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Abstract. We show how a lattice Boltzmann (LB) scheme can be spa-
tially coupled with a finite difference (FD) scheme in order to solve the
same problem. The typical situation we consider is a computational do-
main which is partitioned in two regions. The same spatio-temporal phy-
sical process extends over the full domain but a different numerical me-
thod is used over each region. At the interface of the subdomains, the
LB and FD must be connected so as to ensure a perfect continuity of
the physical quantities. We derive the theoretical concepts, which allow
us to link both methods in the case of a diffusion process, and validate
them with numerical simulations on a 2D domain.

1 Introduction

Many physical systems include phenomena at different time and space scales.
Their description in terms of a numerical model is therefore a difficult task as
often the same numerical scheme is not efficient over the full range of scales. In
addition, it occurs that various physical processes take place and couple different
parts of the system. Again, it is challenging to devise a numerical method which
is able to efficiently deal with such constraints.

Here we consider the case of a spatially extended system in which separate
spatial regions are treated with different numerical schemes. The motivation is
that, depending on the nature of each region, optimal efficiency is obtained with
different numerical methods.

For instance the lattice Boltzmann (LB) method [1] has a more detailed
microscopic description than a finite difference (FD) scheme because the LB ap-
proach includes the molecular velocity of the particles. In addition, important
physical quantities, such as the stress tensor, or particle current, are directly
obtained from the local information. However, the LB scheme may require more
memory than the corresponding FD scheme. Another motivation is that bound-
ary conditions are more or less naturally imposed on a given numerical scheme.
Therefore, in order to improve the global quality of the numerical solution, it
may be quite efficient to assume that several solvers are coupled.

Obviously, this coupling should not produce any discontinuities at the inter-
face between regions that are treated with the LB or the FD method. Since each
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scheme uses different variables, it is crucial to understand how the LB set of
variables is related to the FD set, and conversely.

Our solution follows the same argument as developed in [2] for a multigrid
LB scheme: the connection between the full set of LB variables and the standard
macroscopic physical quantities is based on the splitting of the particle distribu-
tion functions in an equilibrium and a nonequilibrium part. The former is built
on the physical quantities and the latter on the gradient of these quantities. This
observation is quite general and could be used to couple any scheme (e.g. finite
volume or finite element) with any LB method. Indeed, if the two schemes use
different variables, one must compute the particle distribution functions star-
ting from physical quantities known from another solver or from an analytical
expression. Here we will only consider the case of a diffusion process on a given
domain which is solved by the LB approach on a chosen subdomain and with a
FD solver on the rest of the domain.

Hybrid methods have already been proposed in the literature. In [3] a finite
volume and a finite element method are combined and then coupled with a finite
difference time domain solver for the wave equation, allowing the simulation of
wave propagation in complex 3D geometry. In [4], the LB method is coupled
with a molecular dynamics simulation of polymers. However, to our knowledge,
the FD and LB schemes have never been coupled across adjacent regions.

The paper is organized as follows. In section 2 we briefly introduce the LB
approach (we assume that the reader is familiar with the FD method). The
special case of a diffusion process is discussed in section 3. In particular, it
is shown how the Chapman-Enskog expansion offers a mapping between the
LB variables and the macroscopic quantities and their spatial derivatives. In
section 4 we describe the coupling algorithm. Then, in section 5 we perform
a numerical simulation to demonstrate that the proposed coupling is correct.
Finally, section 6 summarizes our findings and draws some conclusions.

2 The Lattice Boltzmann Approach

A lattice Boltzmann (LB) model [1,5] describes a physical system in terms of
a mesoscopic dynamics: fictitious particles move on a regular lattice, synchro-
nously at discrete time steps. An interaction is defined between the particles
that meet simultaneously at the same lattice site. Particles obey collision rules
which reproduce, in the macroscopic limit, an equation of physics.

A LB model can be interpreted as a discretization of the Boltzmann transport
equation on a regular lattice of spacing ∆r and with discrete time step ∆t. The
possible velocities for the pseudo-particles are the vectors vi. They are chosen
so as to match the lattice direction: if r is a lattice site, r +vi∆t is also a lattice
point. We thus consider a dynamics with z +1 possible velocities, where z is the
lattice coordination number and v0 = 0 describe the population of rest particles.

