data structure stores 3D coordinates and information about vertex
simplification of each vertex in the mesh.

 In order to collapse a vertex onto another, two kinds of simplification can be ap-
plied: external and internal edge collapses. External edge collapses consist of a vertex
simplification where the destination vertex is on the external edge of the strip. Internal
edge collapses are applied when the destination vertex is on the opposite edge. Simpli-
fication is achieved by means of two external vertex collapses.

 Transitions between levels of detail involve vertex collapses. This information is
stored in the lVerts data structure and when a vertex vi has to be collapsed, it is re-
placed by

ikv in every strip where it appears.

110 J.F. Ramos and M. Chover

 V is ordered according to its simplification order, that is, v0 will be the first vertex
to collapse, v1 will be the second, and so on. Assuming that a vertex simplification is a
level of detail change, when a transition from LOD i to LOD i+1 is demanded by the
application, vertex vi is replaced by

ikv in all occurrences of that vertex and in every

multiresolution triangle strip, in other words, in the data structure lStrips. Thus, an
initial mesh M1 can be simplified into a coarser Mn by applying a sequence of succes-
sive vertex collapse operations.

 The sequence of vertex collapses is selected from simplification algorithms, since it
determines the quality of the approximating meshes.

 The multiresolution strip set is stored by the lStrips data structure. It consists of a
collection L, where each Li ∈ L is an ordered vertex sequence, which denotes a mul-
tiresolution strip.

1 1
1

1

. . .

. . .

r

m m
t

v v

L

v v

 
 =  
 
 

 (3)

 Each row Li ∈ L, or each strip in the L collection, changes dynamically with vertex
collapses and with strip resizing.

 Vertex collapses are performed by replacing vertices in the data structure L by oth-
ers that simplify them. These collapses can give rise to situations where repeated se-
quences appear in the data structure and these repetitions have to be removed, which
involves resizing some strips.

 Thus, as vertex collapses are applied, the lStrips data structure will become smaller,
which allows us to have a very simple data structure for coarse levels of detail.

 The lodStrips model incorporates a new data structure, lChanges, which allows us
to quickly recover the positions of the vertices that are changed in each level of detail
transition; this also allows the quick removal of consecutive vertex repetitions.

 We denote a lChanges data structure as a level of detail ordered set, C, where each
tuple ic j has the structure (il j , ik j), where il j ∈ L, which represents a position in L and

ik j is another scalar that determines whether il j values are for collapsing a vertex or

for removing a set of consecutive vertices.

1 1
1

1

...

...

s

m m
t

c c

C

c c

 
 =  
 
 

 (4)

 This data structure increases model performance because it allows us to quickly
apply level of detail changes between transitions. Without this data structure it would
be very expensive to apply these changes.

LodStrips: Level of Detail Strips 111

 3.2 Algorithms

 Multiresolution models need algorithms to be able to support multiresolution capa-
bilities. The LodStrips model and most multiresolution models have two main algo-
rithms to do these tasks, i.e. a level of detail recovery algorithm and a drawing algo-
rithm. We assume the rendering stage to be a stage that contains these two algorithms,
which are applied in a sequential order, first extraction and then drawing.

 The level of detail recovery algorithm goes into action when a level of detail
change is induced by the application. Then, data structure C is traversed from Ccur-

rentLOD to CnewLOD, applying changes stored in each tuple Cij ∈ C, where i is in the
interval [currentLOD , newLOD]. It is important to notice that, depending on whether
the level of detail is bigger or smaller than the current one, splits or collapses will be
applied to the lStrips data structure, although the information stored in ic j referring to

collapses is also used to perform splits. The pseudo-code is shown below.

 Level of detail recovery algorithm.

 for lod=currentLOD to newLOD
 if newLOD>currentLOD //To a more coarse mesh
 for change=lChanges.Begin(lod) to lChanges.End(lod)
 if (change.isCollapse()) then
 lStrips.Collapse(lod,change);
 else
 lStrips.Resize(lod,change);
 else //To a more detailed mesh
 for change=lChanges.Begin(lod) to lChanges.End(lod)
 if (change.isSplit()) then
 lStrips.Split(lod,change);
 else
 lStrips.Resize(lod,change);

 After the level of detail recovery algorithm has processed multiresolution strips the

drawing algorithm takes over, traversing each strip to obtain their vertices in order to
send them to the graphics system.

