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Abstract. The present work provides the generalization to the approach
proposed by Frei and Chen to square masks of any dimension for line
and edge detection in digital images. It is completed with the application
of the designed algorithm to the image of a archaeological site, that to
our judgement permit us to establish an correlation between the mathe-
matical results and results of the archaeologicals explorations

1 Introduction

When we try to extract information from an image whose definition does not
allow to recognize lines, edges, or isolated points, the first step to take is seg-
mentation. This process consists in dividing the image into its parts. The result
will depend on the treatment given to the analysed image.

Segmentation algorithms for monochrome images [6] are based on the two
basic properties of grey-level values: discontinuity and similarity. In the first case
the image partition is based on abrupt changes in grey levels and is used for the
location of isolated points, lines and edges [5]. In the second case, thresholding,
region growing, and region splitting and merging is used. For the detection of the
three basic types of discontinuities, isolated points, lines and edges, we will use
the usual way of applying a suitable mask. This technique consists in treating
each pixel of the original image and creating a new image. To do this, using 3×3
masks as an example, we will change the center pixel grey level, which matches
the central cell of the mask, following the equation [3]

R = p1z1 + p2z2 + · · · + p9z9 (1)

This pixel is assigned the grey level given by R. pi, i = 1 . . . 9 represent the
coefficients according to the mask type and zi, i = 1 . . . 9, represent grey levels
of the pixels that make up the nine cells, according to Fig. [1]

2 Using Multimasks for Line and Edge Detection

We will focus on 3× 3 masks for line and edge detection. Let’s consider the chosen
pixel and the eight encompassing pixels as a nine-component vector representing
the nine grey levels

z = (z1, z2, z3, · · · , z9)T
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Fig. 1. A 3 × 3 mask

whose component z5 represents the grey level value for that pixel and another
vector, also with nine components, representing the mask coefficients

p = (p1, p2, p3, · · · , p9)T

In a matrix form, [1] can be written

R = pT z. p, z ∈ R
9

By properly choosing the mask coefficients so that they represent orthogonal
vectors we can split up our 9-dimensional vector space into three 4-, 4- and 1-
dimensional orthogonal subspaces. This approach was first proposed by Frei and
Chen [8] in 1977. The first two subspaces will be called edge and line subspaces,
and the last one will be called measure subspace. Frei and Chen suggested that
a probability measure [4] for a pixel to belong to an edge or a line could be
given by the value of the angle forming vector z, which represents each pixel,
with its orthogonal projection onto each subspace. The smaller the angle, the
closest the vector to its corresponding subspace and thereby the most likely that
the vector belongs to the subspace. Starting from this proposal, our work will
consist in calculating the projection matrix which generalizes the masks usually
used by researchers. If we treat initially the masks proposed by Frei and Chen
as orthogonal vectors for each subspace, and therefore basis, and if we have into
account that their components sum up zero, we can choose as a basis vector
for the measure subspace a vector whose components are all equal to the unit
and therefore orthogonal to the remaining eight, given that we use the usual
scale product. The bases for the orthogonal edge and line subspaces are given
by the mask coefficients in Fig. 2, where the first four are p1, p2, p3, p4 , suitable
for edge detection; the next four p5, p6, p7, p8 are appropriate for line detection,
and the last one, u, is added to complete a basis of the vector space R

9.
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Fig. 2. Orthogonal masks suggested by Frei and Chen

2.1 Projection Matrices for 3×3 Grids

According to Frei and Chen’s approach, we consider edge, line and measure
subspaces formed respectively by vectors of Fig. [2], B ≡ {p1, p2, p3, p4}, L ≡
{p5, p6, p7, p8} y U ≡ {u}. We calculate the projection matrices on each one of
them, PB, PL y PU . These matrices will be obtained through the matrix product,
for each of them, given by
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PB = B(BT B)−1BT

PL = L(LT L)−1LT

PU = U(UT U)−1UT (2)

where the columns of these matrices represent the vectors of each subspace. For
n = 9, the following result is obtained

PB = (bij) =






bii = 1
2 ∀i �= n+1

2

bi,n−i = − 1
2 ∀i �= n+1

2

bn+1
2 , n+1

2
= 0

bij = 0 otherwise

PL = (lij) =






bii = 7
18 ∀i �= n+1

2

fi,n−i = − 7
18 ∀i �= n+1

2

fn+1
2 , n+1

2
= 8

9

fij = − 1
9 otherwise

PU = (uij) / uij =
1
9

∀i, j = 1 · · ·n.

If we use the respective 3, 5, 7, · · · , dimensional square masks, the results are
generalized giving rise to vector spaces of dimensions equal to the square of
those numbers: 9, 25, · · · .

3 Projection Matrices on Edge and Line Subspaces

We will prove the aforementioned generalization with the two following theorems.

