
Creating a Sustainable High-Performance
Scientific Computing Course

E.R. Jessup and H.M. Tufo

1 University of Colorado, Boulder, CO 80309, USA,
jessup@cs.colorado.edu,

http://www.cs.colorado.edu/˜jessup
2 University of Colorado, Boulder, CO 80309, USA,

tufo@cs.colorado.edu,
http://www.cs.colorado.edu/˜tufo

Abstract. We describe our experiences with computational science and
engineering (CS&E) education at the University of Colorado at Boulder
in order to illustrate the difficulties associated with such a course of study.
Our CS&E offerings began with a course on high-performance scientific
computing (HPSC) developed under a CISE Educational Infrastructure
grant from the National Science Foundation. The course was taught from
1991 through 1998 when various practical concerns ended its run. The
course was revived in 2003 to meet the demands of several emerging
programs in computational science. In this paper, we outline the rise,
fall, and restoration of the HPSC course. We identify the technological
developments that presently make such a course less labor intensive and
more sustainable.

1 Introduction

The Department of Computer Science at the University of Colorado at Boulder
(UCB) was an early player in the world of computational science and engineering
(CS&E) education for undergraduates. Its course in high-performance scientific
computing (HPSC) was introduced in 1991. The course provided an introduction
to the use of high-performance computing systems in scientific and engineering
applications. Its development was supported by the National Science Founda-
tion under a CISE Educational Infrastructure grant awarded in 1990. The course
enjoyed a successful seven year run before succumbing to the pressures of tech-
nological change and decline of student interest. In this paper, we describe our
experiences with the HPSC course at UCB. In section 2, we discuss the design
and development of the original HPSC course. Analysis of its decline is provided
in section 3. In section 4, we discuss the reasons for the rebirth of HPSC. Finally,
in section 5, we discuss the changes in technology and local CS&E curricula that
will now allow us to offer the course over the long term.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 1242–1248, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Creating a Sustainable High-Performance Scientific Computing Course 1243

2 The Rise of HPSC

The original HPSC course was offered as a two semester sequence each academic
year from 1991-2 through 1997-8. The course was based on the philosophy that
students were best turned into effective users of supercomputers by introducing
them to practical use of the machines. That is, students learned through real
application problems and not just toy problems or simple numerical examples.
The students learned which architectures were appropriate for which problems
and how best to map the problems onto those machines. The students also lear-
ned how to assess the performance of their programs, including how to interpret
what the compiler did and how to use the clock properly. Finally, the students
learned to use the color, perspective, and animation capabilities of suitable vi-
sualization tools to display and interpret the large amounts of data typically
generated by supercomputer programs.

Over the years, students in the course used DEC and SGI workstations and
an Intel iPSC/2 hypercube multiprocessor located on the UCB campus as well
as a variety of supercomputers at remote sites. The latter, which were accessed
via the Internet, included a Cray Y-MP located at the National Center for
Atmospheric Research (NCAR), an Intel Paragon at the National Oceanic and
Atmospheric Administration (NOAA), and a Thinking Machines CM-2 at the
National Center for Supercomputing Applications (NCSA) among others. Time
on those machines was donated by the centers.

The first semester began with introductions to three different machines and to
performance measurement. Students also studied the computational and scienti-
fic visualization tools Matlab [1] and an early AVS product [2]. The concepts and
tools learned in the first few weeks were then applied to solution of numerical
problems in molecular dynamics and computerized tomography. A midterm pro-
ject required evaluation of the various architectures for solving several specified
numerical problems. A final project required the student to port a molecular
dynamics code to a new architecture and to evaluate the results. The second
semester covered one or more additional architectures and an application in
advection. In that semester, students completed a final project on an advanced
topic of their choosing. Both semesters were offered as three hour lecture courses
supplemented by a three hour supervised lab.

Because no appropriate textbook was available, we wrote all of the course
materials. Our series of single-topic tutorials and short reference guides eventu-
ally became a textbook [3]. A laboratory manual and manuals for the machines
and computational tools are still available on the Web [4].

