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Abstract. This paper deals with the description of a theoretical back-
ground of systematic computer algebra methods for analyzing the real-
time dynamics of robots with a large numbers of joints. Many numerical
methods based on different principles of mechanics were developed to
obtain the equations that model the dynamic behavior of robots. In this
paper, the efficiency of computer algebra application was compared with
the most popular methods of forming the dynamic equations of robots in
real time. To this end, the computer algebra system VIBRAN was used.
A real-time dynamic model in closed form of the robots with large num-
bers of joints has been developed, using the computer algebra technique
with the following automatic program code generation.

1 Introduction

The application of general control theory to complex mechanical systems, such as
robots, aircrafts, etc., represents an extremely difficult problem because of pro-
minent nonlinearity and complexity of mathematical models of these systems. If
industrial robots have large numbers of joints, the application of such a theory
and development of new control algorithms are unavoidable in order to achieve
a high positioning speed and accuracy. In on-line control, the calculation of mo-
del equations must be repeated very often, preferably at the sampling frequency
that is no lower than 50Hz. However, the problem of forming the dynamic equa-
tions of robots in real time by means of today’s computers is rather difficult
and complex. It appears necessary to develop computer methods of mathema-
tical modelling for at least two reasons. One of them is that it is impossible to
immediately choose the most convenient configuration when designing robots.
The term configuration should be interpreted as the structure (i.e., kinematic
scheme) and parameters (i.e., dimensions, masses, etc.). Thus, it is necessary
to analyze a number of different robot configurations and choose the one, most
appropriate to the future purpose of the device. Knowing how complex a task
it is to write a mathematical model by hand, the need for an algorithm that
would enable a computer to perform the task seems quite logical. The other
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reason is the need in multiple applications for real-time control of robots. The
development of computer methods, such that perform real-time calculations of
robot dynamics, is a direct contribution to the synthesis of control algorithms
for practical purposes. Particularly this problem is much more complex for the
robots with a large number of joints [7], [12], [13].

In the last three decades, numerous investigators have used different prin-
ciples of dynamics in order to obtain the equations that model the dynamic
behavior of robot arms. The first formulations to be developed were based on
a closed form representation of the equations, and the Lagrange-Euler (L-E)
equations were preferentially used for this purpose. These formulations were fo-
und to be inefficient due to the high number of algebraic operations involved.
A solution to this problem was found with the use of relationships present in
the dynamic equations. The Newton-Euler (N-E) equations were found to be
the most appropriate dynamic principle for this type of formulation and they
have been used to develop the most efficient formulations known so far. Other
formulations, based on the Kane equations, have yielded algorithms whose com-
putational complexity is similar to that found in formulations based on the N-E
equations. The use of dynamic principles different from those employed in the
formulations based on L-E, N-E or Kane equations was minor and, furthermore,
has produced formulations of high computational complexity. Currently it is be-
lieved that the use of diverse dynamic principles will lead to similar formulations
of equivalent computational complexity. This has been partially proved by ap-
plying the appropriate relationships to the L-E equations in order to obtain an
equivalent formulation to that given by the N-E equations, although a greater
effort is required in order to reach the final equations [14]. It is for this reason
that most of the formulations that produce efficient algorithms have been deve-
loped from the N-E equations. Featherstone and Orin [6] make a detailed review
of these methods and algorithms derived.

The Gibbs-Appell (G-A) equations are one of the principles that has been
used the least for solving the dynamic problem of manipulating robots. The sim-
ple form of these equations deal with mechanical systems subjected to holono-
mic and non-holonomic type of constraints is also emphasized in the specialized
technical literature. Surprisingly, a bibliographical review of the literature on
this area reveals a limited use of the G-A equations in modern dynamics. A few
years ago, the supposed relationship of the G-A equations and Kane’s dynamic
equations caused a great number of works and comments on the matter |[L4].
In the field of robotics, Popov proposed a method, later developed by Vukob-
ratovic [14], in which the G-A equations were used to develop a closed form
representation of high computational complexity. This method was used by De-
soyer and Lugner [11], [14] to solve, by means of the recursive formulation O(n?)
(n is the number of the degree-of-freedom), an inverse dynamic problem, using
the Jacobian matrix of the manipulator, with the view of avoiding the explicit
development of partial derivatives. Another approach was suggested by Veresh-
chagin [T4] who proposed manipulator motion equations from Gauss’ principle
and Gibbs’ function. This approach was used by Rudas and Toth [T1] to solve
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the inverse dynamic problem of robots. Recently, Mata et al. [T0] have presented
a formulation of order O(n) that solves the inverse dynamic problem and esta-
blishes recursive relations that involve a reduced number of algebraic operations.
The algorithms that model the dynamic behavior of manipulators are divided
into two types: algorithms that solve the inverse dynamic problem and those
that give a solution to the forward dynamic problem. In the former, the forces
exerted by the actuators are obtained algebraically for certain configurations
of the manipulator (position, velocity and acceleration). On the other hand, the
forward dynamic problem computes the acceleration of joints of the manipulator
once the forces, exerted by the actuators, are put. This problem is part of the
process that must be followed in order to simulate the dynamic behavior of the
manipulator. This process is completed after it has calculated the velocity and
position of the joints by means of the process of numerical integration in which
the acceleration of the joints and the initial configuration are data input to the
problem.