For isotropy reasons the lattice topology must satisfy the conditions
∑

i

viα = 0 and
∑

i

viαviβ = v2C2δαβ (1)
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where C2 is a numerical coefficient which depends on the lattice topology. The
greek indices label the spatial dimensions and v = ∆t/∆r. The first condition
follows from the fact that if vi is a possible velocity, then so is −vi.

In the LB approach a physical system is described through density distri-
bution functions fi(r, t). For hydrodynamics and diffusion processes, fi(r, t) re-
presents the distribution of particles entering site r at time t and moving in
direction vi. For the wave model, the interpretation is less obvious as fi can be
positive as well as negative. Physical quantities can be defined from moments of
these distributions. For instance, the local density is obtained by ρ =

∑z
i=0 fi .

A LB model can be determined by specifying a lattice, a kinetic equation and
an equilibrium distribution. In its simplest form (BGK model), the dynamics can
be written as a relaxation to a given local equilibrium

fi(r + vi∆t, t + ∆t) − fi(r, t) =
1
τ

(feq
i (r, t) − fi(r, t)) (2)

where τ is a relaxation time, which is a free parameter of the model. The local
equilibrium solution feq

i contains all the information concerning the physical pro-
cess investigated. It changes according to whether we consider hydrodynamics,
diffusion or wave propagation.

3 The Lattice Boltzmann Diffusion Model

Diffusion processes were first modeled using a cellular automata approach [6].
The scheme was then extended to a LB dynamics with a BGK collision term [1,
5,7].

From now on, we assume that the diffusion process takes place on a d-
dimensionnal square lattice. The key point is to choose correctly the local equi-
librium feq

i so that the diffusion equation for the particle density ρ =
∑2d

i=0 fi

can be derived from eq. (2). Since the particle density ρ is the only conser-
ved quantity in a diffusive process, the local equilibrium feq

i is taken to be
feq

i (r, t) = ρ(r, t)/2d so that ρ is indeed conserved and feq
i depends on r and t

only through the conserved quantities [1,5].
Let us now assume that ∆t is small (and constant in all our computations).

Taylor expanding the left hand side of eq. (2) up to second order, we get

∆t(vi · ∇)fi(r, t) + ∆t ∂tfi(r, t) +
∆t2

2
∂2

t fi(r, t) +

∆t2(vi · ∇)∂tfi(r, t) +
∆t2

2
(vi · ∇)2fi(r, t) =

1
τ

(feq
i (r, t) − fi(r, t)) .

(3)

We then use the multiscale Chapman-Enskog expansion to solve eq. (3). Thus, we
set fi = f

(0)
i +f

(1)
i +f

(2)
i +. . . and introduce next a small parameter ε along with

the change of coordinates (r, t) �→ (r1, t1, t2) = (εr, εt, ε2t). We also consider a
new function f ε

i (r1, t1, t2) which satisfies fi(r, t) = f ε
i (εr, εt, ε2t) . After formally

substituting fi −→ f ε
i , ∇r −→ ε∇r1 , ∂t −→ ε∂t1 + ε2∂t2 , into eq. (3), we obtain

a new equation for f ε
i .
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To find an asymptotic series solution, we expand f ε
i in powers of ε

f ε
i (r1, t1, t2) = f

ε(0)
i (r1, t1, t2) + εf

ε(1)
i (r1, t1, t2) + ε2f

ε(2)
i (r1, t1, t2) + . . . (4)

By introducing (4) into the equation for f ε
i , we can recursively determine the

f
ε(j)
i s. Using particle density conservation and the first equation in (1), we get

at zero and first order

f
(0)
i (r, t) =

ρ(r, t)
2d

= feq
i (r, t) , f

(1)
i = −τ∆t

2d
vi · ∇ρ(r, t) .

It is still worth noticing, with respect to the macrocospic behaviour of our model,
that the particle density ρ(r, t) satisfies the diffusion equation. Indeed, using the
second equation in (1), we get

∂tρ(r, t) =
C2v

2∆t

2d

(
τ − 1

2
)∇2ρ(r, t),

with diffusion coefficient D = (τ − 1/2)C2v
2∆t/(2d).

4 The Coupling Algorithm

The result of the previous section shows that the LB variables can be written as
fi = feq

i + fneq
i , where

feq
i = f

(0)
i =

ρ(r, t)
2d

, fneq
i ≈ f

(1)
i = −τ∆t

2d
vi · ∇ρ(r, t) .

