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Abstract. The author has applied Lagrangian formalism to explore the
kinematics of a bead sliding along a frictionless, freely hanging vertical
Slinky. For instance, we derived a closed analytic equation for the run-
time of the bead as a function of the traversed coil number. We have
applied Mathematica to animate the 3-dimensional motion of the bead.
The derived run-time is incorporated within the animation to clock the
bead’s actual motion. With the help of Mathematica we have solved the
inverse run-time equation and have expressed the traversed coil number
as a function of the run-time. The latter is applied to further the analysis
of the problem conducive to analytic time-dependent equations for the
bead’s vertical position, its falling speed and its falling acceleration, and
its angular velocity about the symmetry axis of the Slinky. It is also
justified that a Slinky is a device capable of converting the gravitational
potential energy of a sliding bead into pure rotational energy.

1 Introduction

A Slinky is a massive, soft spring-like object and has curious dynamic and static
features. By hanging masses to a freely, vertically suspended Slinky and setting
it in motion, the authors of [1] have investigated some of its dynamic features.
The Slinky’s static characteristics have been studied in [2]. In both references,
analytically, it is proven how the Slinky’s own weight contributes to the uneven
spacing of the adjacent coils along a vertically hung Slinky. The proven equations
match the intuitive expectations – the spacing between the adjacent coils for the
coils closer to the support are wider than the ones at the bottom. Furthermore,
the lower coils are less slanted verses the ones closer to the support. In fact, the
bottom coils are almost horizontal.
To incorporate these known characteristic features and to broaden the scope of
the Slinky’s related issues, we studied a kinematic problem. We considered the
effects of the uneven spacing of the Slinky’s coils to calculate the run-time of a
sliding bead under the gravity pull. We have shown, although the calculation of
the run-time of a sliding bead along a theoretical, massless evenly-spaced verti-
cally hung spring is trivial, it is not so for a real Slinky. We were able to solve the
Slinky problem exactly and derived an analytic closed form equation to express
the run-time of a sliding bead as a function of the traversed coil number.
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We have applied Mathematica [3] to animate the 3-dimensional motion of a
bead. We considered a typical Slinky and have applied its geometrical lengths
to clock the run-time of a sliding bead. The numeric values of the run-time were
embedded in the 3-d animation so that one can visually correspond the actual
movement of the bead to its run-time and the traversed coil number. Because
of the length limitation of the article the Mathematica code is not included, the
oral presentation will feature the animation.
To further our analysis with the help of Mathematica we have solved the in-
verse run-time equation, we expressed the traversed coil number as a function
of the run-time. The detail of the procedure and the specific use of Mathema-
tica in achieving this goal is given in section 4. The latter is applied to further
the analysis of the problem conducive to analytic time-dependent equations for
the bead’s vertical position, its falling speed and its falling acceleration, and
its angular velocity about the symmetry axis of the Slinky. For comprehensive
understanding, the derived equations are plotted v.s. time.

2 The Physics and the Analysis of the Problem

We denote the number of Slinky’s coils by N , the radius of the circular coils
by R, its un-stretched axial length when laid on a level table by L0 and its
stretched length when freely suspended vertically by L. Figure 1 depicts one
such Slinky. We have applied Mathematica’s ParamtericPlot3D command to
display the Slinky. The origin of a right-handed Cartesian coordinate system
is set at the bottom of the Slinky with the z-axis pointing to the top of the
page. The first coil, n = 0, is at the z = 0 and the top coil, N = 35, is at the
support. The height of the individual coil is measured from the bottom, the
data is shown in Fig. 2. The size of the data points indicates the accuracy of
the measurements along the vertical axis.

According to [1,2] the height of the nth coil is given by; zn = an + bn2 with
a = L0

N and b = L−L0
N2 . In Fig. 2, zn, is shown by the solid line – it perfectly fits

the data.

The position vector of a bead in the aforementioned Cartesian co-
ordinate system is r = {x(t), y(t), z(t)} and can be written as r =
{R cos(2πn

′
), R sin(2πn′), zn′} where n

′
, is the number of the traversed coils

and equals n
′
= N − n. The kinetic energy T = 1

2mν2 and the potential energy
V = mgzn′ of a freely released bead of mass m in terms of the traversed coil
number n′ are:

T =
1
2
mṅ′2{c2 + [a + 2b(N − n

′
)]

2} (1)

V = mg[a(N − n
′
) + b(N − n

′
)2] (2)

where ṅ′ = d
dtn

′
, c = 2πR and g is the gravity.
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Fig. 1. The display of a typical Slinky with specs of N = 35, R = 5.0cm, L0 = 7.0cm
and L = 172.0cm
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Fig. 2. The dots are the data and the solid line is zn = an + bn2

The Euler-Lagrange equation, d
dt

∂L

∂ṅ′ = ∂L
∂n′ for Lagrangian L = T − V with

T and V subject to (1) and (2) is,

n̈′{c2 + [a + 2b(N − n
′
)]

2}−2bṅ′2[a+2b(N −n
′
)]− g[a+2b(N −n

′
)] = 0. (3)

To solve (3) we introduce ξ = a + 2b(N − n
′
). In terms of ξ, (3) becomes,

ξ̈(c2 + ξ2) + ξ̇2ξ + ν2ξ = 0 (4)
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Here, ν2 = 2bg and assumes the speedsquared dimension. To solve (4) we
set, η = ξ̇2. In terms of η and ξ, (4) yields

η̇

2ξ̇
(c2 + ξ2) + ξ(η + ν2) = 0 (5)

By separating the variables of (5) and integrating both sides of the resulting
equation with appropriate limits we arrive at

