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Abstract. In this paper we present error and performance analysis of
a Monte Carlo variance reduction method for solving multidimensional
integrals and integral equations. This method, called importance separa-
tion, combines the idea of separation of the domain into uniformly small
subdomains with the approach of importance sampling. The importance
separation method is originally described in our previous works, here we
generalize our results and discuss the performance in comparison with
crude Monte Carlo and importance sampling. Based on our previous in-
vestigation we propose efficient parallelizations of the importance sepa-
ration method. Numerical tests implemented on PowerPC cluster using
MPT are provided. The considered algorithms are carried out using pseu-
dorandom numbers.

1 Introduction

Multidimensional numerical quadratures are of great importance in many prac-
tical areas, ranging from atomic physics to finance. The crude Monte Carlo me-
thod has rate of convergence O(N~'/2) which is independent of the dimension
of the integral, and that is why Monte Carlo integration is the only practical
method for many high-dimensional problems.

Much of the efforts to improve Monte Carlo method (MCM)are in construction of
variance reduction methods which speed up the computation. Importance sam-
pling is probably the most widely used Monte Carlo variance reduction method,
[IT/6/T314]. One use of importance sampling is to emphasize rare but impor-
tant events, i.e., small regions of space in which the integrand is large. One of
the difficulties in this method is that sampling from the importance density is
required, but this can be performed using acceptance-rejection.

In [8] a method called importance separation (IS) was introduced. This method
combines the ideas from importance sampling and stratification. The IS method
has the best possible rate of convergence for certain class of functions but its
disadvantage is that it gives better accuracy only for low dimensions and its
increased computational complexity. This method was applied for evaluation of
multidimensional integrals [3] and for solving integral equations [5].

In this paper we consider both problems, solving multiple integrals and integral
equations through unified point of view converting the problem of solving of
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integral equations into approximate calculation of a finite number of integrals
(linear functionals of iterative functions), then importance separation is applied
to the each of the integrals. We also describe the parallel implementation of the
two algorithms based on IS; it has some difficulties due to hierarchical structure
of the method.

2 Formulation of the Problem

2.1 Calculation of Multidimensional Integrals

Consider the problem of approximate calculation of the multiple integral
I :/ f(@)p(x)dz, G=][0;1]¢ (1)
G

where f(x) is an integrable function for any z € G C R? and p(z) > 0 is a
probability density function, such that [, oP(r)dr =1.

The Monte Carlo quadrature formula is based on the probabilistic interpretation
of an integral. If {x,} is a sequence in G sampled with density p(z), then the
Monte Carlo approximation to the integral is, [12],

1 N
I Inlf] = 5 3 fln)
n=1

with the integration error ey = |I — In| = \/%(f).

2.2 Solving Integral Equations

Consider the Fredholm integral equation of the second kind:

u(r) = / k(z, 2" u(z")dz’ + f(2)
7
or
u=Ku+ f (K is an integral operator), where
E(xz,2") € La(£2 x 2), f(x) € La(§2) are given functions and u(z) € La(§2) is an
unknown function, z,2’ € 2 C R" (£ is a bounded domain).

We are interested in Monte Carlo method for evaluation of linear functionals of
the solution of the following type:

ﬂwzj@@m@mxzwm» 2)

It is assumed that p(z) € Ly(£2). We can apply successive approximation method
for solving integral equations:

D =3TKOf=fHKf+. KV ROf =12, (3)

=0
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where u(9)(z) = f(x). It is known that the condition |||z, < 1 is a sufficient
condition for convergence of the Neumann series. Thus, when this condition is
satisfied, the following statement holds:

uD —u as i— oo.

Therefore,

_ i M) — i @Drl =5 ()
J(u) = (pyu) = lim (p,u'”) = lim so,EOIC f ilggogo(so,lC f)-
Jj= Jj=

1—> 00

An approximation of the unknown value (¢, u) can be obtained using a truncated
Neumann series (3]) for sufficiently large i:

(0, u®) = (0, ) + (. KF) + .+ (0, KV ) + (0, KD f).