These relations give a dictionary to go from the standard description of diffu-
sion, where only ρ is considered, to the LB description. Note that the inverse
connection is straightforward since we always have, by definition, ρ =

∑
i fi. It

must be clear that the LB scheme requires more information on the physical
variables because it contains more degrees of freedom.

To make the coupling between a FD and a LB scheme more explicit, we now
consider the situation of a two-dimensional diffusion problem ∂tρ = D∇2ρ on a
square domain Ω ⊂ R

2 of size Lx ×Ly. We cut Ω into two parts Ω1 and Ω2 such
that Ω = Ω1

⋃
Ω2. We apply in Ω1 the FD method and in Ω2 the LB method

(see fig. 1). We assume here that the same mesh is used for both methods.
We define the quantities vi, i = 1, ..., 4, as vectors pointing in the four lattice

directions: right, up, left and down. Their lengths are such that vi∆t connects
the neighboring sites along direction i.

For the points r ∈ Ω1, we apply the FD scheme to the diffusion equation

ρ(r, t + ∆t) = ρ(r, t) +
∆t

∆r2 D

4∑

i=1

(ρ(r + vi∆t, t) − ρ(r, t)) , (5)

whereas the points r ∈ Ω2 are treated with the LB scheme given by eq. (2).
There are several ways to define the interface between the two regions, Ω1 and
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Fig. 1. Left: The computational grid and its partioning into a subdomain Ω1, where
the FD scheme is applied, and a subdomain Ω2, where the LB scheme is used. The
boundary conditions we impose for the diffusion process are ρ = 10 on the left wall,
ρ = 0 on the right one and periodic along the vertical axis. Right: The point r1 (white
circle), resp. r2 (black circle), is completely treated with the FD, resp. LB, scheme,
and r0 (gray circle) is updated with both methods. The figure shows that for r0,
the distribution f1 is unknown (because it should come out of r1). Thus, we use our
coupling algorithm to compute it

Ω2. Here, we assume an overlap so that a point r0 at the interface belongs to
both Ω1 and Ω2 (see fig. 1). On such points r0, the LB variables as well as the
FD variables are computed. We denote by r1 ∈ Ω1 and r2 ∈ Ω2, two neighbors
of a site r0 of the interface. According to fig. 1 and eq. (5), the calculation
of ρ(r0, t + ∆t) requires the knowledge of ρ(r2, t), where r2 is only subject
to the LB scheme. However, the LB scheme offers naturally this quantity as
ρ(r2, t) =

∑4
i=1 fi(r2, t) . Therefore, the coupling of a FD site to a LB site

is straightforward. The reverse is a bit more involved. In order to update the
LB scheme at r0 and time t + ∆t, we need f1(r0, t). This quantity is not known
because the site r1 is only treated with the FD scheme. Indeed, if the LB scheme
had been applied to the full domain, then f1(r0, t) would have been propagated
from lattice site r1. However, the value of f1(r0, t) can be computed from our
dictionary f1(r0, t) = f

(0)
1 (r0, t) + f

(1)
1 (r0, t) with f

(0)
1 (r0, t) = ρ(r0, t)/4 and

f
(1)
1 (r0, t) = −(τ∆t/4) vi · ∇ρ(r0, t). In order to obtain ∇ρ(r0, t), we use a

second order finite difference approximation of ρ over the nearest neighbors

∇ρ(r0, t) =
ρ(r2, t) − ρ(r1, t)

2∆r
. (6)

Note that in the particular case where only one fi is missing, the connection can
be made in a simpler way. As ρ =

∑
i fi is known from the FD calculation, and

f2, f3 and f4 are known from the LB calculation, one has f1 = ρ−f2−f3−f4 . In
the simple case described here, this approach gives a correct coupling. However,
it no longer works if the interface between Ω1 and Ω2 is irregular because the
previous expression is not sufficient to determine more than one fi.
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5 Numerical Validation

To validate the coupling algorithm proposed in the previous section, we perfor-
med the simulation of a source-sink problem on the geometry defined in fig. 1.
The domain size is Lx = Ly = 30 in lattice units. The boundary conditions are
ρ((0, y), t) = 10 and ρ((Lx, y), t) = 0 on the left and right sides of Ω and the
initial conditions are ρ((0, y), 0) = 10 and ρ((x, y), 0) = 0 for x �= 0. On the lower
and upper walls, we apply periodic conditions ρ((x, Ly + 1), t) = ρ((x, 0), t) and
ρ((x,−1), t) = ρ((x, Ly), t). The vertical interface between the subdomains is
positioned at x = 6, with the FD scheme over the left region and the LB over
the right one. Hence, the geometry is actually 1-dimensional.

