
Construction of Solutions for Nonintegrable
Systems with the Help of the Painlevé Test
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Abstract. The generalized Hénon–Heiles system with an additional
nonpolynomial term has been considered. In two nonintegrable cases
with the help of the Painlevé test new special solutions have been found
as converging Laurent series, depending on three parameters. For some
values of these parameters the obtained Laurent series coincide with the
Laurent series of the known elliptic solutions. The calculations have been
made with use of computer algebra system REDUCE. The obtained local
solutions can assist to find the elliptic three parameters solutions. The
corresponding algorithm has been realized in REDUCE and Maple.

1 The Painlevé Test

When we study some mechanical problem time is assumed to be real, whereas the
integrability of motion equations is connected with the behavior of their solutions
as functions of complex time. Solutions of a system of ODE’s are regarded as
analytic functions, maybe with isolated singular points. A singular point of a
solution is said critical (as opposed to noncritical) if the solution is multivalued
(single-valued) in its neighborhood and movable if its location depends on initial
conditions. The general solution of an ODE of order N is the set of all solutions
mentioned in the existence theorem of Cauchy, i.e. determined by the initial
values. It depends on N arbitrary independent constants. A special solution is
any solution obtained from the general solution by giving values to the arbitrary
constants. A singular solution is any solution which is not special, i.e. which
does not belong to the general solution. A system of ODE’s has the Painlevé
property if its general solution has no movable critical singularity point [1].

The Painlevé test is any algorithm, which checks some necessary con-
ditions for a differential equation to have the Painlevé property. The original
algorithm, developed by P. Painlevé and used by him to find all the second or-
der ODE’s with Painlevé property, is known as the α-method. The method of
S.V. Kovalevskaya [2] is not as general as the α–method, but much more simple.
The remarkable property of this test is that it can be checked in a finite number
of steps. In 1980, motivated by the work of S.V. Kovalevskaya [2], M.J. Ablo-
witz, A. Ramani and H. Segur [3] developed a new algorithm of the Painlevé
test for ODE’s. This algorithm appears very useful to find solutions as a formal
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Laurent series. First of all, it allows to determine the dominant behavior of a
solution in the neighborhood of the singularity point t0. If the solution tends
to infinity as (t − t0)β , where β is a negative integer number, then substituting
the Laurent series expansions one can transform nonlinear differential equations
into a system of linear algebraic equations on coefficients of the Laurent series.
If a single-valued solution of autonomous system depends on not only the para-
meter t0, which characterizes the syngularity point location, but also on other
parameters, then some coefficients of its Laurent series have to be arbitrary and
the corresponding systems have to have zero determinants. The numbers of such
systems (named resonances or Kovalevskaya exponents) can be determined due
to the Painlevé test. In such a way we obtain solutions only as formal series,
but for some nonintegrable systems, for example, the generalized Hénon–Heiles
system [4], the convergence of the Laurent- and psi-series solutions has been
proved. Such solutions also assist to find the elliptic solutions [5].

2 The Hénon–Heiles Hamiltonian

Let us consider the generalized Hénon–Heiles system with an additional nonpo-
lynomial term, which is described by the Hamiltonian:

H =
1
2

(
x2

t + y2
t + λx2 + y2

)
+ x2y − C

3
y3 +

µ

2x2 (1)

and the corresponding system of the motion equations:
{

xtt = − λx − 2xy +
µ

x3 ,

ytt = − y − x2 + Cy2,
(2)

where xtt ≡ d2x
dt2 and ytt ≡ d2y

dt2 , λ, µ and C are arbitrary numerical parameters.
If C = 1, λ = 1 and µ = 0, then (1) is the initial Hénon–Heiles Hamiltonian [6].

The general solutions in the analytic form are known [7] only in the three
integrable cases

(
C = −1 and λ = 1; C = −6 and λ is an arbitrary number;

C = −16 and λ = 1/16
)
, in other cases not only four-, but even three-parameter

exact solutions have yet to be found.
In all above-mentioned cases system (2) is integrable at any value of µ. Moreo-

ver the function y, solution of system (2), satisfies the following fourth-order
equation, which does not include µ:

ytttt = (2C −8)ytty−(4λ+1)ytt +2(C +1)y2
t +

20C

3
y3 +(4Cλ−6)y2 −4λy−4H,

(3)
where H is the energy of the system. If x0 = Cy2

0 − y0 − y0tt �= 0, then H is not
an arbitrary parameter, but a function of initial data: y0, y0t, y0tt and y0ttt. The
form of this function depends on µ.

