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Abstract. This paper describes an algorithm for computing represen-
tatives of conjugacy classes of θ-stable parabolic subalgebras of a semi-
simple complex Lie algebra gC relative to any of its non-compact real
forms g of inner type. These subalgebras are important for studying re-
presentations of g.

1 Introduction

The notion of a θ-stable parabolic subalgebra of gC was introduced by Vogan
[1] in the 1970’s in order to study representations of semisimple Lie groups.
Since then such subalgebras have been used by several authors to understand
certain questions related to the theory of nilpotent orbits. In many instances,
it is desirable to compute representatives of certain classes of such subalgebras
under the action of a given Lie group. In this paper we propose an algorithm
for computing such representatives under the action of a connected complex Lie
group KC . The algorithm was implemented in the computer algebra system LiE
[2] and was used to show that a theorem of Peter E. Tapa for classical real Lie
groups does not extend to exceptional Lie groups [3]. It is also being used to
study polarization in the exceptional Lie groups [4].
Let g be a real semisimple Lie algebra with adjoint group G and gC its comple-
xification. Also let g = k ⊕ p be the Cartan decomposition of g where k is a Lie
algebra and p, a vector space. Finally, let θ be the corresponding Cartan involu-
tion of g. Then gC = kC ⊕ pC where kC and pC are obtained by complexifying k
and p respectively. Denote by KC the connected subgroup of the adjoint group
GC of gC , with Lie algebra kC . Then kC and pC are the +1-eigenspace and the
−1-eigenspace of the extension of θ on gC respectively. We shall call such an
extension θ also. The subgroup KC preserves pC under the adjoint action.
Let hC be a Cartan subalgebra and Φ = ∆(gC , hC) the root system of gC de-
termined by hC . A Borel subalgebra of gC is a subalgebra b = hC ⊕ n where
n =

⊕

α∈Φ+
gα

C
for some positive system Φ+ within Φ and gα

C
denotes the root space

of α. Any subalgebra q of gC containing a Borel subalgebra is called a parabolic
subalgebra of gC . If q = q ∩ kC ⊕ q ∩ pC then we shall say that q is a θ-stable
parabolic subalgebra of gC . Any parabolic subalgebra decomposes as q = l + u
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where l is a Levi subalgebra of gC and u, the nilradical of q, is a vector space
consisting of nilpotent elements of gC .
We shall give an algorithm to compute representatives of all the KC -conjugacy
classes of θ-stable parabolic subalgebras of gC when g is of inner type, that is,
when rank(g) = rank(k), and gC simple. Slight modifications of the algorithm
are necessary to handle the cases where g is not of inner type. More will be said
on this at the end.

2 Algorithm Description and Proof of Correctness

The algorithm is divided into two main components:
i. Computation of the KC -conjugacy classes of systems of simple roots. This

task will be performed by the function Compute Chambers().
ii. Computation of representatives of conjugacy classes of θ-stable parabolic

subalgebras. The function Compute Parabolics() will perform this computation.
The algorithm will be written in “pidgin” LiE, that is, we shall use a lot of
built-in functions from LiE. Readers should consult [2] to find information on
such functions. The built-in functions will be written in italics in the definition
of the algorithm. We should point out that the algorithm can be implemented on
any computer algebraic systems containing some Lie-theoretical capabilities. All
variables will be of type integer. This is the only type that LiE accommodates.
To see a very brief evaluation of LiE consult our ICCS 2003 paper [5]. Finally,
we shall use the notation ‖S‖ for the cardinality of a set S and comments will
be placed between square brackets.

Description of the algorithm.
Input:

G: semisimple type of GC

K: semisimple type of KC

Rnc : set of non compact roots of GC

Output:
P: one-dimensional array of integers containing the indices of the roots in

each parabolic subalgebra.
P addr: two-dimensional array of integers containing the start and the end

of each parabolic subalgebra in P.
This variable plays an important role when processing the parabolic subal-

gebras.
num parabolics: number of representatives computed

Begin [ Main]
n = n pos roots(G);
l = Lie rank(G);
[ Compute the number of KC -conjugacy classes of root systems ]
n ch = ‖W(G)‖/‖W(K)‖; [ W(G) and W(K) are the Weyl groups of G and K ]

