Design of Interactive Environment for
Numerically Intensive Parallel Linear Algebra
Calculations*

Piotr Luszczek!' and Jack Dongarral:2
! Innovative Computing Laboratory, Computer Science Department, University of
Tennessee Knoxville
2 Computational Science and Mathematics Division, Oak Ridge National Laboratory

Abstract. We focus our attention in this article on how to provide
parallel numerical linear algebra capabilities to Problem Solving Envi-
ronments. Instead of describing a particular implementation, we present
an exploration of the design space and consequences of particular design
choices. We also show tests of a prototype implementation of our ideas
with emphasis on the performance perceived by the end user.

1 Introduction

Numerical linear algebra may well be regarded as the most basic and thus es-
sential component of problem solving environments (PSE) for numerical calcu-
lations. In this article, we intend not to focus on the user tool for accessing
the parallel numerical capabilities we propose, but rather, on exploration of the
design space available for such PSEs. To the user tool we refer as a host environ-
ment. The challenge is, we believe, in seamlessly integrating parallel computing
capabilities with these environments.

The applicability of our arguments exceeds by far the scope of pure numerical
linear algebra on dense matrices. Appropriate design of basic objects and their
manipulations invites easy introduction of additional features such as sparse and
eigenvalue solvers.

2 Related Work

Exhaustive survey of interactive environments for scientific computing deserves
an article on its own. Therefore, we give only references to what we believe are
the most relevant efforts that are related to numerical linear algebra. Python is
an object-oriented programming language but it invites very much interactive

* This work is partially supported by the DOE LACSI — Subcontract #R71700J-
29200099 from Rice University and by the NSF NPACI — P.O. 10181408-002 from
University of California Board of Regents via Prime Contract #ASC-96-19020.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 270-Z77 2004.
© Springer-Verlag Berlin Heidelberg 2004



Design of Interactive Environment 271

style of development and experimentation [I]. Consequently, there exist nume-
rous libraries that extend Python’s numerical capabilities, the most popular in-
clude Numeric[2], Numarraﬂ, SciPyE, MathE, and Scientiﬁchthorﬂ. Just for
completeness’ sake, we should also mention a similar framework for Perl called
The Perl Data Languageﬁ with its shell for interactive work called per1dl. Com-
monly known environments for interactive numerical calculations are Matlab [3],
Octauvﬂ7 Scilab [H], Interactive Data Language [5], and Rla{7. Also, there exist
environments that focus on symbolic manipulations with numerical capabilities,
they are surveyed elsewhere [6], here we only mention a few: Mathematica [7],
Maple []], Macsyma [9], and Maxima [I0]. Finally, there exist relatively many
parallel extensions to Matlabl despite some scepticism dating back to 1995 [11].
Out of these extensions, Matlab*P [T2[13|[T4] seems to be the most intensively
developed, reaching its third major release version at the time of this writing.
LAPACK for Clusters (LFC) [T5] is one of the projects of the Self-Adapting
Numerical Software (SANS) framework [16]. It is intended to meet the challenge
of developing next generation software by automated management of complex
computing environments while delivering to the end user the full power of fle-
xible compositions of the available algorithmic alternatives. LFC, in particular,
automates the process of resource discovery and selection, data distribution, and
execution of parallel numerical kernels for linear algebra calculations. As such, we
believe, it is suitable for the interactive environment we describe in this article.

3 Network Model

We consider primarily a typical two-tier client-server architecture without over-
loading the server with extra functionality that is left for the client. In such
scenario there exists clear separation of capabilities — the server only needs to
provide high performance computing capabilities.

Similar reasoning is behind placing the object logic on the client rather than
the server (which only holds, presumably large, object data). It simplifies the
design of the server and makes it possible to use it on a wider variety of platforms.
The client, on the other hand, may leverage existing software technologies for
remote management of computational objects.

4 Object-Oriented Features

While designing our system, the first decision to make of is to choose either
0O-based (first matrix entry is row 0 and column 0) or 1-based indexing scheme.

! http://www.stsci.edu/resources/software_hardware/numarray/
2 http://www.scipy.org/

3 http://matpy.sourceforge.net/

4 http://starship.python.net/ hinsen/ScientificPython/

® http://pdl.perl.org/

S http://www.octave.org/

" http://rlab.sourceforge.net/

® http://supertech.lcs.mit.edu/"cly/survey.html



272 P. Luszczek and J. Dongarra

There exist large amount of code in production use that requires us to implement
both. The problem cannot be easily solved by following the convention of the
host environment. Such a solution does not allow for code migration between
two host environments that use conflicting indexing schemes, therefore, we allow
for both.

