
Using P-GRADE for Monte Carlo Computations
in a Distributed Environment

Vassil N. Alexandrov1, Ashish Thandavan1, and Péter Kacsuk2

1 Department of Computer Science, University of Reading, Reading, UK
2 MTA SZTAKI Research Institute, Budapest, Hungary

Abstract. Computations involving Monte Carlo methods are, very of-
ten, easily and efficiently parallelized. P-GRADE is a parallel applica-
tion development environment which provides an integrated set of pro-
gramming tools for development of general message-passing applications
to run in heterogeneous computing environments or supercomputers. In
this paper, we show how Monte Carlo algorithms for solving Systems of
Linear Equations and Matrix Inversion can easily be parallelized using
P-GRADE.

1 Introduction

The problem of inverting a real n × n matrix (MI) and solving system of linear
algebraic equations (SLAE) is of an unquestionable importance in many scienti-
fic and engineering applications: e.g. communication, stochastic modelling, and
many physical problems involving partial differential equations. For example,
the direct parallel methods of solution for systems with dense matrices require
O(n3/p) steps when the usual elimination schemes (e.g. non-pivoting Gaussian
elimination, Gauss-Jordan methods) are employed [4].

We concentrate on Monte Carlo methods for MI and solving SLAEs, since,
firstly, only O(NL) steps are required to find an element of the inverse matrix,
where N is the number of chains and L is an estimate of the chain length in the
stochastic process, which are independent of matrix size n and secondly, these
stochastic methods are inherently parallel.

Several authors have proposed different coarse grained Monte Carlo paral-
lel algorithms for MI and SLAE [6,7,8,9,10]. In this paper, we investigate how
Monte Carlo can be used for diagonally dominant and some general matrices
via a general splitting and how efficient mixed (stochastic/deterministic) par-
allel algorithms can be derived for obtaining an accurate inversion of a given
non-singular matrix A. We employ either uniform Monte Carlo (UM) or almost
optimal Monte Carlo (MAO) methods [6,7,8,9,10].

Note that the algorithms are built under the requirement ‖T‖ < 1. Therefore
to develop efficient methods we need to be able to solve problems with matrix
norms greater than one. Thus we developed a spectrum of algorithms for MI
and solving SLAEs ranging from special cases to the general case. Parallel MC
methods for SLAEs based on Monte Carlo Jacobi iteration have been presented

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 475–482, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

476 V.N. Alexandrov, A. Thandavan, and P. Kacsuk

by Dimov [10]. Parallel Monte Carlo methods using minimum Makrov Chains
and minimum communications are presented in [1]. Most of the above approaches
are based on the idea of balancing the stochastic and systematic errors [10]. In
this paper we have presented a hybrid algorithms for MI and solving SLAEs
by combining two ideas: iterative Monte Carlo methods based on the Jacobi
iteration and deterministic procedures for improving the accuracy of the MI or
the solution vector of SLAEs in Sections 2 and 3. Further the parallel approach
using P-GRADE and some numerical experiments are presented in Section 4
and 5 respectively.

2 Monte Carlo and Matrix Computation

Assume that the system of linear algebraic equations (SLAE) is presented in the
form:

Ax = b (1)

where A is a real square n × n matrix, x = (x1, x2, ..., xn)t is a 1 × n solution
vector and b = (b1, b2, ..., bn)t.

Assume the general case ‖A‖ > 1. We consider the splitting A = D−C, where
off-diagonal elements of D are the same as those of A, and the diagonal elements
of D are defined as dii = aii+γi||A||, choosing in most cases γi > 1, i = 1, 2, ..., n.
We further consider D = B − B1 where B is the diagonal matrix of D, e.g.
bii = diii = 1, 2, ..., n. As shown in [1] we could transform the system (1) to

x = Tx + f (2)

where T = D−1C and f = D−1b. The multipliers γi are chosen so that, if it is
possible, they reduce the norm of T to be less than 1. In the general case we
consider finding D−1 using MC and after that finding A−1. Then, if required,
the solution vector is found by x = A−1b.