P = null(n ch∗2l, l); [ Create and initialize P ]
P addr = null(n ch∗2l, 2);
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dim par = null(n ch∗2l);

[ Initialize lists and queues ]
ch = null (n ch*l,l); qu = null ((n ch*l),l);
cur ch =null(l,l); new ch = null(l,l);

[ Initialize counters ]
l count = 1; q indx = l; l indx = l;
d index = 0;

Compute Chambers();
Compute Parabolics();

End [ Main]

Compute Chambers();

begin

[ This algorithm computes the KC conjugacy classes of simple roots systems as follows:
Starting with a Vogan system in the usual bourbaki system it looks for other non KC -
conjugate systems by performing reflection along non compact imaginary roots ]

for i = 1 to l do ch[i] = pos roots(G)[i] ; qu[i] = pos roots(G)[i]; od;

[ Main Loop ]
while l count < n ch do
[ reflect through all non compact roots in current chamber ]
[ be sure that both queue and list are properly maintained ]
for i =1 to l do cur ch[i] = q[i];od; [ dequeue ]
for i = 1 to l do

if cur ch[i] ∈ Rnc then
[ this is a noncompact root reflect through it ]
for k = 1 to l do
new ch[k] = cur ch[k] - Cartan(cur ch[k], cur ch[i], G)
*cur ch[i]; od;
[ check for duplicate ]
for j =1 to l do if new ch[j] != ch[(k-1)*l + j] then
uniq = 0; break; fi; od;
if uniq == 1 then break; fi; od;
if uniq ==0 then for k = 1 to l do ch[l indx + k] = new ch[k];
qu[q indx +k] = new ch[k]; od; l indx = l indx + l;
q indx = q indx + l;
fi; fi; od;

for i = 1 to (q indx- l) do qu[i] = qu[i+l]; od; [ rebuild queue ]
q indx = q indx - l;
od; [Main Loop]

end [ Compute Chambers() ]
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Compute Parabolics();

[ This algorithms computes a list which contains all the representatives of the KC -
conjugacy classes of θ-stable parabolic subalgebras of gC . Since each chamber given by
the previous algorithm is equivalent to a θ-stable Borel subalgebra the algorithm builds
standard parabolic subalgebras in each chamber by using the subsets of the chamber. ]

begin
chamb = null (l,l); i = 1; par index = 0;
for j = i to (i+l-1) do count= count+1; chamb[count]= ch[j];od;
[ initialize the nilradical of the Borel subalgebra generated by chamb ]
u = null (n pos roots(G), l);
for u indx = 1 to n pos roots(G) do
for r indx = 1 to l do u[u indx] = u[u indx]+ pos roots(G)[u indx,r indx]*
chamb[r indx]; od; od;
[ find all subsets of the simple roots in the class
and build the resulting parabolic q = l ⊕ u ]
cc[ii] = ii; od;
null(kk,l);
[ retrieve the subset of simple roots defining the Levi subalgebra ]

chamb[cc[ii]];od;
l matrix= null (kk,l); [ Cartan matrix for the Levi subalgebra ]
for i l = 1 to kk do for j l =1 to kk do
l matrix[i l,j l] = Cartan(G)(lev roots[i l],lev roots[j l]); od; od;
g = Cartan type(G)(lev roots); m cartan = Cartan(G)(g);
if l matrix �= m cartan then
good lev = lev roots; nnn = kk; pi =null(nnn+2); p = null(nnn+1);
d = null(nnn+1); previous = null(nnn); current = null(nnn);
for iii = 2 to nnn+1 do pi[iii] = iii; p[iii] = iii; d[iii] = -1; od;
d[1] = 0; m = nnn+2; pi[1] = m; pi[m] = m; counter = 0; for c = 2 to nnn+1
do current[c-1] = pi[c] - 1; od;
lev roots[current[i l]] od; to kk do l matrix[i l,j l] =
Cartan(G)(good lev[i l],good lev[j l]); od; od;
if l matrix == m cartan then lev roots =good lev ; break; fi;
[ right order found ]