So, we transform the problem for solving integral equations into a problem for
approximate evaluation of a finite number of multidimensional integrals. We will
use the following denotation (¢, KU)f) = I(j), where I(j) is a value, obtained
after integration over 29! = 2 x ... x 2, j = 0,...,i. It is obvious that
the calculation of the estimate (¢, u(”)) can be replaced by evaluation of a sum
of linear functionals of iterative functions of the following type (o, L) f),j =
0,...,%, which can be presented as:

(0 KO f) = / (t0)K £ (1) dltg =
? (4)

:L@(to)k(to,tl)...k(tj_l,tj)f(tj)dto...dt]‘,

where t = (to,...,t;) € G= Tl C R If we denote by F(t) the integrand
function ‘
F(t) = (p(t())k(to,tl) R k(tjfl,tj)f(t]’), t e QJ+1,

then we will obtain the following expression for ({d):
1(j) = (9. KD ) =/ F(t)dt, teqcRVY, (5)
G

So, from now on we will consider the problem for approximate calculation of
multiple integrals of the type (Bl). We will first review briefly the most widely
used Monte Carlo methods for integrals and integral equations. It is well-known
that Monte Carlo methods reduce the problem to the approximate calculation of
mathematical expectation which coincides with the unknown functional defined

by ().

3 Importance Separation for Integrals

The importance separation is a Monte Carlo method which combines the idea of
separation of the domain of integration into uniformly small subdomains (strati-
fication, [4]) and the Kahn approach to implement more samples in those subdo-
mains where the integrand is large (importance sampling for integrals, [7], and
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for integrals equations, [2J9]). This method has the best rate of convergence for
the class of functions with bounded derivatives (see [1]).

One approach how to make a partition of the given domain into subdomains was
studied in [8] where the problem for evaluation of the integral I(j) = [, F(t)dt
is considered. The suggested there partition scheme of the domain G' = [a; b] into
M subintervals (one-dimensional case) is the following one:

M
G:UGl, GZE[.Il,l,LL'l}, l:1,...7M—1,
=1

C; = [F(ZL‘Z‘,l)-i-F(LL'M)](ZEM—33‘1;1), i=1,...,M —1,

N =

Ci
F(ﬁl_l)(M —1 + 1),
It is known (see [12]) that

Ti =Ti-1+

E0N () = 1(7),

where u v "
.. V(G;) i
NG =D 5 2 FE”). YoNi=N,
i=1 vo=1 i=1

and fl(i) is a random point in the i-th subdomain of G.
In the general case of multidimensional integrals (G C R") the following inte-
gration error (the probable error) holds [R]:

1
2

N
1 Z ~ . 11
TN S \/5’/1 lﬁ il(LicliCQi)Q] N é 711’ M = ]\77 (7)

where n is the dimension of the domain of integration, M is the number of sub-
domains, the integrand is a positive function F(t), which belongs to W) (L, @).
This means that F'(¢) is continuous on G with partially continuous first deriva-
tives and

oF .

a_tl S Li” l = 1,...,d, t S Gi, LZ = (Li17~-~7Lid)7 Lz :m?xL,;l.
The constants ¢1,(i = 1,..., M) and the vectors of constants co, € R? are
determined from the requirement the subdomains G;, ¢+ = 1,..., M have to be

uniformly small in probability and in geometrical size, and it is also assumed
that 3, = mlax C2,, -

From ([7) it is clear that the error of the importance separation method which has
the order O(N~1/271/") asymptotically goes to O(N~1/2) for large dimensions
n. This estimation of integration error shows that importance separation can be
considered as a good method for approximate calculation of integrals only if n
is not very large. Therefore when we translate this conclusion in the terms of
integral equation, it means that the von Neumann series has to converge quickly.
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4 Parallel Implementation

In this section we present the parallel importance separation for evaluation of
multiple integrals and solving integral equations. The crude Monte Carlo pos-
sesses inherent parallelism which is based on the possibility to calculate simul-
taneously realizations of the random variable on different processors. For our
algorithm (importance separation) we have some additional work: partitioning
of the domain. We consider a multiprocessor configuration with p nodes.

N uniformly distributed random points z; € [0;1]¢, i = 1,..., N are used to
obtain an approximation with given accuracy of the integral (II). For generation
of d—dimensional random point we need d random numbers. To estimate the
performance of the parallel algorithms we use:

ETp(A) mathematical expectation of time, required for a set of p processing

elements to solve the problem using algorithm A

_ ET.(A)
Sp(A) = ET,(A) speed-up

Sp(A
E,(A) = % parallel efficiency.

5 Numerical Experiments

We present the numerical results (accuracy, CPU-time in seconds, parallel effi-
ciency, speed-up) for the considered algorithm, importance separation, applied
to solving of multidimensional integrals and integral equations using pseudoran-
dom number sequences. The numerical tests are implemented on a cluster of 4
two-processor computers Power Macintosh using MPI.