The Painlevé test of eq. (3) gives the following dominant behaviors and re-
sonance structures:
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1. The function y tends to infinity as b−2(t − t0)−2, where b−2 = −3 or
b−2 = 6

C .
2. For b−2 = −3 (the Case 1) the values of resonances are r = −1, 10, (5 ±√

1 − 24(1 + C))/2. In the Case 2 (b−2 = 6
C ) r = −1, 5, 5 ± √

1 − 48/C.
The resonance r = −1 corresponds to arbitrary parameter t0. Other values

of r determine powers of t (their values are r − 2), at which new arbitrary
parameters can appear as solutions of the linear systems with zero determinant.
For integrability of system (2) all values of r have to be integer and all systems
with zero determinants have to have solutions at any values of included in them
free parameters. It is possible only in the integrable cases.

For the search for special solutions, it is interesting to consider such values
of C, for which r are integer numbers either only in Case 1 or only in Case
2. If there exist a negative integer resonance, different from r = −1, then such
Laurent series expansion corresponds rather to special than general solution.
We demand that all values of r, but one, are nonnegative integer numbers and
all these values are different. From these conditions we obtain the following
values of C: C = −1 and C = −4/3 (Case 1), or C = −16/5, C = −6 and

C = −16 (Case 2, α = 1−
√

1−48/C

2 ), and also C = −2, in which these two Cases
coincide. It has been shown in [8] (for µ = 0) and [9] (for an arbitrary value
of µ) that single-valued three-parameter special solutions can exist only in two
nonintegrable cases: C = −16/5 and C = −4/3 (λ is arbitrary).

Using the method of construction of the Laurent series solutions for nonlinear
differential equations describing in [8], we obtain single-valued local solutions of
eq. (3). At C = −4/3 these solutions are:

y = −3
1
t2

+ b−1
1
t

+
29
24

b2
−1 +

1
2
λ − 3

4
+

(
17
6

b2
−1 +

5
3
λ − 5

4

)
b−1t + b2t

2 + . . .

There exist four possible values of the parameter b−1:

b−1 = ±
√

105 − 140λ ± √
7(1216λ2 − 1824λ + 783)

385
. (4)

The parameters b2 and b8, coefficients at t2 and t8 correspondingly, are arbitrary.
The energy H enters in coefficients beginning from b4.

At C = −16/5 we obtain the following solutions:

y = − 15
8t−2 + b̃−1 − 5

32
+

62
45

b̃2
−1 +

(
5
12

λ +
632
225

b̃2
−1 − 25

192

)
b̃−1t + . . .

with

b̃−1 = ±
3
√

6872250 − 21991200λ ± 52360
√

35(2048λ2 − 1280λ + 387)

41888
. (5)

The coefficients b̃3 and b̃8 are arbitrary parameters. Beginning from b̃4 some
coefficients include the energy H. So, the obtained local solutions depend on
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four independent parameters: t0, H and two coefficients (b2 and b8 or b̃3 and b̃8).
With the help of some computer algebra system, for example, REDUCE [12],
these solutions can be obtained with arbitrary accuracy. When a formal series is
obtained the question about its convergence arises. The convergence of psi-series
solutions of the generalized Hénon–Heiles system with µ = 0 on some real time
interval has been proved in [4].

3 Global Single-Valued Solutions

We have found local single-valued solutions. Of course, existence of local single-
valued solutions is necessary, but not sufficient condition to exist global ones,
because solutions, which are single-valued in the neighborhood of one singularity
point, can be multivalued in the neighborhood of another singularity point. So,
we can only assume that global three-parameter solutions are single-valued. If
we assume this and moreover that these solutions are elliptic functions (or some
degenerations of them), then we can seek them as solutions of some polynomial
first order equations. There are a few methods to construct such solutions, re-
presenting them as the finite Taylor or Laurent series of elliptic functions or
degenerate elliptic functions, for example, tanh(t). These methods use results of
the Painlevé test, but don’t use the obtained Laurent-series solutions. In 2003
R. Conte and M. Musette [5] have proposed the method, which uses such solu-
tions.