This simple set-up with the above boundary and initial conditions allows for
an analytic solution to the diffusion equation for the time-dependent dynamics,

ρ((x, y), t) =ρ0

∞∑

i=0

erfc
(

Lx(1 − (1 − x/Lx) + 2i)
2
√

Dt

)

− ρ0

∞∑

i=0

erfc
(

Lx(1 − (1 + x/Lx) + 2i)
2
√

Dt

)

where erfc(v) =
∫ ∞

v
e−u2

du and D is the diffusion coefficient (here ρ0 = 10).

After several iterations, the system converges to a steady state in which the
density profile is expected to be a linear function of x satisfying the boundary
conditions. To illustrate the importance of a correct coupling at the subdomain
interface, we plot in figs. 2a, 2b, 2c (left) the density profile obtained from the
numerical solution with the full coupling f1 = f

(0)
1 + f

(1)
1 , the one without the

gradient correction, i.e. with the approximation f1 ≈ f
(0)
1 , and the theoretical

profile. We also plot in figs. 2a, 2b, 2c (right) the error with respect to the
analytic solution. From the breaking of the slope observed in fig. 2c (left) we
conclude that the gradient correction is necessary to obtain the correct density
profile and continuity of the particle current.

We computed the relative error in the L2-norm for the lattice resolution used
in the simulation. For 100 (resp. 500, 5000) time steps, we get a 1.2% (resp. 0.6%,
0.3%) relative error for the full coupling. We expect the level of accuracy of our
mapping to be the same as the LB itself: second order in the lattice spacing.

6 Conclusion

In this work, a LB scheme is spatially coupled to a FD scheme on a computa-
tional domain partitioned in two regions. We propose a way to relate the LB
distribution functions fi with the classical physical quantities and their deriva-
tives. This is a first step towards coupling correctly a LB scheme with another
method. Hence, to focus on the methodology only, we consider the simplest pos-
sible situation: a diffusion process solved by the LB approach on one region and
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Fig. 2. The density profile along the horizontal axis of the domain Ω is plotted on
the left side and the error with respect to the analytic solution on the right side. The
squares correspond to a simulation in which the coupling algorithm does not include
the gradient correction, whereas the circles represent the case where the full coupling
is considered. The asterisks of the analytic solution are diffcult to distinguish from the
circles of the full coupling. The total grid size is 31 × 31, and there are respectively
(a)100, (b)500 and (c)5000 time steps. The vertical interface (dashed line) is located
at x = 6. The relaxation time is τ = 0.7, the lattice spacing ∆r = 1 and the time step
∆t = 10−1
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with a FD solver on the other. At the interface, the LB and FD are connected
so as to preserve continuity of the physical quantities. The connection between
the fis and the standard macroscopic physical quantities is obtained using a
multiscale Chapman-Enskog expansion to split the fis in an equilibrium and a
nonequilibrium part. The former is related to the particle density and the latter
to its gradient. Our coupling methodology is indeed an approximation since we
neglect higher-order derivatives in the nonequilibrium distributions. A validation
was performed by running numerical simulations on a 2D domain and comparing
them with an analytic solution. Our mapping has the same level of accuracy as
the LB itself: second order in the lattice spacing.

Regarding future work, it seems natural to try to couple two domains with
different meshes. A good enough interpolation is needed to keep the second-order
accuracy of the coupling scheme (see [2]). This as well as the case of an irregular
boundary is under investigation. Other perspectives include applying the same
methodology to the LB reaction-diffusion, wave and fluid models. We also wish
to couple different LB dynamics: a diffusive region with a convective one. With
respect to coupling an incompressible Navier-Stokes solver with a “compressible”
LB fluid model, we believe that the pressure obtained from the Navier-Stokes
solver can be used to specify the density of the LB scheme, and conversely. We
plan to examine this on a Poiseuille flow and on Blasius’ problem.
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