The only prerequisite for the course was one semester of numerical com-
putation at the undergraduate level. During its tenure, the course, which was
listed at both the graduate and undergraduate levels, attracted juniors, seniors,
and first year graduate students majoring in computer science, physics, applied
mathematics, or chemical, mechanical, or aerospace engineering.

The HPSC course was a success on several levels. The student evaluations
were routinely positive. Several of our graduates went on to jobs at national
laboratories (mainly NCAR and NOAA in Boulder) or into graduate programs

1244 E.R. Jessup and H.M. Tufo

relevant to computational science or engineering. They reported that the ma-
terial they’d learned in the course was helping them in their jobs or studies.
Other graduates became research assistants at UCB in the field of HPSC and
ultimately took on employment in that area.

Our course was exported to other colleges and universities. As part of our pro-
posal to NSF, we named several collaborating institutions. Professors from those
institutions aided us in course development and received equipment purchased
with the NSF funds to help support their own HPSC courses. The collaborators
were chosen from institutions in our region with some emphasis on schools with
significant minority enrollment and on schools that would not otherwise have the
resources necessary for teaching HPSC. The ultimate goal of the collaboration
was to put HPSC courses modeled on ours into those institutions, and that goal
was reached at all of the schools.

For two years, we offered (separate) two-week summer workshops for stu-
dents and for faculty from other institutions during which we covered the first
semester’s materials. The faculty members attending the workshops were sub-
sequently able implement scientific computing courses like ours at their own
institutions.

We were also aware of courses based fully on ours offered at other universities
not associated with our program. Instructors at other institutions were using a
sampling of our materials in related courses. Interest was demonstrated by the
large number of downloads from our course materials Web site and continuing
textbook sales.

The course received formal recognition in the form of a 1995 Undergraduate
Computational Science Education Award from the Department of Energy.

3 The Decline of HPSC

Although the HPSC course was very well-received, it was not without its pro-
blems. While we were able to use a network of workstations via MPI [5] in the
last two offerings of the course, MPI was not fully developed, and it was not
yet considered standard. As a result, codes had to be ported explicitly to each
new architecture, using constructs particular to that machine. Furthermore, su-
percomputers came and went at a rapid rate. Sometimes a computer we used
in one offering of the course was not available for the next year’s offering. As a
result, the process of keeping the course materials up to date was difficult and
time-consuming.

While the topics covered by the original materials served us well at UCB, they
were not always perfect for courses at other institutions. Expanding the offerings
represented another substantial investment of effort, and it was not obvious how
to obtain funding for further course development. While many funding agencies
have excellent programs for course initiation, they do not have programs for
course continuation and maintenance.

While the UCB model of HPSC education was appropriate at many other
schools, it did not work everywhere. In those days before ubiquitous Internet,

Creating a Sustainable High-Performance Scientific Computing Course 1245

smaller schools complained of the lack of fast Net access and of the dearth of
funding to purchase and support workstations and visualization tools (especially
the AVS program we used for 3D animation). We considered the problem of
downsizing the materials for use at those schools but again ran into lack of
support for such efforts.

Perhaps the most serious problem confronting the HPSC course was a local
one. The extremely tight curriculum in the Engineering College (which includes
the Department of Computer Science) made it difficult for students to find time
for the HPSC elective. Further, the number of Computer Science majors inte-
rested in HPSC was relatively small, and students in other departments were not
always aware that the course existed. As a result, first semester class enrollments
ranged from only 11 to 17 over the years (small numbers at our university). The
second semester class was typically even smaller. In some semesters, finding stu-
dents at all required a significant amount of recruiting. Before the 1998 offering,
the instructor opted not to recruit, no students enrolled, and the course was
canceled. That semester marked the end of the original version of the HPSC
course. Its run had lasted seven years.

The decline of HPSC at UCB mirrored a general lessening of interest in
the topic in the educational community as a whole. The years 1992-1997 saw a
large number of special conferences and conference sessions devoted to HPSC
education. That time period also saw large-scale development of materials for
computational science by other authors (e.g., DOE’s Undergraduate Computa-
tional Engineering and Sciences Project [6]). Such activity decreased markedly
in subsequent years, reviving only recently.

