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Abstract. This paper considers the problem of joint maneuvering target tracking
and classification. Based on the recently proposed particle filtering approach, a
multiple model particle filter is designed for two-class identification of air targets:
commercial and military aircraft. The classification task is implemented by pro-
cessing radar (kinematic) measurements only, no class (feature) measurements are
used. A speed likelihood function for each class is defined using a priori infor-
mation about speed constraints. Class-dependent speed likelihoods are calculated
through the state estimates of each class-dependent tracker. They are combined
with the kinematic measurement likelihoods in order to improve the process of
classification. The performance of the suggested multiple model particle filter is
evaluated by Monte Carlo simulations.

1 Introduction

A lot of research has been performed recently concerning the problem of joint target
tracking and classification. Actually, the simultaneous implementation of these two im-
portant tasks in the surveillance systems facilitates the situation assessment, resource
allocation and decision-making [1,2]. Classification (or identification) usually includes
target allegiance determination and/or target profile assessment such as vehicle, ship
or aircraft type. Target class information could be obtained from an electronic support
measure (ESM) sensor, friend-and-foe identification system, high resolution radar or
other identity sensors. It could be inferred from a tracker, using kinematic measure-
ments only or in a combination with identity sensors. On the other hand, target type
knowledge applied to the tracker can improve tracking performance by the possibility
of selecting appropriate target models. Classification information can assist in correct
data association and false tracks elimination in multiple target tracking systems.
Two basic alternative approaches to classification exist based on Bayesian and Dempster-
Shafer theories. Comparative studies [1] of these inferring techniques come to the con-
clusion that Dempster-Shafer is more robust than the Bayesian technique, but this is
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achieved at the expense of delay in time [2]. The Bayesian approach is more certain
regarding the correct decisions. Efficient approximations to the optimal Bayesian solu-
tion of joint tracking and classification (JTC) are provided by Monte Carlo methods.
Feasible implementations of the JTC task via particle filtering are reported in [3,4].
A unified algorithm for JTC is suggested in [2] within the framework of the Bayesian
theory. A bank of filters, covering the state and feature space are run in parallel with each
filter matched to different target class. A robust particle filter is proposed as a concrete
realization of the algorithm.
The accurate representation of joint state and class probability distributions is an im-
portant advantage of the particle filtering approach. The highly non-linear relationships
between state and class measurements and non-Gaussian noise processes can be easily
processed by the particle filter. In addition, flight envelope constraints, which are essen-
tial part of the JTC task, can be incorporated into the filtering algorithm in a natural and
consistent way [5].
The objective of the present paper is to explore the capabilities of this particle filtering
technique to track and classify a maneuvering target. Two air target classes are conside-
red: commercial aircraft and military aircraft. A bank of two interacting multiple model
class dependent particle filters is designed and implemented. The novelty of the paper
relies also on accounting for two kinds of constraints : both on the acceleration and on the
speed. Two speed likelihood functions are defined based on a priori information about
speed constraints of each class. Such kind of constraints are used in other approaches
for decision making (see e.g. [6]). At each filtering step, the estimated speed from each
class dependent filter is used to calculate a class dependent speed likelihood. The speed
likelihoods are combined with kinematic likelihoods in order to improve the process of
classification.
The remaining part of the paper is organized as follows. Section 2 summarizes the
Bayesian formulation of the JTC problem according to [2,4,7,8]. Section 3 presents the
developed multiple model particle filter using both speed and acceleration constraints.
Simulation results are given in Section 4, with conclusions generalized in Section 5.

2 Problem Formulation

Consider the following model of a discrete-time jump Markov system, describing the
target dynamics and sensor measurement

xk = F (mk) xk−1 + G (mk) uk + B (mk) wk, (1)

zk = h (mk, xk) + D (mk) vk, k = 1, 2, . . . , (2)

where xk ∈ R
nx is the base (continuous) state vector with transition matrix F , zk ∈ R

nz

is the measurement vector with measurement function h, and uk ∈ U is a known con-
trol input. The noises wk and vk are independent identically distributed (i.i.d.) Gaus-
sian processes having characteristics wk ∼ N(0, Q) and vk ∼ N(0, R), respectively.
All vectors and matrices are assumed of appropriate dimensions. The modal (discrete)
state mk ∈ S � {1, 2, . . . , s} is a time-homogeneous first-order Markov chain with
transition probabilities pij � Pr {mk = j | mk−1 = i} , (i, j ∈ S) and initial pro-
bability distribution P0(i) � Pr {m0 = i} for i ∈ S, such that P0(i) ≥ 0, and
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∑s
i=1 P0(i) = 1. We assume that the target belongs to one of the M classes c ∈ C

where C = {c1, c2, . . . , cM} represents the set of the target classes. Generally, the
number of the discrete states s = s(c), the initial probability distribution P c

0 (i) and the
transition probability matrix [pij ]

c
, i, j ∈ S are different for each target class.