A related problem is how the end of a range is specified. This may be il-
lustrated with an array declaration (of size N) in Fortran: “REAL A(N)” and in
C: “float A[N];”. While both declarations use N as the upper bound specifier,
Fortran uses it inclusively (the allowed indices are 1, 2, ..., N) and C uses it
exclusively (allowed indices are 0, 1, ..., N-1). Similarly, Matlab uses inclusive
convention and Python uses exclusive one. Since there is no single scheme used
across different host environments we need to provide for both.

An important decision to make is to decide whether matrix objects should
operate with copy or view semantics. The most common situation when this
decision has to be made is during submatrix operations. Consider an m by n
matrix A partitioned as follows: A = [A; As], where A; and A are m by ny
and m by ns matrices, respectively, with n; + ny = n. A common way to refer
to Ay is A[:,:n1]. The question is whether such a reference should create a
copy of the appropriate portion of A or, instead, only produce an alias (a view).
There exist situations where either the former or the latter solution is preferable.
Different systems solve this problem differently: Matlab and Python use the
copy semantics while Fortran 90 uses the view semantics. Most likely, end users
will opt for copy semantics, while developers will prefer the view semantics.
Therefore, we choose to allow both in our system.

The flexibility of multiple data types comes at the price of resolving issues
with mixed-type operations. Automatic variable casting is a feature of almost any
programming language in wide spread use. An expression like x + y is handled
correctly even if x and y are variables of different numerical type. The most
common behavior in such a case is to promote (type-cast to the larger type) one
of the values and then perform calculations. The promotion rule works well for
statically typed languages but most PSEs use some form of dynamic typing and
therefore it is harder to ensure correct type for the result. The two major issues
to consider are the memory allocation (promotion could potentially require a
few times more space to be used) and tensor-rank change (an outer product of
two vectors produces a matrix: A = za? — a different data type all together).
Various solutions may be more appropriate in different some situations. Hence
we opt for providing means for ensuring appropriate kind of automatic casting.

The type of PSE that we are describing, deals with tensors of different ranks:
0 — numerical values, 1 — vectors, and 2 — matrices. Such environments add a
unique aspect to the type-casting problem described above: reduction of tensor
rank. Consider a general case of matrix-matrix multiply: C = AB, where: A
ism by k, B is k by n, and C' is m by n. If either m or n is 1 then the multiply
reduces the tensor rank by 1. If k£ is 1 then the reduction is by 2. However, the
type of the result cannot be changed even if potential tensor rank reduction
occurs: if a matrix algorithm (such as an iterative method or a dense linear
solver) is formulated in terms of submatrices (so called block algorithm) then it
is expected to work even if the submatrices degenerate to single values (block



Design of Interactive Environment 273

size is 1). There is no general way of detecting when type change should follow a
tensor rank reduction. Therefore, we choose not to perform the type change by
default (with type change being optional) since this facilitates interactive work.

5 Host Environment Integration

Networking capabilities are the most essential for our system. Out of the host
environments that we initially target, networking is fully supported in Python.
Maple, Mathematica, Matlab, and Octave require an extension written in a
native language — this creates a portability problem. Luckily, most of the afore-
mentioned environments support Java so this is the way to write just one code
and use it in many environments. Finally, since Octave does not support Java as
of this writing, an extension can be written using system calls such as system().

Support of name spaces is an important but not essential feature that we
would like to use. Python offers more sophisticated way of dealing with this
problem — it has a hierarchical module system comparable to that of ISO C++
and Java. Matlab comes close to it by implementing functions only relevant in
the context of one particular class of objects (they are commonly referred to as
object methods but in Matlab have invocation syntax just like regular functions).
Mathematica implements contexts and packages to cope with name resolution.
For all other environments we need to use the prefixing technique.

Object-orientation is an important feature as it allows, among others, for a
simple statement like a+b to be interpreted differently depending on what a and b
are. Most of the host environments that we know are only object-based. Matlab
is somewhat more advanced as it allows for creation of new objects and operator
overloading but does not have object destructors. This is an important capability
in the presence of overloaded operators since they tend to produce anonymous
temporary objects which cannot be reclaimed even manually. This problem can
be somewhat alleviated by using Java from within Matlab. Python is an object-
oriented language which makes it suitable for our system. In other environments
we need to resort to function syntax — it takes a lot from expressiveness but still
allows to use the functionality that we offer.

6 Parallel Execution

The first issue to resolve in parallel processing is the fact that vectors and matri-
ces most often have different requirements for data layout: vector computations
are likely to benefit from 1D (one dimensional) layout, while for matrices, 2D
distribution is preferable. One way to automate the decision process for novice
users is to be distributing vectors in 1D fashion and matrices in 2D. In a case
when a matrix and vector are to be used together, the vector needs to be made
conformant to the matrix’ layout to perform the operation efficiently. Such a
solution involves relatively small communication penalty. For more advanced
users, full control of data distribution is the preferable way.