4 The Rebirth of HPSC

The beginning of the twenty first century has brought with it an increased de-
mand for computational skills in a variety of disciplines. The source of that
demand extends from academic researchers to employers in industry and the
national laboratories. As a result, the seeds of CS&E education have spread to
numerous engineering and applied science departments at UCB and have gra-
dually developed into small pockets of CS&E training within those departments.
In an effort to formalize this training, several departments have begun to con-
struct undergraduate and graduate educational programs to teach their students
the specific CS&E skills required by their disciplines. Because of the difficulty of
creating new degree programs at UCB, all of these training programs have been
offered as supplements to or tracks within current degree offerings.

The material and the practical skills once taught in our HPSC course are
at the core of many of these new CS&E programs. One of the first approved
programs came from the Department of Applied Mathematics in 2003. Instead
of developing their own HPSC course or spreading the material over several core
courses, the Applied Mathematics faculty asked us to revive our HPSC course.
To address their discipline-specific content concerns we moved the open course

1246 E.R. Jessup and H.M. Tufo

project from the second semester to the first and allowed significant flexibility
in project selection.

To address technological developments since its first offering, we embarked
on a redesign of the course. First, several structural changes were effected. To
further increase the potential pool of students the numerical analysis prerequisite
was removed and now appears only on the recommended course list. Since the
project had been moved to the first semester we chose to make HPSC a one
semester course instead of two. However, as our intention was that it remain
a hands-on project-based course, we kept the original four credit hour design
(three hours of lecture and three hours of supervised lab per week).

In addition to structural changes, rapid changes in technology and demands
from employers in industry and the national laboratories needed to be reflected in
the course content and tools. Parallel programming skills are currently in high de-
mand. As MPI is now the de facto standard for writing message-passing parallel
programs and can be either be easily installed on or purchased with a computing
system, we concentrate on learning MPI programming in the first eight weeks of
the sixteen-week course. Given that mixed model programming paradigms are
being driven by the increasing use of shared memory multiprocessing techno-
logy, we then spend time learning the basics of OpenMP [7] and writing hybrid
MPI/OpenMP programs. Because the recent success of the Japanese Earth Si-
mulator program has sparked renewed interest in vector programming, we also
provide a brief introduction to vector computing. The majority of the remai-
ning time is spent examining parallel architectures and algorithm development
in more detail, concentrating on mesh, tree, and hypercube architectures and
developing architecture specific algorithms for commonly encountered problems
(e.g., sorting, matrix and graph algorithms, FFT).

5 The Sustainability of HPSC

The original HPSC course fell victim to a variety of problems: the rapid evolution
of computer architectures, the difficulty of maintaining course materials, and the
decline of local demand were the most serious.

That course relied on a combination of local and remote computing resour-
ces. The fact that many of the parallel systems were housed off-site and chan-
ged rapidly made keeping the course materials current and preparing for next
year’s offering difficult. The intervening five years (1998-2003) saw the advent
of Beowulf cluster computing systems [8]. Because these systems are built using
commodity off-the-shelf components and employ open source software, they are
extremely cost effective, providing computing capacity at less then $300 per Gi-
gaFlop (e.g., [9]) and requiring no (expensive) service contracts. (To put this in
perspective, in 1998 the world’s fastest computer, ASCI Option Red, cost about
$30,000 per GigaFlop [10].) Given the reduced cost and the fact that the open
source software, in particular the Linux operating system, has become relatively
mature and sufficiently stable, we purchased a 128-processor Beowulf cluster
and the HPSC course relies solely on this platform for code development and

Creating a Sustainable High-Performance Scientific Computing Course 1247

production runs. Making long term predictions about the the future of high-
performance computing is extremely difficult. However, we firmly believe that
these cluster solutions will be around for next decade and remain the most cost
effective solution for designing systems of less than a thousand processors.