The joint state and class is time varying with respect to the state and time invariant
with respect to the class [2]. Let

{
Zk, Y k

}
= {zi, yi}ki=1 be the cumulative set of

kinematic (Zk) and class (feature) measurements (Y k) up to time k.
The goal of the joint tracking and classification task is to estimate the state xk and the

posterior classification probabilities P
(
c | {Zk, Y k

})
, c ∈ C based on all available

measurement information
{
Zk, Y k

}
. If we can construct the posterior joint state-class

probability density function (pdf ) p
(
xk, c | {Zk, Y k

})
, then the posterior classification

probabilities can be obtained by marginalisation over xk:

P
(
c | {Zk, Y k

})
=

∫

xk

p
(
xk, c | {Zk, Y k

})
dxk. (3)

Suppose that we know the posterior joint state-class pdf p
(
xk−1, c |

{
Zk−1, Y k−1

})
at

time instant k − 1. According to the Bayesian philosophy, p
(
xk, c | {Zk, Y k

})
can be

computed recursively from p
(
xk−1, c |

{
Zk−1, Y k−1

})
within the framework of two

steps – prediction and measurement update [2,4].
The predicted state-class pdf p

(
xk, c | {Zk−1, Y k−1

})
at time k is given by

p
(
xk, c | {Zk−1, Y k−1})

= (4)
∫

xk−1

p (xk | xk−1, c) p
(
xk−1, c |

{
Zk−1, Y k−1})

dxk−1,

where the conditional state prediction pdf p
(
xk | xk−1, c,

{
Zk−1, Y k−1

})
is obtained

from the state transition equation (1).
The conditional pdf of the measurements p ({zk, yk} | xk, c) = λ{xk,c} ({zk, yk}) is
usually known. This is the likelihood λ{xk,c} ({zk, yk}) of the joint state and feature.
When the measurements {zk, yk} arrive, the update step can be completed

p
(
xk, c | {Zk, Y k

})
=

1
d̄k

λ{xk,c} ({zk, yk}) p
(
xk, c | {Zk−1, Y k−1})

, (5)

where d̄k =
∑

c∈C

∫
xk

λ{xk,c} ({zk, yk})p
(
xk, c | {Zk−1, Y k−1

})
dxk is a norma-

lizing constant. The recursion (4)-(5) begins with the prior density P {x0, c} , x0 ∈
R

nx , c ∈ C, which is assumed known. Then using Bayes’ theorem, the target classifica-
tion probability is calculated by the equation

P
(
c | {Zk, Y k

})
=

p
({zk, yk} | c,

{
Zk−1, Y k−1

})
P

(
c | {Zk−1, Y k−1

})

∑
c∈C p ({zk, yk} | c, {Zk−1, Y k−1}) P (c | {Zk−1, Y k−1})

with an initial prior target classification probability P0(c), and
∑

c∈C P0(c) = 1.
The class-dependent state estimate x̂c

k, c ∈ C takes part in the calculation of the combi-
ned state estimate x̂k

x̂c
k =

∫

xk

xkp
(
xk, c | {Zk, Y k

})
dxk, x̂k =

∑

c∈C

x̂c
kP

(
c | {Zk, Y k

})
. (6)
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It can be seen from (4)-(6) that the estimates, needed for each class, can be calculated
independently from the other classes. Therefore, the JTC task can be accomplished by
the simultaneous work of M independent filters [2,4]. The scheme of the particle filter
bank, implemented in the present paper is described in Section 3.

It should be noted that because in our case we don’t have feature measurements, the
set {Y k} is replaced in the particle filter by the speed estimates from the M classes.
Together with a speed envelope which form is given in Section 3, they form a virtual
“feature measurement”.

3 Particle Filter for Maneuvering Target Tracking and
Classification

Maneuvering target model. The two-dimensional target dynamics is given by

xk = Fxk−1 + G [uk + wk] , k = 1, 2, . . . (7)

where the state vector x = (x, ẋ, y, ẏ)′ contains target positions and velocities in the
horizontal (Oxy) Cartesian coordinate frame. The control input vector u = (ax, ay)′

includes target accelerations along x and y coordinates. The process noise w = (wx, wy)′

models perturbations in the accelerations. The transition matrices F and G are [9]

F = diag [F1, F1] , for F1 =
[

1 T
0 1

]

; G = diag [g1, g1] , for g1 =
[

T 2

2 T
]′

,

where T is the sampling interval. The target is assumed to belong to one of two classes
(M = 2), representing either a lower speed commercial aircraft with limited maneuver-
ing capability (c1) or a highly maneuvering military aircraft (c2) [7]. The flight envelope
information comprises speed and acceleration constrains, characterizing each class. The
speed v =

√
ẋ2 + ẏ2 of each class is limited respectively to the interval:

{c1 : v ∈ (100, 300)} [m/s] and {c2 : v ∈ (150, 650)} [m/s].