Consider first the stochastic approach. Assume that ‖T‖ < 1 and that the
system is transformed to its iterative form (2). Consider the Markov chain given
by:

s0 → s1 → · · · → sk, (3)

where the si, i = 1, 2, · · · , k, belongs to the state space S = {1, 2, · · · , n}. Then
for α, β ∈ S, p0(α) = p(s0 = α) is the probability that the Markov chain starts at
state α and p(sj+1 = β|sj = α) = pαβ is the transition probability from state α
to state β. The set of all probabilities pαβ defines a transition probability matrix
P = {pαβ}n

α,β=1 [3,8,9]. We say that the distribution (p1, · · · , pn)t is acceptable
for a given vector g, and that the distribution pαβ is acceptable for matrix T ,
if pα > 0 when gα �= 0, and pα ≥ 0, when gα = 0, and pαβ > 0 when Tαβ �= 0,
and pαβ ≥ 0 when Tαβ = 0 respectively. We assume

∑n
β=1 pαβ = 1 , for all

α = 1, 2, · · · , n. Generally, we define

Using P-GRADE for Monte Carlo Computations 477

W0 = 1, Wj = Wj−1
Tsj−1sj

psj−1sj−1
(4)

for j = 1, 2, · · · , n.
Consider now the random variable θ[g] = gs0

ps0

∑∞
i=1 Wifsi . We use the follo-

wing notation for the partial sum:

θi[g] =
gs0

ps0

i∑

j=0

Wjfsj . (5)

Under condition ‖T‖ < 1, the corresponding Neumann series converges for any
given f , and Eθi[g] tends to (g, x) as i → ∞ . Thus, θi[g] can be considered as
an estimate of (g, x) for i sufficiently large. To find an arbitrary component of
the solution, for example, the r th component of x, we should choose, g = e(r) =

(0, ..., 1
︸ ︷︷ ︸

r

, 0, ..., 0) such that e(r)α = δrα =
{

1 if r = α
0 otherwise

It follows that (g, x) =
∑n

α=1 e(r)αxα = xr.
The corresponding Monte Carlo method is given by:

xr = Θ̂ =
1
N

N∑

s=1

θi[e(r)]s,

where N is the number of chains and θi[e(r)]s is the approximate value of xr in
the sth chain. It means that using Monte Carlo method, we can estimate only
one, few or all elements of the solution vector. We consider Monte Carlo with
uniform transition probability (UM) pαβ = 1

n and Almost optimal Monte Carlo
method (MAO) with pαβ = |Tαβ |∑n

β=1
|Tαβ | , where α, β = 1, 2, . . . , n. Monte Carlo

MI is obtained in a similar way [3].
To find the inverse A−1 = C = {crr′}n

r,r′=1 of some matrix A, we must
first compute the elements of matrix M = I −A, where I is the identity matrix.
Clearly, the inverse matrix is given by C =

∑∞
i=0 M I which converges if ‖M‖ < 1

. To estimate the element crr′ of the inverse matrix C, we let the vector f be
the following unit vector fr′ = e(r′).

We then can use the following Monte Carlo method for calculating elements
of the inverse matrix C:

crr′ ≈ 1
N

N∑

s=1




∑

(j|sj=r′)

Wj



 , (6)

where (j|sj = r′) means that only Wj for which sj = r′ are included in the sum.
The probable error of the method, is defined as rN = 0.6745

√
Dθ/N , where

P{|θ̄ − E(θ)| < rN} ≈ 1/2 ≈ P{|θ̄ − E(θ)| > rN}, if we have N independent
realizations of random variable (r.v.) θ with mathematical expectation Eθ and
average θ̄ [5].

478 V.N. Alexandrov, A. Thandavan, and P. Kacsuk

3 The Hybrid MC Algorithm

Consider now the algorithm which can be used for the inversion of a general non-
singular matrix A. Note that in some cases to obtain a very accurate inversion
of matrix D some filter procedures can be applied.