5.1 Calculation of Integrals

Here we present the results of solving of a multidimensional integral, which is
used as a test example in [10].
Example 1. This example is Monte Carlo integration over I° = [0,1]® of the

function 5
° 2+ sin(>0_, . w;
fi(z) = exp <Z a; $$ (ZJ*LJ#Z J)> ’
i=1

2

where a = (1,3, %, 1, 1). The numerical results for the accuracy of the described

methods for computing the multidimensional quadratures are presented in Table
[ The results are presented as a function of N, number of samples, and as a
function of the error, which is computed with respect to the exact solution. The
importance separation method leads to smaller errors. The most important fact is
that using importance separation we have very good accuracy even using small
sample. The superior behavior of importance separation is illustrated also by
Figure [[1 Table 2] presents the achieved efficiency of the parallel implementation
(using MPT) for the considered method. The speed-up is almost linear and the
efficiency grows with the increase number of samples.



504 S. Ivanovska and A. Karaivanova

Table 1. Comparison between Crude MCM, Importance sampling, Importance sepa-
ration for Example 1 (calculations are implemented on one processor)

N Crude MCM ||Imp. sampling||Imp. separation
|I—[N|[ T\ |I—IN|[ T |I—IN|[ Ty
100 {/0.009532{0.001{|0.081854|0.008{|0.000316| 6
500 {0.092960(0.004([0.007102|0.036{[0.000003| 31
2500 {/0.009027]0.020]|0.006381|0.175(/0.000068| 152
100001|0.006611{0.076||0.004673|0.697|/0.000061| 610
50000(/0.008443(0.3861|0.003212(3.489{|0.000021| 3047

Table 2. Implementation of IS for Example 1 using MPI (I = 2.923651)

Importance separation
N = 1000 N = 10000
In [Ep p[ In [Ep
2.923604| 1 {1]2.923590] 1
2.923603]0.979((2|2.923573]0.985
2.920636(0.967|3|2.923336(0.983
2.923804(0.941||4]2.923638]0.980
5
6

2.923463(0.934(|5|2.923602{0.979
2.911825|0.925||6]2.922537(0.977

QY| O | W | =T

5.2 Solving Integral Equations

We use the following integral equation as a test Example 2:

w(z) = [ k(x, 2 )u(z")dz’ + f(x), where
0
0.055
(,0) = T + (IKllz, = 0.2) ®)
f(x) = 0.02(32% 4 e~ 9-357), 0 =1[-2:2].
This kind of equation describes some neuron networks procedures. We are
interested in an approximate calculation of (¢, u), where p(z) = 0.7((z +

1)% cos(5x) + 20). The results for parallel efficiency are presented as a function
of the number of nodes p. The importance separation algorithm is constructed
so that only one sample of the random variable is chosen in every subdomain.
The number of iterations d is fixed, but it has been chosen in advance according
to the Lo-norm of the kernel (8). For the approximate computation of any in-
tegral I(j), j =0,...,7 different number of samples are used in order to have
error balancing. The proposed parallel algorithm for importance separation sha-
res the obtained subdomains among the processors. Thus, every node processes
the corresponding set of subdomains independently. This fact and insignificant
quantity of data that is transferred determine comparatively high parallel effi-
ciency of the algorithm. The results for the achieved efficiency are given in Table
Bl which illustrates the inherent parallelism of Monte Carlo methods.
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Table 3. Relative error, CPU-time (in seconds) and parallel efficiency in the approxi-
mate calculation of (¢, u) for Example 2. The number of samples used for calculation
of each of the integrals I(j), 7 =0,...,5 is denoted by N;

1.0 |
§
E 06t
53}
02t
-0.2

No = 240, N, = 187 No = 480, N; = 247 No = 480, Ny = 307
Ny =123, N3 = 6* Ny =183 N3 =124 No =243, N3 = 12*
Ny =6°, N5 = 6° Ny =6°, N5 = 6° Ny =12°, N5 = 6°

Hp[Rel. error[Time[ B, Hp [Rel. error[Time[ B, Hp[Rel. error[Time[ E, H
1| 0.1221 |0.63 1 1] 0.0014 |0.81 1 1| 0.0009 |3.18 1
2| 0.1079 ]0.31]0.997 (2] 0.0016 |0.40{0.997°||2| 0.0005 |1.59 |0.999
3] 0.0994 |0.21]0.988 (3| 0.0036 |0.27{0.989|3| 0.0005 |1.06 |0.996
4] 0.0272 [0.16 {0.976|/4| 0.0122 |0.21|0.979||4| 0.0010 |0.80 |0.994
6| 0.1986 |0.11]0.962 6| 0.0046 |0.14]0.967|[6| 0.0036 |0.53|0.990
4+ fa-- £ Importance separation method
X - —& Crude Monte Carlo method
N *- - = Importance sampling method

Number of points

\®#~—<>\\
N AL
\& / AN
/%\ AN // o
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Fig. 1. Comparison of the accuracy of Crude MCM, Importance sampling, and Impor-
tance separation for Example 1
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