The range of the speed overlap section is [150, 300]. The control inputs are restricted to
the following sets of accelerations:

{c1 : u ∈ (0, +2g,−2g)} and {c2 : u ∈ (0, +5g,−5g)} ,

where g [m/s2] is the gravity acceleration. The acceleration process uk is a Markov
chain with five states s(c1) = s(c2) = 5:

1. ax = 0, ay = 0, 2. ax = A, ay = A, 3. ax = A, ay = −A,
4. ax = −A, ay = A, 5. ax = −A, ay = −A

where A = 2g stands for class c1 target and A = 5g refers to the class c2. The two
target types have equal transition probabilities pij , i, j ∈ S: pij = 0.7, i = j; p1j =
0.15, j = 2, . . . , 5; pij = 0.05, j �= i, i, j = 2, . . . , 5. The initial probabilities are
selected as follows: P0(1) = 0.6, P0(2) = P0(3) = P0(4) = P0(5) = 0.1. The stan-
dard deviations of the process noise w ∼ N(0, diag(σ2

wx, σ2
wy)) are different for each

mode and class:
{
c1 : σj

w = 5.5 [m/s2], j = 1, . . . , 5
}

and{
c2 : σ1

w = 7.5, σj
w = 17.5 [m/s2], j = 2, . . . , 5

}
, where (σw = σwx = σwy).
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Measurement model. The measurement model at time k is described by

zk = h(xk) + vk, h(x) =
(√

x2 + y2, arctan
x

y

)′
, (8)

where the measurement vector z = (D, β)′ contains the distance to the target D and
bearing β, measured by the radar. The parameters of the measurement error vector
v ∼ N(0, R), R = diag(σ2

D, σ2
β) are as follows: σD = 100.0 [m]; σβ = 0.15 [deg].

The sampling interval of T = 5 [s] is chosen in the simulations below.

Speed constraints. Acceleration constraints are imposed on the filter operation by an
appropriate choice of the control input in the target model. The speed constraints are
enforced through speed likelihood functions. Using the speed envelope information, the
speed likelihood functions are defined by the following relationships

g1 (vc1
k ) =






0.8, if vc1
k ≤ 100 [m/s]

0.8 + κ1 (vc1
k − 100) , if (100 < vc1

k ≤ 300) for κ1 = −0.7/200
0.1, if vc1

k > 300 [m/s]

g2 (vc2
k ) =






0.1, if vc1
k ≤ 150 [m/s]

0.1 + κ2 (vc2
k − 150) , if (150 < vc1

k ≤ 650) for κ2 = 0.85/500
0.95 if vc1

k > 650 [m/s].

According to the problem formulation, presented in Section 2, two class-dependent filters
are working in parallel. At time step k, each filter gives state estimate {x̂c

k, c = 1, 2}.
Let us assume, that the estimated speed from the previous time step,

{
v̂c

k−1, c = 1, 2
}

,
is a kind of “feature measurement". The likelihood λ{xk,c} ({zk, yk}) is factorized [2]

λ{xk,c} ({zk, yk}) = fxk
(zk) gc (yc

k) , (9)

where yc
k = v̂c

k−1. Practically, the normalized speed likelihoods represent estimated by
the filters speed-based class probabilities. The posterior class probabilities are modified
by this additional speed information at each time step k. The inclusion of the speed
likelihoods is done after some “warming-up" interval, including filter initialization.

Particle Filter Algorithm. Consider the hybrid particle x = {x, m, c}, containing all
necessary state, mode and class information. Let Nc the number of particles for class c.
Then the detailed scheme of the proposed particle filter comprises the following steps:

1. Initialization, k = 0.

For class c = 1, 2, . . . , M , set P (c) = P0(c)

* For j = 1, . . . , Nc, sample{
x

(j)
0 ∼ p0(x0, c), m

(j)
0 ∼ {P c

0 (m)}sm=1 (c), c(j) = c
}

and set k = 1.