Algorithm: Finding A−1.

1. Initial data: Input matrix A, parameters γ and ε.
2. Preprocessing:

2.1 Split A = D − (D − A), where D is a diagonally dominant matrix.
2.2 Set D = B − B1 where B is a diagonal matrix bii = dii i = 1, 2, ..., n.

2.3 Compute the matrix T = B−1B1.
2.4 Compute ||T ||, the Number of Markov Chains N = (0.6745

ε
. 1
(1−||T ||)

2.

3. For i=1 to n;
3.1 For j=1 to j=N;

Markov Chain Monte Carlo Computation:
3.1.1 Set tk = 0(stopping rule), W0 = 1, SUM [i] = 0 and Point = i.
3.1.2 Generate an uniformly distributed random number nextpoint.
3.1.3 If T [point][netxpoint]! = 0.
LOOP
3.1.3.1 Compute Wj = Wj−1

T [point][netxpoint]
P [point][netxpoint] .

3.1.3.2 Set Point = nextpoint and SUM [i] = SUM [i] + Wj .
3.1.3.3 If |Wj | < γ, tk = tk + 1
3.1.3.4 If tk ≥ n, end LOOP.

3.1.4 End If
3.1.5 Else go to step 3.1.2.

3.2 End of loop j.
3.3 Compute the average of results.

4. End of loop i.
5. Obtain The matrix V = (I − T)−1.

6. Therefore D−1 = V B−1.
7. Compute the MC inversion D−1 = B(I − T)−1.
8. Set D0 = D−1 (approximate inversion) and R0 = I − DD0.
9. use filter procedure Ri = I − DDi, Di = Di−1(I + Ri−1), i = 1, 2, ..., m, where

m ≤ k.

10. Consider the accurate inversion of D by step 9 given by D0 = Dk.

11. Compute S = D − A where S can be any matrix with all non-zero elements in
diagonal and all of its off-diagonal elements are zero.

12. Main function for obtaining the inversion of A based on D−1 step 9:
12.1 Compute the matrices Si, i = 1, 2, ..., k, where each Si has just one element

of matrix S.
12.2 Set A0 = D0 and Ak = A + S

12.3 Apply A−1
k = A−1

k+1 +
A−1

k+1Si+1A−1
k+1

1−trace(A−1
k+1Si+1)

, i = k − 1, k − 2, ..., 1, 0.

13. Printthe inversion of matrix A.
14. End of algorithm.

Using P-GRADE for Monte Carlo Computations 479

The basic idea is to use MC to find the approximate inverse of matrix D,
refine the inverse (filter) and find A−1. According to the general definition of a
regular splitting [2], if A, M and N are three given matrices and A = M−N , then
the pair of matrices M , N are called regular splitting of A, if M is nonsingular
and M−1 and N are non-negative.

Therefore, let A be a nonsingular diagonal dominant matrix. If we find a
regular splitting of A such that A = D − C, the SLAE x(k+1) = Tx(k) + f ,
where T = D−1C, and f = D−1b converges to the unique solution x∗ if and only
if ‖T‖ < 1 [2].

4 Parallelisation Using P-GRADE

The Parallel GRaphical Application Development Environment is, as the name
suggests, a parallel programming environment which supports the whole life-
cycle of parallel program development. All the stages from initial design to exe-
cution and debugging to performance visualisation and tuning of the parallel
application are supported by P-GRADE.

It uses a combination of graphics and program statements to describe what
the application does. The execution environment can be a varied one, ranging
from clusters of workstations to supercomputers. A parallel application typically
consists of two or more processes which communicate via messages. Two popular
message passing libraries used for parallel programming are Parallel Virtual
Machine (PVM) and Message Passing Interface (MPI). P-GRADE allows the
developer to choose which library he / she wishes to use without needing to
know the syntax of the underlying message passing system. All the messages
are generated automatically from the graphics. Compilation and distribution of
the executables are performed automatically in the heterogeneous environment.
An integrated debugger allows the program to be methodically debugged during
runtime and monitoring and visualisation tools provide performance information.