 3.3 Model Performance

 LodStrips model consists of data structures, with a pre-process that fills them, and
algorithms for online extraction of the level of detail demanded:

- Stripification. Using the STRIPE algorithm [3] the lVerts data structure is
built and lStrips filled with the highest level of detail.

- Simplification. We get the vertex collapsing order by means of the QSLIM
algorithm [4].

- Arrangement. Once we have the vertex collapsing order, data structures must
be adapted to the simplification order obtained from QSLIM.

112 J.F. Ramos and M. Chover

- Collapse. For each vi E V,
ikv is calculated, as described in section 3. This

item represents the vertex vi to be collapsed. It is calculated taking into ac-
count the results of the simplification process.

4 Results

The LodStrips model has been submitted to several tests, all of which are aimed at
evaluating the rendering time in a real time application.

All these tests were carried out to PM [5], MTS [1] and LodStrips, and results were
compared. The first model has been and still is a reference model in the multiresolu-
tion world. The second is the most recent multiresolution model that makes complete
use of multiresolution strips.

To carry out the tests, three well-known meshes from the Stanford 3D Scanning
Repository were taken as a reference, so as to make it easy to compare this model with
other well-developed models.

Tests were carried out with a PC with an Intel Xeon 2.4 Ghz processor and 512 Mb
of main memory, using an ATI Fire GL E1 64 Mb graphics card.

Table 1 shows triangle mesh costs of the objects used in the tests and the sizes of
the three models compared. It can be seen how the model presented here has a spatial
cost that is lower than the rest of the models compared. This allows more objects to be
placed in memory if necessary.

Table 1. Spatial cost comparison in Mb.

Tests designed to compare multiresolution models follow the ones introduced by
[8]. The tests carried out are the linear test and exponential test.

The linear test consists of extracting the LODs in a linear and proportionately in-
creasing or decreasing way. The Exponential test consists of extracting LODs in an
exponential way, that is, in the beginning it extracts very distant levels of detail and,
later, it extracts closer levels.

The following tables show the results of applying the linear and exponential tests to
models PM [5], MTS [1] and the one presented here, LodStrips.

As can be seen in Table 2, corresponding to the linear and exponential tests, the
total rendering time is shown first. The lower part of the table, shows the percentage
of this time used in extracting the level of detail and in drawing the resultant mesh.

Mesh Tr. Mesh PM MTS LS Ratio PM Ratio MTS Ratio LS
Cow 0.100 0.272 0.252 0.186 2.7 2.5 1.9

Bunny 1.193 3.282 2.963 2.111 2.8 2.5 1.8
Phone 2.850 7.863 6.765 4.844 2.8 2.4 1.7

LodStrips: Level of Detail Strips 113

Table 2. Linear and exponential tests

As we can see in both tests, the LodStrips model offers better rendering times than
MTS and PM. LodStrips spends a small percentage of time on extracting the level of
detail, which leads to good rendering times. In the opposite case, MTS spends quite a
lot of time on extraction, and this slows down the total rendering time for this model.

0

20000

40000

60000

80000

100000

120000

140000

0 1Lod

(a
)

N
u

m
b

er
 o

f
V

er
ti

ce
s

LS MTS PM

0

2000

4000

6000

8000

10000

0 1Lod

(b
) N

um
be

r
of

 S
tr

ip
s

LS MTS

Fig. 1. a) Vertices sent to the graphics system by the bunny object in a linear test, b) Strips sent
by MTS and LodStrips model in a linear test for the bunny object.

Vertices sent to the graphics system are directly related to the rendering time. The
number of vertices sent by the model can be seen in Figure 1 a).

Strips are a way for organizing vertices that allows us to have a virtual two-vertex
cache. As we can see in Figure 2 b), the LodStrips model has a low variation of strips
sent, whereas the MTS model has a high variation of them in the progression of levels
of detail. In any case, it seems that there is no relation between the vertex sent and the
number of strips sent.