The first efficient recursive algorithm for solving the inverse dynamic problem
was proposed by Luh et al. [9]. This algorithm, based on the N-E equations, has
been improved repeatedly in the course of years [2], [6]. Other authors have
developed efficient recursive algorithms to solve the inverse dynamic problem,
based on other principles of dynamics. As examples of these, we have the work
of Hollerbach [14] that uses the L-E equations; and those of Kane and Levinson
[14], and Angeles et al. [1], which use the Kane equations. The complexity of the
above mentioned numerical algorithms will be compared with computer algebra
realization. Some efforts to apply symbolic calculations in the dynamics of robots
were made [11], [I4], but due to tremendous final closed form equations these
efforts were unsuccessful.

Simulations by means of numerical methods are powerful tools for investi-
gations in mechanics but they do have drawbacks, e.g., finite precision, errors
generated when evaluating expressions. The computerized symbolic manipula-
tion is a very attractive means to reliably perform analytic calculations even
with complex formulas and expressions. But frequently a semi-analytic approach,
combining the features of analytical and numerical computations, is the most
desirable synthesis. This allows the analytic work to be pushed further before
numerical computations start.

For numerical-symbolic computation of the real-time dynamics of robots with
large numbers of joints the computer algebra system VIBRAN [5], [8] was used
[I1]. The computer algebra system VIBRAN is a FORTRAN preprocessor for
analytical computation with polynomials, rational functions and trigonometric
series. Special VIBRAN’s procedure can generate an optimized FORTRAN code
from the obtained analytical expressions, which can be directly used in the pro-
grams for a further numerical analysis.
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2 Real-Time Dynamics of Robot

The real-time dynamic model of a robot was constructed using the Uicker-Kahn
method [11], [14], based on the L-E equations, that is very convenient for com-
puter algebra implementation [3], [LI]. This method enables the calculation of
all the matrices of the dynamic robot model: the inertial matrix, the matrix of
Coriolis and centrifugal effects and the gravity vector. The dynamic equations
of an n-degree-of-freedom manipulator, derived using this method, are of the
following form:
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where P; is a driving torque acting at the i-th joint; ¢; is a generalized joint
coordinate corresponding to the i-th degree of freedom; W; is the transformation
matrix between the i-th local coordinate system and the reference system; J; is
the inertia matrix of the ¢-th link with the respect to local coordinate system;
m; is the mass of the link i; 7;o is the distance vector between the center of mass
of the link i and the origin of the reference coordinate system, expressed in the
local coordinate system of the i-th link; § is the gravity vector.
The matrix W; may be expressed as

_ Al 42 1
W, = ALA2. AL

where AF | is a (4 x 4) transformation matrix between two local coordinate
systems.
Equation () may be expressed in the matrix form

P=H(q)i+q"C(g)d + g(q), (2)

where P is the vector of driving torques; H(q) is the inertial matrix of the system;
C(q) is the n x n x n matrix of Coriolis and centrifugal effects; g(q) is the vector
of gravity effects.

Fig. [0 illustrates a flexible robot with a large number of joints [3], [4]. The
robot consists of cylindrical piezoceramic transducers and spheres. Here the re-
sonant oscillations of every piezoelectric transducer are controlled by a micro-
processor, switching on and off the high-frequency and high-voltage signal from
the signal generator. The phase and duration of every pulse, applied to the elec-
trodes of transducers, are synchronized with the rotation of an unbalanced rotor,
mounted in the gripper of the robot.

The external torque vector, placed in the gripper and rotating in the plane
perpendicular to the gripper direction, is expressed in the form
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Fig. 1. The scheme of a robot with a large number of joints
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where mg is the mass of unbalance; r is a radius; w is the angular velocity.
The recursive algorithm consists of two steps for each local coordinate. The-

refore, the first step is the calculation of active forces and the second one is the

definition of active torques. This algorithm may be expressed in the form

?i = A2+1?i+1
ﬁi = A§+1ﬁi+1 + 77:,71—1 X ?i+17 (4)
where F)n =F , see formula [@]). Expressions (@) are calculated starting from
i=n—1 to 1=1.
The generalized torque for the i-th joint may be obtained in the form

Qi = ﬁz‘?io, (5)

where 7o is the unit vector of the respective axis.