m = nnn+1; while pi[p[m]+d[m] ] >m do d[m] = -d[m]; m = m-1;
if m ==1 then break; fi; od;
bucket = pi[p[m]]; pi[p[m]] = pi[p[m]+d[m]]; pi[p[m]+d[m]] = bucket;
previous = current;
od; fi;
[ end permutation, continue to process subsets ]
jj=kk;
while cc[jj]== (l-kk +jj) do jj = jj-1; if jj == 0
then break fi; od;
if jj !=0 then cc[jj] = cc[jj] +1 fi;
for ii = jj+1 to kk do if ii == 1 then cc[ii] = 1 else
cc[ii] = cc[ii-1] +1; fi ;od;
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n pieces = n comp(g);
nilp u = null(n,l); levi index = 0; nilp u index = 0; lev ptr = 0;
sg = g[ii]; l p = Append ( pos roots(sg), (-pos roots(sg)));
for jk = 1 to 2 n pos roots(sg) do
levi index = levi index +1;
for ll=1 to Lie rank(sg) do
levi subalg[levi index] = levi subalg[levi index] +
l p[jk,ll]*lev roots[lev ptr + ll]; od;od;
lev ptr = lev ptr + Lie rank(sg); od;
for ik = 1 to n do trouver = 0;
break;fi; od;
if trouver == 0 then nilp u index = nilp u index + 1;
nilp u[nilp u index] = u[ik]; fi; od;
[ check for duplicate subalgebras and build the list]

found = 0; u qq = null(nilp u index,l);
for ik = 1 to nilp u index do u qq[ik] = nilp u[ik]; od;
q = sort(Append (levi subalg,u qq)); [ q = l ⊕ u ]
dimq = levi index+nilp u index;
data = Append (levi subalg u qq);
if n parabolics == 0 then
n parabolics = n parabolics + 1; P addr[1,1] = 1; P addr[1,2] = dimq;
for ik =1 to dimq do par index = par index +1;
P[par index] = data[ik]; od;
d index = d index +1; dim par[d index] = dimq+l;
else found = 0; [ Check for duplicates ]
P[P addr [ik,1] +jk -1] od; break; fi; fi; ood;
dimq do par index = par index +1;
P[par index] = data[ik]; od;
d index = d index +1; dim par[d index] = dimq+l;
fi; fi; od; od; od;

end [ Compute Parabolics() ]

Remark. At the end of Compute Parabolics() the list P will contain representa-
tives of all classes of parabolic subalgebras except those of the Borel subalgebras.
However, the Borel subalgebras are completely determined by the roots stored
in the variable chamb which defines the Cartan subalgebra equivalent to the
Levi subalgebra in this case. The variable u contains the appropriate positive
roots and is in fact the nilradical of the Borel representative.

Proof of correctness

Theorem. The above algorithm is correct.
Proof. Maintaining the above notations, it is known that the parabolic subal-
gebras q containing a Borel subalgebra b of gC are parametrized by the set of
subsets of ∆ the set of simple roots that defines b ( See [7] Proposition 5.90
for a proof). Let Φ be the root system generated by ∆ and let Γ be a subset
of ∆. Define qΓ to be the subalgebra of gC generated by hC and all of the root
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spaces gα
C

such that α ∈ ∆ or −α ∈ Γ . Let 〈Γ 〉 denote the subroot system of Φ
generated by Γ and put 〈Γ 〉+ = 〈Γ 〉 ∩ Φ+. Define

l = hC ⊕
⊕

α∈〈Γ 〉
gα

C
u =

⊕

α∈Φ+\〈Γ 〉+
gα

C

Then qΓ = l⊕u is a parabolic subalgebra containg b and is said to be a standard
parabolic subalgebra. Moreover every parabolic subalgebra of gC is conjugate to
a standard parabolic subalgebra of gC . Since we assume that g is of inner type
we conclude that all parabolic subalgebras are θ-stable. The above argument
is valid for each kC -conjugacy class of Borel subalgebras. Hence, the algorithm
generates a list containing representatives of all the kC -conjugacy classes of θ-
stable parabolic subalgebras of gC .
In order to finish the proof we need to show that the computation 〈Γ 〉 is correct.
This is done in Compute Parabolics() by obtaining subsets of ∆ and permuting
the set of roots in such subsets when necessary. We generate the permutations
using minimal change order as described in [6]. To compute subsets of ∆ we
use an implementation of Algorithm 5.8 in [6] also. The proofs of correctness of
both algorithmic schemes are found in [6]. Hence, the theorem follows.