The classical theorem, which was established by Briot and Bouquet [10],
proves that if the general solution of a polynomial autonomous first order ODE
is single-valued, then this solution is either an elliptic function, or a rational
function of eγx, γ being some constant, or a rational function of x. Note that the
third case is a degeneracy of the second one, which in its turn is a degeneracy of
the first one. It has been proved by Painlevé [1] that the necessary form of the
polynomial autonomous first order ODE with the single-valued general solution
is

m∑
k=0

2m−2k∑
j=0

hjk yjyk
t = 0, h0m = 1, (6)

in which m is a positive integer number and hjk are constants.
Rather than to substitute eq. (6) in some nonintegrable system, one can

substitute the Laurent series of unknown special solutions in eq. (6) and obtain
a system, which is linear in hjk and nonlinear in parameters which are included
in the Laurent coefficients.

Let us compare two methods to find special analytic solutions for the gene-
ralized Hénon–Heiles system.

The first way is the following:
1) Transform system (2) into eq. (3)
2) Assume that y satisfies some more simple equation, substitute this equa-

tion in (3) and obtain a nonlinear algebraic system.
3) Solve the obtained system.
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The second, proposed by R. Conte and M. Musette, way is the following:
1) Choose a positive integer m and define the first order ODE (6), which

contains unknown constants hjk.
2) Compute coefficients of the Laurent series solutions for (2) with some fixed

C. The number of coefficients has to be greater than the number of unknowns.
3) Substituting the obtained coefficients, transform eq. (8) in linear and over-

determined system in hjk with coefficients depending on arbitrary parameters.
4) Exclude hjk and obtain the nonlinear system in five parameters.
5) Solve the obtained system.
To obtain the explicit form of the elliptic function, which satisfy the known

first order ODE, one can use the classical method due to Poincaré, which has
been implemented [11] in Maple [13].

The second way has a few preferences and can be automatized. The first
preference is that one does not need to transform system (2) in one differential
equation either in y or in x. Moreover at C = −16/5 not x, but x2 may be an
elliptic function. To construct the Laurent series for x2 is easier than to find
the fourth order equation in x2. The main preference of the second method is
that the number of unknowns in the resulting algebraic system does not depend
on number of coefficients of the first order equation. For example, eq. (6) with
m = 8 includes 60 unknowns hjk, and it is not possible use the first way to find
similar solutions. Using the second method we obtain nonlinear system in five
variables: λ1, λ2, H and two arbitrary coefficients of the Laurent-series solutions
independently of the value of m.

The first way also has one important preference. It allows to obtain solutions
for an arbitrary C, whereas using the second method one has to fix value of
C to construct the Laurent series solutions, because of the resonance structure
depends on C. Using the first way one can also construct equations, which forms
are different from (6). For example, the substitution of the eqution

y2
t = Ã(y − P0)3 + B̃(y − P0)5/2 + C̃(y − P0)2 + D̃(y − P0)3/2 + Ẽ(y − P0) (7)

gives two-parameter solutions [9]:

y(t − t0) =
(

a℘(t − t0) + b

c℘(t − t0) + d

)2

+ P0, (8)

where ℘(t − t0) is the Weierstrass elliptic function, a, b, c and d are some con-
stants. The parameter P0 defines the energy of the system. Solutions (8) exist
in both above-mentioned nonintegrable cases: C = −16/5 and C = −4/3. There
exist two different solutions for each pair of values of C and λ. To find these solu-
tions we a priori assume some class of possible solutions, then compute whether
there exists some solution in the given class. We hope that the use of the se-
cond method and the corresponding computer algebra program allows to find
the three-parameter elliptic solutions without any preliminary assumption. This
method is implemented both in REDUCE and in Maple.
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4 Conclusion

We have found the special solutions of the Hénon–Heiles system with C = −16/5
and C = −4/3 as the Laurent series. For some values of parameters the obtained
solutions coincide with the known exact periodic solutions. The Painlevé test
does not show any obstacle to the existence of three-parameter single-valued
solutions, so, the probability to find exact, for example elliptic, three-parameter
solutions, that generalize the solutions found in [9], is high.

The author is grateful to R. Conte, V. F. Edneral, A. K. Pogrebkov and
E. I. Timoshkova for valuable discussions. This work has been supported by
Russian Federation President’s Grants NSh–1685.2003.2 and NSh–1450.2003.2
and by the grant of the scientific Program ”Universities of Russia”.
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