The maturity and stability of the software and hardware environment have
not only made life much easier for the instructor but also for the students.
The fact that most students are already familiar with Linux and, hence, our
computing environment, means that we were able to accelerate the rate at which
we covered material. This accelerated rate allows us essentially to present all
of the computational material previously taught in two semesters in one, thus
removing any objections to the decision to make this a one semester course.

In the interest of providing a course appropriate to a variety of disciplines, the
physics-based application problems are no longer covered. Scientific visualization
also receives less coverage primarily due to time constraints, although freeware
visualization (e.g., VTK [11]) is available on the cluster. The original intensive
slate of programming assignments and laboratory exercises now provides an
effective method for rapidly introducing and learning basic and intermediate
MPI programming techniques.

The maintenance of course materials is no longer the problem it once was.
While many of the original course materials are now dated and their emphasis
on applications does not fit the current model of instruction, there is no longer
a need to produce homemade materials to replace them. In the current course,
we use two books on MPI [12,13] and one on parallel algorithms and architec-
tures [14]. A variety of other sources exist that could be used to supplement or
replace these materials should the need arise.

Like its predecessor, the new version of the HPSC course is appropriate for
export to other institutions. In particular, the availability of the original on-line
materials (updated and possibly supplemented with on-line lectures) and of well-
developed open source software make it possible to “package” the entire course
in an affordable box. Furthermore, the availability of less expensive systems
and free software make an HPSC course more accessible to smaller institutions.
Even two networked workstations running MPI are sufficient to illustrate many
important concepts in parallel computing.

Finally, we expect that the now broader interest in CS&E at UCB will help
us to maintain healthier enrollments. We have requested that Applied Mathema-
tics feed junior and senior level undergraduates and graduate students from the
undergraduate and graduate numerical analysis courses and other appropriate
courses into the new HPSC course. Although the partnership is still in its in-
fancy, we anticipate that Applied Mathematics will supply a steady stream of
8-16 students per year. Additional demand is ultimately expected from emerging
CS&E programs in Astrophysical and Planetary Sciences, Aerospace Enginee-
ring, Atmospheric and Oceanic Sciences, Physics, Civil and Environmental En-
gineering, and Computer Science. To increase the appeal to Computer Science
graduate students, we have ensured that the course serves to satisfy the breadth
requirement for the master’s degree.

1248 E.R. Jessup and H.M. Tufo

References

1. The MathWorks: MATLAB and Simulink for Technical Computing (2003)
http://www.mathworks.com/.

2. AVS/Advanced Visual Systems: Data visualization software and solutions (2003)
http://www.avs.com/.

3. Fosdick, L.D., Jessup, E.R., Schauble, C.J.C., Domik, G.: An Introduction to
High-Performance Scientific Computing. MIT Press, Cambridge, MA (1996)

4. Fosdick, L.D., Jessup, E.R., Schauble, C.J.C., Domik, G.: Computer Science –
Course Materials, CSCI 4576 (2003)
http://www.cs.colorado.edu/ftp/pub/HPSC/README.html.

5. MPI The message Passing Interface Standard (2003)
http://www.mcs.anl.gov/mpi/.

6. The Undergraduate Computational Engineering and Sciences Project Homepage
(2003)
http://www.krellinst.org/UCES/.

7. OpenMP: Simple, Portable, Scalable SMP Programming (2003)
http://www.opemmp.org/.

8. Beowulf.Org The Beowulf Clustering Site (2003)
http://www.beowulf.org/.

9. Terascale Cluster - Research Computing - computing.vt.edu (2003)
http://computing.vt.edu/research computing/terascale/.

10. ASCI Red Web Site (2003)
http://www.sandia.gov/ASCI/Red/.

11. VTK Home Page (2003)
http://www.vtk.org/.

12. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco,
CA (1997)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with Message-Passing Interface. MIT Press, Cambridge, MA (1999)

14. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Francisco, CA (1991)

	Introduction
	The Rise of HPSC
	The Decline of HPSC
	The Rebirth of HPSC
	The Sustainability of HPSC