3.1 Projection Matrix onto the Edge Subspace

Theorem 31 Let E, dim E = n, n = 2k + 1, k ∈ N be an Euclidean space
and let B ⊂ E be the k-dimensional vector subspace, generated by the array
〈b1, b2, · · · , bk〉 of basis vectors of B, whose symmetric components are opposed
and their sum is zero. In these circumstances, the projection matrix onto the B
subspace is the matrix PB ∈ Mn(R) given by the following expression

PB = (bij) =






bii = 1
2 ∀i �= n+1

2

bi,n−i = − 1
2 ∀i �= n+1

2

bn+1
2 , n+1

2
= 0

bij = 0 otherwise

(3)
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Proof. The projection matrix onto the vector subspace PB is, according to 2,
PB = B(BT B)−1BT where the columns of the B matrix are the vectors
〈b1, b2, · · · , bk〉. Being a projection matrix, it will follow

PBB = B

and then
PBB − InB = Θ ⇒ (PB − In)B = Θ

thereby B is the matrix of eigenvectors corresponding to the eigenvalue λ = 1
of the PB matrix. It is known from linear algebra that, according to the spectral
theorem [1], every symmetric matrix is orthogonally and reciprocally diagonaliz-
able. It is proved that the λ = 1 eigenvalue, of k algebraic multiplicity, matches
the k eigenvectors which are precisely the array {b1, b2, · · · , bk}. In order to
prove this, we just need to solve the equation

(PB − In)b = 0

the result is an undetermined system of k + 1 equations whose solutions are the
mentioned vectors with the structure suggested in theorem 31, i.e., the opposed
symmetric components and the sum of them all, which is null, given that the
center component is null -the number of components is odd.

3.2 Projection Matrix onto the Line Subspace

Theorem 32 Let E, dim E = n, n = 2k + 1, k ∈ N be an Euclidean space
and let L ⊂ E be the k dimensional vector subspace, generated by the array
〈l1, l2, · · · , lk〉 of basis vectors of B, whose symmetric components are opposed
and their sum is zero. In these circumstances the projection matrix onto the L
subspace is the matrix PL ∈ Mn(R) given by the following expression

PL = (lij) =






lii = n−2
2n ∀i �= n+1

2

li,n−i = −n−2
2n ∀i �= n+1

2

ln+1
n , n+1

n
= n−1

n

lij = − 1
n otherwise

(4)

Proof. The projection matrix onto the vector subspace PL is, according to 2,
where the columns of the L matrix are vectors PL = L(LT L)−1LT . Being a
projection matrix, it will follow

PLL = L

and then
PLL − InL = Θ ⇒ (PL − In)L = Θ

thereby L is the matrix of eigenvectors corresponding to the eigenvalue λ = 1
of the matrix PL. According to the spectral theorem [1], we know that every
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symmetric matrix is orthogonally and reciprocally diagonalizable. It is proved
that the λ = 1 eigenvalue, of k algebraic multiplicity, matches the k eigenvectors
which are precisely the array {l1, l2, · · · , lk}. In order to prove this, we just need
to solve the equation

(PL − In)l = 0

the result is an undetermined system of k + 1 equations whose solutions are the
mentioned vectors with the structure suggested in theorem 32, i.e., the opposed
symmetric components are equal and the sum of them all is null, therefore the
center component is equal and opposed to the sum of the remaining components.

4 Algorithm for Line and Edge Detection

In the Frei and Chen’s approach it is use the specifics masks and we prove,
31 and 32, that the masks aren’t important, well the projections matrices only
depend to the mask dimension that we can to use. The proposed algorithm can
be summed up in the following steps:

Step 1. Reading of the image and calculation of the average of typical devia-
tions for each pixel and their neighbors, according to the dimensions of the
selected grid. For the computational expense not to be excessively high, a
random number of the image pixels are chosen, ±0.02% approximately.

Step 2. Each pixel is read and its typical deviation and that of their neighbor is
made, according to the dimensions of the selected grid, and this is compared
to the average obtained previously and multiplied by a factor chosen at will.
This way we decide whether the pixel is a candidate to be an edge pixel, a
line pixel or a uniform region pixel.

Step 3. Finally, with the candidates to be edge or line pixels, and according to
the approach suggested by Frei and Chen, we calculate the norms of their
projections, and comparing both of them we decide whether they are edge
or line pixels[2].

4.1 Application of the Algorithm to Determine Lines and Edges in
a Geophysical Image

The suggested algorithm will allow to obtain lines and edges on a digital image
without modifying the rest of the image. We apply masks of any dimension, odd
and larger than one, and we will obtain different results depending on our inte-
rest. The Fig. 3 a) show the original image obtained with program PROSPECT
[7] in graphic format standard: BMP, JPG, GIFF, ... susceptible of the studied
by any commercial software implemented in MAPLE or MATLAB, for example.

5 Conclusions

We think that the more important conclusions are: is not necessary to use any
mask and the original image remain the same except the lines and edges. For
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streets images, highways, flat, buildings, cadasters, face photographs of persons,
animal and things, it is relatively easy the edges detection. When it is considered
to study a geophysical image the problem adopts a high degree of complexity.
The present work shows a particular application in the one which is obtained a
map from anomalies distribution electrical corresponding to the site from Cerro
El Palmarón. With the different applied models have been detected important
alignments related to the walls of the constructions of the period. It is provided,
from the sight point of the images interpretation a structural anomalies plan that
it has served as guide for the ulterior excavation. In this way the DIP represents
an important tool for the historical restitution of the cited site.

Cerro El Palmarón

(3,30,1.5) 

a) b)

(5,40,0.5) (5,40,1.5) 

c) d)

(7,50,0.5) (7,50,1.5) 

e) f)

Fig. 3. a) Original image. b)c)d)e) y f) Images transformed for detections edges and
lines
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