5 Conclusions

The LodStrips model offers many advantages and it should be underlined that it is a
model with only three simple data structures and it is easy to implement. Moreover, it
offers a fast LOD extraction which allows us to obtain smooth transitions between
LODs, as well as very good rendering times because extraction is usually an important

% rec % drw % rec % drw % rec % drw % rec % drw % rec % drw % rec % drw
Cow

6.43 93.57 24.36 57.38 24.36 75.64 5.88 94.12 37.6 62.4 20.73 79.27
Bunny

 0.59 99.41 21.85 78.15 2.57 97.43 0.49 99.51 17.54 82.46 1.89 98.11
Phone

 0.24 99.76 16.29 83.71 1.65 98.35 0.17 99.83 12.81 87.19 1.15 98.85

Render (ms)

LINEAR TEST
PM MTS

Render (ms) Render (ms)

EXPONENTIAL TEST

0.917916 0.934682 0.231398

10.792452 6.304261 3.077063

32.983562

LodStrips
Render (ms)

1.234464 0.53519 0.298161

14.812924 8.301228

16.164691 6.998482

48.922801 16.735283

4.129842

11.756625

PM MTS LodStrips
Render (ms) Render (ms)

114 J.F. Ramos and M. Chover

part of the total rendering time. This model is wholly based on the triangle strips,
which leads to an important reduction in storage and rendering costs.

This work was supported by the Spanish Ministry of Science and Technology
grants TIC2001-2416-C03-02 and TIC2002-04166-C03-02, and FEDER funds.

References

1. O. Belmonte, I. Remolar, J. Ribelles, M. Chover, M. Fernández. Efficient Use Connec-
tivity Information between Triangles in a Mesh for Real-Time Rendering, Future Genera-
tion Computer Systems, 2003.

2. El-Sana J, Azanli E, Varshney A. Skip strips: maintaining triangle strips for view-
dependent rendering. In: Proceedings of Visualization 99, 1999. p.131-7.

3. F. Evans, S. Skiena and A. Varshney, Optimising Triangle Strips for Fast Rendering,
IEEE Visualization ’96, 319-326, 1996. http://www.cs.sunysb.edu/~stripe

4. M. Garland, P. Heckbert, Surface Simplification Using Quadratic Error Metrics,
SIGGRAPH’97, 209-216, 1997.

5. Hoppe H. Progressive Meshes. Computer Graphics (SIGGRAPH), 30:99-108, 1996.
6. Hoppe H. View-dependent refinement of progressive meshes. SIGGRAPH, 1997.
7. Massimiliano B. Porcu, Riccardo Scateni. An Iterative Stripification Algorithm Based on

Dual Graph Operations. EUROGRAPHICS 03.
8. J. Ribelles , M. Chover, A. Lopez and J. Huerta. A First Step to Evaluate and Compare

Multirresolution Models, Short Papers and Demos EUROGRAPHICS’99, 230-232, 1999.
9. J. Ribelles, A. López, I. Remolar, O. Belmonte, M. Chover. Multiresolution Modelling of

Polygonal Surface Meshes Using Triangle Fans. Proc.of 9th DGCI 2000, 431-442, 2000.
10. J. Ribelles, A. López, Ó. Belmonte, I. Remolar, M. Chover, Multiresolution modeling of

arbitrary polygonal surfaces: a characterization, Computers & Graphics, vol. 26, n.3 2002.
11. Michael Shafae, Renato Pajarola. DStrips: Dynamic Triangle Strips for Real-Time Mesh

Simplification and Rendering. Proceedings Pacific Graphics Conference, 2003.
12. A. James Stewart: Tunneling for Triangle Strips in Continuous Level of Detail Meshes.

Graphics Interface 2001: 91-100.
13. L. Velho, L.H. de Figueiredo, and J. Gomes.: Hierarchical Generalized Triangle Strips.

The Visual Computer, 15(1):21-35, 1999.
14. A. Bogomjakov, C. Gostman.: Universal Rendering Sequences for Transparent Vertex

Caching of Progressive Meshes. Proceedings of Graphics Interface 2001.
15. Leif P. Kobbelt, Thilo Bareuther. Hans-Peter Seidel.: Multiresolution Shape Deformations

for Meshes with Dynamic Vertex Connectivity. Computer Graphics Forum. vol. 19, 2000.

	Introduction
	Previous Work
	The LodStrips Model
	Data Structures
	Algorithms
	Model Performance

	Results
	Conclusions
	References