Another aspect is execution synchronization between the client and the ser-
ver. The term lazy evaluation is used to refer to one of the possible scenarios [17].



274 P. Luszczek and J. Dongarra

Simply put, it means that only every other remote request is blocking the cli-
ent until the server’s completion. Generalization of this way of communication
is referred to as asynchronous mode. Such a mode, in our opinion, is not good
for an interactive environment since it splits the call process into two phases:
submission and completion requests. It is not the way existing sequential envi-
ronments operate — their behavior is equivalent to a synchronous mode (each
request is blocked on the client side until the server fulfills the request). A mid-
way solution is transactional processing: the user starts a transaction, then all
the computational requests are submitted, and then the call finalizing the tran-
saction is made which blocks until all the computational requests are served. It
allows the server to order the computational steps for better performance.

7 Miscellaneous Issues

An important aspect of any numerical system is compliance with the IEEE 794
standard [I8]. While the standard is commonly accepted by many hardware
vendors, it is still rare to find fully compliant product. We are bound here by
what is the typical behavior of the host environment and what is available on the
server. Some environments have a way of dealing with non-conformant hardware
or system libraries, e.g. in Python, floating-point exceptions are caught by a Unix
signal handler.

There exist a few options for data storage and transfer that we consider
useful. Certainly, users will have some data sets stored locally on their client
machines. These local data need to be transferred to the server for manipulation.
During calculation, the best place for data would be the server while at the end,
the results need to be transfered back to the client (in case the server does not
provide reliable storage capabilities). In the meantime, the data is prone to be
lost due to hardware or software crashes so at some point fault-tolerance should
be considered. Another scenario is downloading data from an external source. A
very helpful extension is support for scientific data formats.

Security is an important asset of a software piece that provides server-like
capabilities. In this area, we only intend to leverage existing solutions with initial
focus on the port-forwarding feature of ssh(1). It seems relevant in the presence
of firewalls and NATs (Network Address Translation) that prevent connections
to all but few selected ports.

When it comes to changing the behavior of a computational environment;
two main configuration styles need to be considered: global and local. The glo-
bal type includes: configuration files (dot-files in Unix), environment variables,
command line options, and global program variables. In a sense, all of them
provide a similar functionality with different timing and scoping. However, since
a PSE may be regarded as a language, it is important to maintain its semantic
consistency. Therefore, global configuration is a valid solution when there is only
one default setting mandated as standard and other choices are only optional.
Relevant local configuration types include: object attributes, shadow objects or
explicit syntax. The first two are somewhat similar as shadow objects are just
aliases of their originals with some of the attributes changed. For example if A
is a square matrix, A.I (a shadow object of A) could indicate inverse of A but



Design of Interactive Environment 275

using A.I would not immediately produce a numerical inverse of A but rather,
LU decomposition would be used instead. Compared to object attributes, sha-
dow objects are more explicit. From clarity standpoint, object attributes are not
as good as explicit syntax (e.g. function call) but are far more succinct and more
suitable for interactive environments.

8 Implementation

At the moment, the basic infrastructure of our design has been implemented and
successfully applied to a dense matrix factorization and iterative solution me-
thod in Matlab and Python environments. Our preliminary tests show that the
overhead of remote execution can be offset when problem sizes become prohibi-
tive for a sequential environment and it is indeed possible to reap the benefits
of parallel computation.

30

ATLAS 1CPU ———
LFC 4 CPUs ----—-
Python 4 CPUs

25 - —

Time to solution

0 — 1 1 1 1 1 1 1
1000 1500 2000 2500 3_000 . 3500 4000 4500 5000
Matrix size

Fig. 1. Comparison of time to solution of a system of linear equations of varying size
with different methods

In our tests, we used two dual Xeon 2.4 GHz computers connected with
switched Gigabit Ethernet. MPICH 1.2.4 was used as the MPI implementation.
Figure 0 shows the timing results for our tests that were performed on a non-
dedicated system. The objective was to solve in double precision floating-point
arithmetic a system of linear equations by means of LU factorization. Three
scenarios were used to obtain a solution: sequential computation, parallel com-
putation, remotely controlled parallel computation.

For the first scenario, ATLAS [19/20] library was used on a single CPU. In
particular, the functional equivalent of LAPACK’s DGESV () routine was used
that performs LU decomposition in-situ. The second scenario utilized 4 nodes



276 P. Luszczek and J. Dongarra

that performed computations with the LFC’s equivalent of ScaLAPACK’s [22]
PDGESV () routine. Again, no data copying was involved. The third scenario used
the same hardware and software as the second one but the execution initiation
and timing was done on a remote computer running Python interpreter. The
round-trip time between the client and one of the nodes of the computational
server grid (as measured by the ping program) was about 82 milliseconds —
a value representing a 16-hop connection (as measured by the tracepath pro-
gram) through wireless access point and an ADSL line. In this scenario, a copy
was made of the system matrix to store its LU factors computed by PDGESV():
x = A7'b was written as x = A.I * b but the inverse of A was not calcula-
ted explicitly but rather the LU decomposition of a copy of A was used. It’s
a trade-off between convenience and optimality (the optimal notation being for
example “pgesv(A, x, b)”) and we intended for our tests to reveal how much
this convenience costs.