4.1 Tools in P-GRADE

P-GRADE consists of a few main components. The application developer uses
the GRED [12] editor to design and construct the parallel program. The program
flow is described by a special graphical programming language called GRAPNEL.
The GRP2C precompiler compiles the graphical information into C code with
PVM or MPI. It also creates additional makefiles which are used by the UNIX
make utility to build the application executables.

Once the executables have been created, the parallel program can be exe-
cuted either in debugging mode or in trace mode. In the debugging mode, the
execution of the program is under the control of the DIWIDE [11] distributed
debugger which provides options to create breakpoints, perform step-by-step
execution, animation of the flow of control, etc. Once the program has been suc-
cessfully debugged, it can be executed in trace mode. GRM [13], a distributed

480 V.N. Alexandrov, A. Thandavan, and P. Kacsuk

monitoring tool, is responsible for generating a file containing trace events defi-
ned by the developer. The collected data can then be visualised by the PROVE
[13] visualization tool, which is invaluable in assisting the developer to locate
performance bottlenecks in the running application.

P-GRADE currently supports job execution in interactive as well as batch
mode. An application could be executed interactively on a cluster of workstations
the workstations involved are declared beforehand and processes are assigned to
run on them by PVM or MPI. On the other hand, the application could be
submitted as a job to a batch scheduling system like Condor, which would be
responsible for assigning processes to resources. In future versions of P-GRADE,
the target execution environment could be a computational grid managed by
Globus.

4.2 Parallel Approach

Inherently, Monte Carlo methods for solving SLAE allow us to have minimal
communication, i.e. to partition the matrix A, pass the non-zero elements of the
dense (sparse) matrix (or its partitions) to every processor, to run the algorithm
in parallel on each processor computing �n/p	 rows (components) of MI or the
solution vector and to collect the results from slaves at the end without any
communication between sending non-zero elements of A and receiving partitions
of A−1 or x. The splitting procedure and refinement are also parallelised and
integrated in the parallel implementation. Even in the case, when we compute
only k components (1 ≤ k ≤ n) of the MI (solution vector) we can divide evenly
the number of chains among the processors, e.g. distributing �kN/p	 chains on
each processor. The only communication is at the beginning and at the end of
the algorithm execution which allows us to obtain very high efficiency of parallel
implementation.

In addition, an iterative filter process is used to improve the accuracy of the
Markov Chain Monte Carlo calculated inverse.

In P-GRADE we employed a master/slave approach, where the main process
had to read the data from a file, partition it, send it out to the slaves and collect
the results from them at the end of the computation. The slaves were defined
using the Process Farm template in P-GRADE which allows scaling to larger
number of processes when more compute resources are available. The GRM
and PROVE tools were extremely useful in fine-tuning the performance of the
application.

5 Numerical Experiments

The algorithms ran on partition of a 32 processor IBM SP3 machine as well as
a workstation cluster over a 100 Mbps Ethernet network. Each workstation had
an Intel Pentium IV processor with 256 MB RAM and a 30 GB harddisk and
was running SUSE Linux 8.1. The MPI environment used was LAM MPI 7.0.

Using P-GRADE for Monte Carlo Computations 481

We have carried out tests with low precision 10−1 − 10−2 and higher pre-
cision 10−5 − 10−6 in order to investigate the balance between stochastic and
deterministic components of the algorithms based on the principle of balancing
of errors (e.g. keeping the stochastic and systematic error of the same order) [6].
Consider now, finding the solution to SLAE using Monte Carlo and applying the
filter procedures with precision 10−5 − 10−6:

Table 1. MC with filter procedures on the cluster

Matrix Size Time (Dense Case) in seconds
4 proc. 8 proc. 12 proc. 16 proc.