3 Computer Algebra Implementation

In the algorithm for automatic generation of the analytical model, it will be
assumed that the parameters of a robot (length, mass, inertia, etc.) are known
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and will be treated as constants. Joint coordinates as well as their derivatives will
be treated as independent variables, i.e., as symbols. Using the computer algebra
technique, the Uicker-Kahn method is very convenient, because it enables us to
obtain the equations of motion in closed form and may be applied in solving
either the direct or the inverse problem of dynamics.

Fig. @ illustrates a fragment of the VIBRAN program that implements the
Uicker—Kahn method. In this program the sparse matrix technology was used to
achieve the best performance. To have a possibility to compare various results
and algorithms, only two joints of the proposed robot will be considered.

POLINOM A(16),B(20),C(20)
RACIONAL D,E,U

INTEGER*2 NA(18),NB(22),NC(22)
DATA G/0.,0.,-9.80621,0./

100 RSMP(U,E,D,N)

ADDA(U,D)

100 RSMP(U,E,D,N)

Fig. 2. A fragment of the VIBRAN program

This program calculates all the elements of matrices H(q), C(q), g(q). These
matrices were calculated for the discussed flexible robot with the 6-th-degree-
of-freedom. The kinematic parameters of this robot in Denavit—Hartenberg’s
notation [3], [I], [T4] are presented in the table below.

N qi a; a; d;
1 q1 0 0 0
2 q2 90° 0 0
3 g3 0 0.04 0
4 qa —-90° 0 0
5 qs -90° 0 0
6 qo 0 0 0.04

For simplicity, a substitution was made to avoid numerical trigonometric
calculation of the function

Si = sin q;, 07 = COS (@;.

The fragment of analytical calculations of flexible robot matrices performed
by the VIBRAN program is presented in Fig. Bl

In total 153 elements were calculated and about 15% of them were equal to
Z€ero.

A special VIBRAN procedure [5] , [8] generates two FORTRAN subroutines
from the obtained analytical expressions of robot matrices. The code of the first
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generated subroutine contains a dictionary of monomials included into the ex-
pressions of robot’s matrices. This dictionary of monomials is sorted in ascending
order of monomial multiindices to reduce the number of floating point multipli-
cations. The code of the second generated subroutine contains the calculation of
common members included in all the expressions and all the elements of robot’s
matrices. The generated subroutines can be immediately compiled and used for
real-time operation, simulation or control synthesis.

H11l = .8326E-4+.1296E-3*C3**2-.9964E-4*C3**2*C4**2*C5**+.9964E
-4*C3*S3*S4*CA*CH**2-

G6 = .14121E-5*S3*S4*C6-.14121E-5*C4*C3*C6-.14121E-5*33*C4*C5*S6
-.14121E-5*C3*S4*C5*S6

Fig. 3. Analytical expressions of robot’s matrices

The number of floating point product operations required to construct the
dynamic model by the Uicker-Kahn method numerically depends on n* (n is
the number of the degree-of-freedom) and, by contrast, the recursive methods
based on the N-E or G-A equations have a linear dependency on the number
of the degree-of-freedom. Some differences appear using the computer algebra
technique. The Uicker—Kahn method produces closed-form differential equations
and only recursive equations can be obtained from other well-known algorithms
which means that only the numerical implementation is possible and this method
suits only for inverse dynamics. The code presented in Fig. 7?7 contains only 371
floating point product. The computational complexity of the proposed approach
is comparable with that of the most efficient algorithms known so far, as shown
in the table below.

Authors Principle Products (n +6) Number of operations
Luh et al. [9] N-E 150n — 48 852
Angeles et al. [T] Kane 105n — 109 521
Balafoutis and Patel [2] N-E 93n — 69 489
Mata et al. [10] G-A 96n — 101 475
This work L-E Closed form 371

Generalized torques were calculated in the same manner . These torques are
needed to complete the control scheme of the robot. Another VIBRAN program
calculates the acting forces and torques, using formula (@), and generalized tor-
ques, using formula (G).
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Conclusions

The proposed mixed numerical-analytical implementation of the Uicker-Kahn
method drastically reduces the number of floating point operations, particularly
for robots with a large number of joints. The use of the computer algebra tech-
nique enables us to obtain the equations of motion in closed form. It can be
applied in solving both the direct and the inverse problem of dynamics as well
as in real-time dynamics modelling for intelligent control scheme realization.
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