Figure[l reveals two important matrix sizes: the size for which parallel execu-
tion is faster than sequential execution (3000 in our case) and the size for which
the matrix copy overhead is negligible (4000 in our case). The graph shows
counter-intuitive effect of copy-free solve being slower than the solve with copy
overhead — this is to be expected on a non-dedicated system and is more likely
to occur the longer the time to solution is. Worth noting for matrices larger
than 4500 is the unexpected increase of time to solution for the remote execu-
tion. Very likely explanation is a sudden surge in the load of the network that
connects the client and server.

9 Future Work

Our implementation might exhibit itself as an OGSA-compliant service. Such
a service would not be running on the server but rather on a proxy capable
of OGSA interaction. The proxy would interact with the actual computational
server through a simplified protocol — like NetSolve’s three-tier approach [23].
A direction to pursue is creation of compilation system so that it is possible to
translate existing scripts to a stand-alone executable. Such capability provides
opportunity to have a client-server environment for experimentation and debug-
ging while the compiled executable could be used on systems with only batch
queue access where setting up a server is not possible.

References

1. Venners, B.: Programming at Python speed: A conversation with Guido van Ros-
sum (2003) Available at http://www.artima.com/intv/speed.html.

2. Dubois, P., Hinsen, K., Hugunin, J.: Numerical Python. Computers in Physics 10
(1996)

3. Mathworks Inc.: MATLAB 6 User’s Guide. (2001)

4. Gomez, C., ed.: Engineering and Scientific Computing with Scilab. Birkh&user,
Boston (1999)

5. Gumley, L.: Practical IDL Programming. First edn. Morgan Kaufmann Publishers
(2001)



o

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Design of Interactive Environment 277

Schriifer, E.: EXCALC — a package for calculations in modern differential geometry.
In Shirkov, D., Rostovtsev, V., Gerdt, V., eds.: Proc. IV Int. Conf. Comp. Algebra
in Physical Research, Dubna, U.S.S.R., World Scientific, Singapore, 1990, 71-80
Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer.
Addison-Wesley, Reading, Mass. (1988)

Char, B., et al.: Maple V, Language Reference Manual. Springer (1991)

Rand, R.: Computer algebra in applied mathematics: an introduction to MAC-
SYMA. Number 94 in Research notes in mathematics. Pitman Publishing Ltd.,
London, UK (1984)

de Souza, P., Fateman, R., Moses, J., Yapp, C.: The Maxima book. 2003

Moler, C.: Why there isn’t parallel Matlab. Mathworks Newsletter (1995).

Choy, L., Edelman, A.: MATLAB*P 2.0: A unified parallel MATLAB. Technical
report, Massachusetts Institute of Technology (2003)

Choy, L.: MATLAB*P 2.0: Interactive supercomputing made practical. Master’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2002)

Husbands, P.: Interactive Supercomputing. PhD thesis, Department of Electrical
Engineering and Comp. Science, Massachusetts Institute of Technology (1999)
Chen, Z., Dongarra, J., Luszczek, P., Roche, K.: Self-adapting software for nu-
merical linear algebra and LAPACK for clusters. Parallel Computing 29 (2003)
1723-1743

Dongarra, J., Eijkhout, V.: Self adapting numerical algorithms for next generation
applications. International Journal of High Performance Computing Applications
17 (2003) 125-132 ISSN 1094-3420.

Norris, B.: An environment for interactive parallel numerical computing. Technical
Report UTUCDCS-R~99-2123, University of Illinois, Urbana, Illinois (1999)

IEEE 754: Standard for binary floating point arithmetic. Technical report, Institute
of Electrical and Electronics Engineers (1985)

Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Computing 27 (2001) 3-35

Dongarra, J., Whaley, C.: Automatically tuned linear algebra software (ATLAS).
In: Proceedings of SC’98 Conference, IEEE (1998)

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User’s
Guide. Third edn. Society for Industrial and Applied Mathematics, Philadelphia
(1999)

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia (1997)

Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: Past, present, and
future — a look at a grid enabled server. In Berman, F., Fox, G., Hey, A., eds.: Grid
Computing: Making the Global Infrastructure a Reality. Wiley Publisher (2003)



	Introduction
	Related Work
	Network Model
	Object-Oriented Features
	Host Environment Integration
	Parallel Execution
	Miscellaneous Issues
	Implementation
	Future Work