End for c
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2. For c = 1, . . . , M (possibly in parallel) execute

* Prediction step

For j = 1, . . . , Nc generate samples
m

(j)
k ∼ {pc

lm}s(c)m=1 for l = m
(j)
k−1,

wk ∼ N(0, Q(m(j)
k , c)), x

(j)
k = Fx

(j)
k−1 + Guk(m(j)

k , c) + Gwk

* Measurement processing step : on receipt of a new measurement {zk, yk}:
For j = 1, . . . , Nc evaluate the weights w

(j)
k = f(zk | x(j)

k )gc (yc
k),

where f(zk | x(j)
k ) = N(zk; h(x(j)

k ), R) and gc (yc
k) = gc

(
v̂

c(j)
k−1

)
;

calculate

p
({zk, yk} | c,

{
Zk−1, Y k−1

})
=

∑Nc

j=1 w
(j)
k and set L(c) =

∑Nc

j=1 w
(j)
k

* Selection step

normalize the weights w
(j)
k = w

(j)
k /

∑Nc

j=1 w
(j)
k

resample with replacement Nc particles (x(j)
k ; j = 1, . . . , Nc)

from the set (x(l)
k ); l = 1, . . . , Nc), according to the importance weights

* Compute updated state estimate and posterior model probability

x̂c
k = 1

Nc

∑Nc

j=1 x
(j)
k ; P c (mk = l) =

∑Nc
j=1 m

(j)
k =l

∑Nc
j=1 m

(j)
k

, l = 1, . . . , s(c)

End for c
3. Output: Compute posterior class probabilities and combined output estimate

P
(
c | {Zk, Y k

})
= L(c)P

(
c | Zk−1, Y k−1

)
/

∑M
c=1 L(c)P

(
c | Zk−1, Y k−1

)

x̂k =
∑M

c=1 P
(
c | {Zk, Y k

})
x̂c

k

4. Set k ←− k + 1 and go to step 2.

4 Simulation Results

The performance of the implemented tracking filter is evaluated by simulations over a
representative test trajectory, depicted in Fig. 1.
Measures of performance. Root-Mean Squared Errors (RMSE) [9]: on position (both
coordinates combined) and speed (magnitude of the velocity vector), average probability
of correct discrete state identification, average probability of correct class identification
and average time per update are used to evaluate the filter performance.
The results presented below are based on 100 Monte Carlo runs. The number of particles
for each class is Nc = 3000. The prior class probabilities are chosen as follows: P0(1) =
P0(2) = 0.5. The parameters of base state vector initial distribution x0 ∼ N [x0; m0, P0]
are selected as follows: P0 = diag{1502, 20.02, 1502, 20.02}; m0 contains the exact
initial target parameters.

Test trajectory. The target performs two coordinated turn maneuvers with normal acce-
lerations 2g and −5g , respectively, within scan intervals (16÷ 23) and (35÷ 37). The
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selected speed value is v = 250 [m/s]. Then a maneuver is performed with longitudinal
acceleration of 1g and normal acceleration of 2g in the frame of 3 scans (45÷ 47).
The longitudinal acceleration increases the speed up to v = 400 [m/s]. These maneu-
vers are followed by another two maneuvers (during scans (48÷ 56) and (63÷ 70))
with normal accelerations of 2g and −2g , respectively. The speed values (from 250
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Fig. 1. Test trajectory (a) and (b) Posterior probability of model 1
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Fig. 2. Class probabilities without (a) and (b) with speed constraints

to 400 [m/s]) and the normal 5g acceleration are typical for the second class target.
After the 5g maneuver, the filter correctly recognizes the real second class, but after the
subsequent maneuvers of 2g, a tendency for misclassification is present (Fig. 2(a)) in the
filter without speed constraints. It is due to the fact, that the filtering system can “change
its mind" regarding the class identification, if the second class target performs maneu-
vers, natural for the first class. The advantage of incorporation of speed constraints is
illustrated in Fig. 2(b). According to the results from the RMSEs (Fig. 3) the developed
particle filter with acceleration and speed constraints can reliably track maneuvering
targets. The discrete (mode) states are determined correctly by the filter (Fig.1(b)). It
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Fig. 3. Position RMSE [m] (a) and (b) Speed RMSE [m/s]

should be noted that the filter’s computational complexity allows for an on-line proces-
sing. The average time per update, estimated in the MATLAB environment (on PC with
AMD Athlon processor) is 1.52 [s]. It is less than the sampling interval of 5 [s].

5 Conclusions

A Bayesian joint tracking and classification algorithm has been proposed recently in
the work [2]. Based on this approach, a particle filter is developed in the present paper
for maneuvering target tracking and classification. A bank of interacting multiple model
class dependent particle filters is designed and implemented in the presence of speed
and acceleration constraints. The acceleration constraints for each class are imposed by
using different control inputs in the target model. The speed constraints are enforced by
constructing class dependent speed likelihood functions. Speed likelihoods are calculated
at each filtering step and assist in the process of classification.
The filter performance is analyzed by simulation over a typical 2 −D target scenario.
The results show a reliable tracking and correct target type classification.
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