∫ η

0

dη

η + ν2 = −
∫ ξ

ξ0

2ξdξ

c2 + ξ2 (6)

here, ξ0 = a + 2bN . The integration of (6) yields,

η = ν2 ξ0
2 − ξ2

c2 + ξ2 (7)

In (7) we replace η with (dξ
dt )

2, and by rearranging the terms and integrating
the result, we arrive at

t =
1
ν

∫ ξ

ξ0

√
c2 + ξ2

ξ0
2 − ξ2

dξ (8)

this yields

t =
1
ν

√
c2 + ξ0

2E(arccos(
a + 2bn

ξ0
),

ξ0√
c2 + ξ0

2
) (9)

E(δ, r) is the Elliptic integral of the second kind [4]. Equation (9)is the
run-time; i.e. it is the time a bead starting from the top coil takes to traverse
to the nth coil.

We have noticed that (8) is a convoluted analog of the kinematics of one
dimensional uniform motion. I.e. (8) can be viewed as � = νt, with � being the
Slinky’s characteristic length given by

� =
∫ ξ

ξ0

w(c, ξ0, ξ)dξ (10)

In other words, the bead slides along the characteristic length, �, given by
the weighted differential length dξ. The weight, w, is defined by

w(c, ξ0, ξ) =

√
c2 + ξ2

ξ0
2 − ξ2

(11)

As mentioned earlier, the bead’s characteristic speed ν is ν =
√

2gb.
Intuitively, one would expect the run-time of a bead, for a skinny Slinky to be
the same as the run-time of a freely falling bead released at the same height. To
verify this, in (9) we set R = 0, this yields,
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Fig. 3. The run-time of a bead v.s. the coil number n. The specs of the Slinky are the
ones used in Fig. 1

t =
1
ν

ξ0E(arccos(
a + 2bn

ξ0
), 1) (12)

On the other hand, since. L0 � L , (12) simplifies further,

t �
√

2L

g
E(arccos(

n

N
), 1) (13)

For n = 0, (13) yields the run-time of a bead traversing the entire length of
the stretched Slinky, L. The E in (13) for n = 0 yields, E(π

2 , 1) = 1 and yields
the shortest run-time,

t �
√

2L

g
(14)

Equation (14) is identical to the time of flight of a free falling object,
L = 1

2gt2, released at height L. Equation (14) for L = 172.0cm, the length of
a hanging Slinky gives t = 0.592s and matches the numeric value of (9) for
small values of R, e.g. R = 0.005cm. It is instructive to display the run-time t,
given by (9) v.s. the coil number n. For the Slinky on hand, this is shown in Fig 3.

3 Corollary Topics of Interest

It is curious to find out at any given time how high the bead is from the bottom
of the Slinky, how fast the bead is falling and its falling acceleration. To address
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Fig. 4. The plots of the coil number n v.s. t. The solid line is the fitted polynomial

these questions, there is a need to solve (9) for t, this is problematic. However,
we pursued the goal graphically. First, by interchanging the horizontal and
vertical axes in Fig. 3, we re-plot the data points. We then apply Mathematica’s
Fit command to fit the data with a suitable polynomial. Figure 4 displays the
output.

For the Slinky on hand the fitted function is an incomplete third order
polynomial with the given fitted coefficients n(t) = 35.190−4.925t2+0.381t3. By
substituting n(t) in zn we evaluate the vertical height of the bead, z(t), its falling
speed, ż(t) and its falling acceleration z̈(t). These quantities are plotted in Fig. 5.

The ordinate of Fig. 5, is calibrated in MKS units, and hence, m, m
s , m

s2 are
to be used to read the height, the velocity and the acceleration.
According to Fig. 5, the bead starts off with an initial zero velocity and of about
1 m

s2 acceleration. In 1.6s, it reaches its maximum, 0.83m
s velocity and acquires

zero acceleration. In according to Fig. 3, t = 1.6s, corresponds to n = 24, that
is the bead reaches its maximum velocity after traversing 11 coils. From this
point on, it takes another 1.4s to decelerate to the bottom.
We also noted, a Slinky is a device capable of converting the gravitational
potential energy to a pure rotational energy. This is because the bottom coils
are horizontal and the bead upon reaching the bottom is to circulate about the
Slinky’s symmetry axis with no further fall.
We quantify our claim by applying the conservation of energy principle to the
two ends of the Slinky; the potential energy at the top and the rotational kinetic
energy at the bottom. That is (PE)i = (KE)f

rot, this gives mgL = 1
2Iω2

max,
here, I = mR2 is the moment of inertia of the bead about the Slink’s symmetry
axis and ωmax is its maximum angular velocity. Solving this equation for
ωmax yields ωmax = 1

R

√
2gL. For the specs of the Slinky on hand this yields
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Fig. 5. The plot of z(t)(solid-line),the falling velocity,ż(t)(short dashed-line) and the
falling acceleration z̈(t) (long dashed-line)

0.5 1 1.5 2 2.5 3
t,s

20

40

60

80

100

120

w,
rad
s

Fig. 6. Plot of angular velocity, ω, v.s. t. The Slinky’s specs are the ones used in Fig.
1

ωmax = 116 rad
s . On the other hand, the angular velocity of the bead is

ω(t) = d
dt{2π[N − n(t)]}. The quantity in the braces is the traversed azimuthal

angle about the symmetry axis of the Slinky and n(t) is the aforementioned
fitted polynomial.
Figure 6 displays ω(t) v.s. time. The maximum value of ωmax(t) at the end of
the run is 120 rad

s , this is in good agreement with the predicted, 116 rad
s .
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