250 59.269 24.795 16.750 14.179
500 329.072 177.016 146.795 122.622
1000 1840.751 989.423 724.819 623.087

Table 2. MC with filter procedures on the miniGrid

Matrix Size Time (MC, Dense Case) in seconds
16 proc. (4 SP and 12 cluster) 16 proc. (8 SP and 8 cluster)

250 729.208 333.418
500 4189.225 1945.454

The above results show that all the algorithms scale very well. The second
table shows that it is important to balance computations in a Grid environment
and communicate with larger chunks of data. For example, in this case this can
lead to a substantial reduction of computational time.

6 Conclusion

In this paper we have considered how we can efficiently use P-GRADE for pro-
gramming a hybrid Monte Carlo/deterministic algorithms for Matrix Compu-
tation for any non-singular matrix. We have compared the efficiency of the al-
gorithm on a cluster of workstations and in a Grid environment. The results
show that the algorithms scale very well in such setting, but a careful balance
of computation should be maintained.

482 V.N. Alexandrov, A. Thandavan, and P. Kacsuk

References

1. B. Fathi, B.Liu and V. Alexandrov, Mixed Monte Carlo Parallel Algorithms for
Matrix Computation , Lecture Notes in Computer Science, No 2330, Springer-
Verlag, 2002, pp 609-618

2. Ortega, J., Numerical Analysis, SIAM edition, USA, 1990.
3. Alexandrov V.N., Efficient parallel Monte Carlo Methods for Matrix Computation,

Mathematics and computers in Simulation, Elsevier 47 pp. 113-122, Netherlands,
(1998).

4. Golub, G.H., Ch., F., Van Loan, Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore and London, (1996)

5. Sobol I.M. Monte Carlo Numerical Methods. Moscow, Nauka, 1973 (in Russian).
6. Dimov I., Alexandrov V.N. and Karaivanova A., Resolvent Monte Carlo Methods

for Linear Algebra Problems, Mathematics and Computers in Simulation, Vo155,
pp. 25-36, 2001.

7. Fathi Vajargah B. and Alexandrov V.N., Coarse Grained Parallel Monte Carlo Al-
gorithms for Solving Systems of Linear Equations with Minimum Communication,
in Proc. of PDPTA, June 2001, Las Vegas, 2001, pp. 2240-2245.

8. Alexandrov V.N. and Karaivanova A., Parallel Monte Carlo Algorithms for Sparse
SLAE using MPI, LNCS 1697, Springer 1999, pp. 283-290.

9. Alexandrov V.N., Rau-Chaplin A., Dehne F. and Taft K., Efficient Coarse Grain
Monte Carlo Algorithms for matrix computation using PVM, LNCS 1497, pp. 323-
330, Springer, August 1998.

10. Dimov I.T., Dimov T.T., et all, A new iterative Monte Carlo Approach for In-
verse Matrix Problem, J. of Computational and Applied Mathematics 92 pp 15-35
(1998).

11. Kacsuk P., Lovas R. and Kovács J., Systematic Debugging of Parallel Programs
in DIWIDE Based on Collective Breakpoints and Macrosteps, Proc. of the 5th
International Euro-Par Conference, Toulouse, France, 1999, pp. 90-97.

12. Kacsuk P., Dózsa G., Fadgyas T. and Lovas R. The GRED Graphical Editor for
the GRADE Parallel Program Development Environment, Journal of Future Ge-
neration Computer Systems, Vol. 15(1999), No. 3, pp. 443-452.

13. Balaton Z., Kacsuk P. and Podhorszki N., Application Monitoring in the Grid
with GRM and PROVE , Proc. of the International Conference on Computational
Science, ICCS 2001, San Francisco, CA., USA. pp. 253-262.

	Introduction
	Monte Carlo and Matrix Computation
	The Hybrid MC Algorithm
	Parallelisation Using P-GRADE
	Tools in P-GRADE
	Parallel Approach

	Numerical Experiments
	Conclusion