	


Complexity

The complexity of the algorithm depends on that of the built-in functions. In
LiE such functions are well designed and seem to perform in an optimal manner.
Since LiE is not a multipurpose software package, the designers were able to use
clever and faster algorithms to enhance performance. The reader should realize
that most of the work in this algorithm is done by Compute Parabolics() which
computes subsets and permutations of elements of ∆ which is of size l the rank
of gC . The analysis of both schemes is done in [6] and it is not too difficult to
see that the permutation scheme will take O(k!) to permute k elements of ∆
and the determination of the subsets of size k is proportional to the number of
combinations of subsets of k elements of ∆ that is O(

(
l
k

)
). Hence both schemes

perform quasi-optimally. Of course, this is a worst case analysis. For l ≤ 8 the
algorithm performs very well on average. We are not in a position to give an
average case analysis at this time. However the reader should know that we
were able to compute the representatives of the classes of theta-stable parabolic
subalgebras for all the exceptional non compact simple Lie groups relative to
all their real forms of inner type. This is not trivial [4]. The computations were
carried on an IMac G4 with speed 1GHz and 1Gb SDRAM of memory.

3 Some Applications of Representation Theory

A representation of a group is a mathematical map which associates a matrix
to each element of the group. Matrices are very concrete objects that facilitate
difficult computations which would be impossible otherwise. This was recognized
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after the discovery of quantum mechanics. Hence, given a group, if all or a lot
of its representations are available then the investigator has a better chance of
finding one which fits the problem at hand. Finding all the representations of a
given reductive real Lie group is one the most important unsolved problems in
Mathematics.
An other incentive to study Representation theory comes from Number theory.
Here, we should point out that the field of Number theory, although conside-
red one of the purest branches of mathematical thought, turns out to have very
important and concrete applications in our industrial world. One such applica-
tion is the design and development of almost unbreakable codes in cryptography
allowing the possibility of making transactions on the internet using credit cards.
Representation theory is used in quantum chemistry, quantum computing, con-
struction of telephone networks, radar and antenna design, robotics, coding
theory, computer vision and many other branches of science and engineering.
Readers who are interested in real world applications of Representation theory
should visit the following website:

http : //web.usna.navy.mil/̃wdj/repn thry appl.htm

The work presented in this paper is part of a program whose aim is to compute
new representations of reductive real Lie groups. See [8] for more details.

4 Conclusion

In this paper we proposed and used and algorithm which produces a list con-
taining representatives of all the KC -conjugacy classes of theta-stable parabolic
subalgebras of a complex simple Lie algebra gC relative any of its real non-
compact forms g of inner type. We proved the correctness of the algorithm and
gave a worst case analysis of its complexity. We also mentioned that the average
performance of the algorithm is quite good because we were able to use it to
compute data from all the exceptional simple Lie groups. However we still have
more work to do. First, we need to extend the algorithm to the cases where g is
not of inner type. This can be done as follows: the group KC should be repla-
ced by Gθ

C
the subgroup of GC that fixes kC and the computation of the theta

stable parabolic will be more complicated. We should be able to do this soon.
In order to manage space more effectively we need to develop a formula for the
number of KC -conjugacy classes of theta-stable parabolic subalgebras. We have
not been able to find such a formula in the literature. From our conversation
with experts there are reasons to believe that the formula is not known. One
way to circumvent this issue is to use the Weyl group of KC . This solution does
not scale well because the Weyl group grows fast as the rank of g increases and
traversing it becomes a challenging problem. We are currently developing some
new strategies to solve this problem.
There are also some software issues. LiE provides essentially two types of data
structures, the vector, a one-dimensional array of type integer, and the matrix,
a two-dimensional array of type integer and does not allow dynamic allocation.
These two factors complicate the handling of large data sets. Since the LiE source
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code is available we plan to solve these problems in the future. We believe that
in general the mathematical algorithms in LiE are well designed. However we
would welcome some serious work on a good user-interface.
Many mathematicians are currently using Computer Algebra Systems in their
research not only as simulation tools but also as a way of generating important
counterexamples and conjectures. As these systems become more and more po-
werful we should expect a stronger cooperation between mathematicians, system
designers and computer scientists.
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